Increased Transmissibility of the SARS-CoV-2 Alpha Variant in a Japanese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Items
2.3. Determination of the SARS-CoV-2 Alpha Variant
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Institute of Infectious Diseases, Japan. Recent Descriptive Epidemiology of COVID-19 in Japan. Available online: https://www.niid.go.jp/niid/ja/diseases/ka/corona-virus/2019-ncov/10431-covid19-ab38th.html (accessed on 16 June 2021).
- World Health Organization. Naming SARS-CoV-2 Variants. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 29 June 2021).
- Ministry of Health, Labor and Welfare. COVID-19 Variant of Concern (1 June 2021). Available online: https//www.mhlw.go.jp/content/10900000/000787862.pdf (accessed on 16 June 2021).
- Ministry of Health, Labor and Welfare. COVID-19 Variant of Concern (19 April 2021). Available online: https//www.mhlw.go.jp/stf/seikakunitsuite/bunya/0000121431_00256.html (accessed on 16 June 2021).
- Graham, M.S.; Sudre, C.H.; May, A.; Antonelli, M.; Murray, B.; Varsavsky, T.; Klaser, K.; Canas, L.S.; Molteni, E.; Modat, M.; et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: An ecological study. Lancet Public Health 2021, 6, e335–e345. [Google Scholar] [CrossRef]
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 372, 6538. [Google Scholar] [CrossRef] [PubMed]
- Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, A.; et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 2021, 593, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.; Shum, M.H.; Leung, G.M.; Lam, T.T.; Wu, J.T. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance 2021, 26, 2002106. [Google Scholar] [CrossRef] [PubMed]
- Osaka Prefectural Government. Incident of COVID-19 in Osaka, from 2 November 2020. Available online: https://www.pref.osaka.lg.jp/iryo/osakakansensyo/happy_kako.html (accessed on 16 June 2021).
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starr, T.N.; Greaney, A.J.; Hilton, S.K.; Ellis, D.; Crawford, K.H.D.; Dingens, A.S.; Navarro, M.J.; Bowen, J.E.; Tortorici, M.A.; Walls, A.C.; et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 2020, 182, 1295–1310.e20. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Charani, E.; Ariyanayagam, D.; Abdulaal, A.; Denny, S.J.; Mughal, N.; Moore, L.S.P. New-onset anosmia and ageusia in adult patients diagnosed with SARS-CoV-2 infection. Clin. Microbiol. Infect. 2020, 26, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.L.; Panagiotopoulos, N.; Byers, C.; Vilaplana, T.G.; Boddington, N.; Zhang, X.; Charlett, A.; Elgohari, S.; Coughlan, L.; Whillock, R.; et al. Transmission dynamics of COVID-19 in household and community settings in the United Kingdom. medRxiv 2020. [Google Scholar] [CrossRef]
- Doung-Ngern, P.; Suphanchaimat, R.; Panjangampatthana, A.; Janekrongtham, C.; Ruampoom, D.; Daochaeng, N.; Eungkanit, N.; Pisitpayat, N.; Srisong, N.; Yasopa, O.; et al. Case-Control Study of Use of Personal Protective Measures and Risk for SARS-CoV 2 Infection, Thailand. Emerg. Infect. Dis. 2020, 26, 2607–2616. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, Y.Y.; Liu, M.J.; Fang, L.Q.; Dean, N.E.; Wong, G.W.K.; Yang, X.B.; Longini, I.; Halloran, M.E.; Wang, H.J.; et al. Household transmission of SARS-CoV-2 and risk factors for susceptibility and infectivity in Wuhan: A retrospective observational study. Lancet Infect. Dis. 2021, 21, 617–628. [Google Scholar] [CrossRef]
- Park, Y.J.; Choe, Y.J.; Park, O.; Park, S.Y.; Kim, Y.M.; Kim, J.; Kweon, S.; Woo, Y.; Gwack, J.; Kim, S.S.; et al. Contact Tracing during Coronavirus Disease Outbreak, South Korea, 2020. Emerg. Infect. Dis. 2020, 26, 2465–2468. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.; Jian, S.W.; Liu, D.P.; Ng, T.C.; Huang, W.T.; Lin, H.H.; for the Taiwan COVID-19 Outbreak Investigation Team. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods before and after Symptom Onset. JAMA Intern. Med. 2020, 180, 1156–1163. [Google Scholar] [CrossRef]
- Miyahara, R.; Tsuchiya, N.; Yasuda, I.; Ko, Y.K.; Furuse, Y.; Sando, E.; Nagata, S.; Imamura, T.; Saito, M.; Morimoto, K.; et al. Familial Clusters of Coronavirus Disease in 10 Prefectures, Japan, February–May 2020. Emerg. Infect. Dis. 2021, 27, 915–918. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No. Household Contacts | No. SARS-CoV-2 Positive | SAR % | p-Value | |
---|---|---|---|---|---|
Sex | Female | 396 | 110 | 27.8% | 0.754 |
Male | 291 | 84 | 28.9% | ||
Unknown | 1 | 0 | NA | ||
Age | 0–29 years | 278 | 66 | 22.3% | 0.002 |
30–59 years | 276 | 78 | 29.7% | ||
60 years+ | 134 | 50 | 38.8% | ||
Relationship to index case | Spouse | 176 | 74 | 42.1% | <0.001 |
Parent | 179 | 39 | 21.8% | ||
Children | 220 | 55 | 25.0% | ||
Others | 112 | 25 | 22.3% | ||
Fever of index case | <38.0 °C | 308 | 67 | 21.7% | 0.003 |
≥38.0 °C | 337 | 112 | 33.2% | ||
Unknown | 43 | 15 | 34.9% | ||
Time from symptom onset to diagnosis of the index case | 2 days or less | 331 | 95 | 28.7% | 0.494 |
3 to 5 days | 224 | 56 | 25.0% | ||
6 days and over | 103 | 34 | 22.0% | ||
Unknown | 30 | 9 | 30.0% | ||
Epidemic phase based on diagnosis of index case | 1 to 20 December 2020 | 290 | 56 | 19.3% | <0.001 |
20 April to 3 May 2021 | 398 | 138 | 34.7% | ||
Viral type of index case | Pre-existing virus * | 290 | 56 | 19.3% | <0.001 |
Alpha variant | 124 | 48 | 38.7% |
Factors | Risk Ratio | p-Value | 95% Confidence Interval | |||
---|---|---|---|---|---|---|
Epidemic wave based on diagnosis of index cases | 1 to 20 December 2020 | ref | ||||
20 April to 3 May 2021 | 1.90 | <0.001 | 1.47 | - | 2.48 | |
Age | 0–29 years | ref | ||||
30–59 years | 1.15 | 0.353 | 0.85 | - | 1.56 | |
60 years+ | 1.62 | 0.003 | 1.18 | - | 2.23 | |
Relationship to index case | Spouse | 1.56 | 0.001 | 1.21 | - | 2.02 |
Others | ref | |||||
Fever of index case | <38.0 °C | ref | ||||
≥38.0 °C | 1.51 | 0.002 | 1.17 | - | 1.94 | |
Unknown | 1.50 | 0.078 | 0.96 | - | 2.34 |
Factors | Risk Ratio | p-Value | 95% Confidence Interval | |||
---|---|---|---|---|---|---|
Viral type of index case | Pre-existing virus * | ref | ||||
Alpha variant | 2.34 | <0.001 | 1.71 | - | 3.21 | |
Age | 0–29 years | ref | ||||
30–59 years | 1.50 | 0.071 | 0.97 | - | 2.34 | |
60 years+ | 2.56 | <0.001 | 1.64 | - | 4.00 | |
Relationship to index case | Spouse | 1.41 | 0.044 | 1.01 | - | 1.98 |
Others | ref | |||||
Fever of index case | <38.0 °C | ref | ||||
≥38.0 °C | 1.48 | 0.021 | 1.06 | - | 2.07 | |
Unknown | 1.11 | 0.824 | 0.44 | - | 2.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, H.; Hirayama, A.; Nagai, H.; Shirai, C.; Takahashi, Y.; Shinomiya, H.; Taniguchi, C.; Ogata, T. Increased Transmissibility of the SARS-CoV-2 Alpha Variant in a Japanese Population. Int. J. Environ. Res. Public Health 2021, 18, 7752. https://doi.org/10.3390/ijerph18157752
Tanaka H, Hirayama A, Nagai H, Shirai C, Takahashi Y, Shinomiya H, Taniguchi C, Ogata T. Increased Transmissibility of the SARS-CoV-2 Alpha Variant in a Japanese Population. International Journal of Environmental Research and Public Health. 2021; 18(15):7752. https://doi.org/10.3390/ijerph18157752
Chicago/Turabian StyleTanaka, Hideo, Atsushi Hirayama, Hitomi Nagai, Chika Shirai, Yuki Takahashi, Hiroto Shinomiya, Chie Taniguchi, and Tsuyoshi Ogata. 2021. "Increased Transmissibility of the SARS-CoV-2 Alpha Variant in a Japanese Population" International Journal of Environmental Research and Public Health 18, no. 15: 7752. https://doi.org/10.3390/ijerph18157752
APA StyleTanaka, H., Hirayama, A., Nagai, H., Shirai, C., Takahashi, Y., Shinomiya, H., Taniguchi, C., & Ogata, T. (2021). Increased Transmissibility of the SARS-CoV-2 Alpha Variant in a Japanese Population. International Journal of Environmental Research and Public Health, 18(15), 7752. https://doi.org/10.3390/ijerph18157752