Relations of Lifestyle Behavior Clusters to Dyslipidemia in China: A Compositional Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Participants
2.3. Data Collection
2.4. Definition and Group
2.5. Statistical Analyses
3. Results
3.1. Sociodemographic Characteristics
3.2. Lifestyle Behavior Cluster Characteristics
3.3. Cluster Memberships Relationship to Dyslipidemia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 29 May 2021).
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, egional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, Y.; Zeng, X.; Wang, H.; Yin, P.; Wang, L.; Liu, Y.; Liu, J.; Qi, J.; Ran, S.; et al. Burden of Cardiovascular Diseases in China, 1990–2016: Findings From the 2016 Global Burden of Disease Study. JAMA Cardiol. 2019, 4, 342–352. [Google Scholar] [CrossRef]
- Musunuru, K. Atherogenic Dyslipidemia: Cardiovascular Risk and Dietary Intervention. Lipids 2010, 45, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Kopin, L.; Lowenstein, C. Dyslipidemia. Ann. Intern. Med. 2017, 167, Itc81–Itc96. [Google Scholar] [CrossRef]
- Murphy, A.; Faria-Neto, J.R.; Al-Rasadi, K.; Blom, D.; Catapano, A.; Cuevas, A.; Lopez-Jimenez, F.; Perel, P.; Santos, R.; Sniderman, A.; et al. World Heart Federation Cholesterol Roadmap. Glob. Heart 2017, 12, 179–197.e175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.H.; Zhang, J.; Zhai, Y.; You, Y.; Man, Q.Q.; Wang, C.R.; Li, H.; Li, Y.; Yang, X.G. Blood lipid profile and prevalence of dyslipidemia in Chinese adults. Biomed. Environ. Sci. 2007, 20, 329–335. [Google Scholar] [CrossRef]
- Tian, Z.; Li, Y.; Mao, Z.; Yu, S.; Wang, Y.; Liu, X.; Tu, R.; Zhang, H.; Qian, X.; Zhang, X.; et al. Sex-specific relationship between visceral fat index and dyslipidemia in Chinese rural adults: The Henan Rural Cohort Study. Prev. Med. 2018, 116, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Scicali, R.; Di Pino, A.; Platania, R.; Purrazzo, G.; Ferrara, V.; Giannone, A.; Urbano, F.; Filippello, A.; Rapisarda, V.; Farruggia, E.; et al. Detecting familial hypercholesterolemia by serum lipid profile screening in a hospital setting: Clinical, genetic and atherosclerotic burden profile. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 35–43. [Google Scholar] [CrossRef]
- Scicali, R.; Giral, P.; D’Erasmo, L.; Cluzel, P.; Redheuil, A.; Di Pino, A.; Rabuazzo, A.M.; Piro, S.; Arca, M.; Béliard, S.; et al. High TG to HDL ratio plays a significant role on atherosclerosis extension in prediabetes and newly diagnosed type 2 diabetes subjects. Diabetes Metab. Res. Rev. 2021, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhou, Q.; Wang, D.P.; Zhang, T.; Wang, H.J.; Song, Y.; He, H.Z.; Wang, M.; Wang, P.Y.; Liu, A.P. Associations of sedentary behavior and physical activity with dyslipidemia. Beijing Da Xue Xue Bao Yi Xue Ban 2017, 49, 418–423. [Google Scholar]
- Patnode, C.D.; Evans, C.V.; Senger, C.A.; Redmond, N.; Lin, J.S. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for Cardiovascular Disease Prevention in Adults Without Known Cardiovascular Disease Risk Factors: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2017, 318, 175–193. [Google Scholar] [CrossRef]
- Clifton, P.M. Diet, exercise and weight loss and dyslipidaemia. Pathology 2019, 51, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Villegas, R.; Yang, G.; Gao, Y.T.; Cai, H.; Li, H.; Zheng, W.; Shu, X.O. Dietary patterns are associated with lower incidence of type 2 diabetes in middle-aged women: The Shanghai Women’s Health Study. Int. J. Epidemiol. 2010, 39, 889–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charreire, H.; Casey, R.; Salze, P.; Kesse-Guyot, E.; Simon, C.; Chaix, B.; Banos, A.; Badariotti, D.; Touvier, M.; Weber, C.; et al. Leisure-time physical activity and sedentary behavior clusters and their associations with overweight in middle-aged French adults. Int. J. Obes. 2010, 34, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Pedišić, Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research--the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology 2014, 46, 135–146, UDC:613.72:796.012.45:159.963.2:796.012.83:531. [Google Scholar]
- Chastin, S.F.; Palarea-Albaladejo, J.; Dontje, M.L.; Skelton, D.A. Combined Effects of Time Spent in Physical Activity, Sedentary Behaviors and Sleep on Obesity and Cardio-Metabolic Health Markers: A Novel Compositional Data Analysis Approach. PLoS ONE 2015, 10, e0139984. [Google Scholar] [CrossRef] [Green Version]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman & Hall Ltd.: London, UK, 1986; Volume 30. [Google Scholar]
- Deng, H.B.; Macfarlane, D.J.; Thomas, G.N.; Lao, X.Q.; Jiang, C.Q.; Cheng, K.K.; Lam, T.H. Reliability and validity of the IPAQ-Chinese: The Guangzhou Biobank Cohort study. Med. Sci. Sports Exerc. 2008, 40, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Lyu, J.; He, P. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. Chin. J. Epidemiol. 2014, 35, 961–964. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Hong, X.; Wang, Z.; Yang, H.; Chen, X.; Zhou, H.; Wang, C.; Lai, Y.; Sun, L.; Xu, F. Reproducibility and validity of an FFQ developed for adults in Nanjing, China. Br. J. Nutr. 2016, 115, 887–894. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, K.; Wang, B.; Liu, C.; Mao, Z.; Yu, S.; Li, X.; Wang, Y.; Sun, H.; Wang, C.; et al. Reproducibility and validity of an FFQ in the Henan Rural Cohort Study. Public Health Nutr. 2020, 23, 34–40. [Google Scholar] [CrossRef]
- Hong, X.; Ye, Q.; Wang, Z.; Yang, H.; Chen, X.; Zhou, H.; Wang, C.; Chu, W.; Lai, Y.; Sun, L.; et al. Reproducibility and validity of dietary patterns identified using factor analysis among Chinese populations. Br. J. Nutr. 2016, 116, 842–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Physical Activity Questionnaire: Long Last 7 Days Self-Administered Format. Available online: http://www.sdp.univ.fvg.it/sites/default/files/IPAQ_English_self-admin_long.pdf (accessed on 29 May 2021).
- Monda, K.L.; Ballantyne, C.M.; North, K.E. Longitudinal impact of physical activity on lipid profiles in middle-aged adults: The Atherosclerosis Risk in Communities Study. J. Lipid Res. 2009, 50, 1685–1691. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, F.C.; Huang, K.Y.; Li, J.X.; Yang, X.L.; Wang, X.Y.; Chen, J.C.; Liu, X.Q.; Cao, J.; Shen, C.; et al. Beneficial effects of moderate to vigorous physical activity on cardiovascular disease among Chinese adults. J. Geriatr. Cardiol. 2020, 17, 85–95. [Google Scholar] [CrossRef]
- Beyer, K.M.M.; Szabo, A.; Hoormann, K.; Stolley, M. Time spent outdoors, activity levels, and chronic disease among American adults. J. Behav. Med. 2018, 41, 494–503. [Google Scholar] [CrossRef]
- 2016 Chinese guidelines for the management of dyslipidemia in adults. J. Geriatr. Cardiol. 2018, 15, 1–29. [CrossRef]
- Chen, C.; Lu, F.C. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed. Environ. Sci. 2004, 17, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Yeung, W.J.; Wang, Z.; Zeng, Y. Age of Retirement and Human Capital in an Aging China, 2015–2050. Eur. J. Popul. 2019, 35, 29–62. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.H.; Li, J.J. Aging and dyslipidemia: A review of potential mechanisms. Ageing Res. Rev. 2015, 19, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Dorffner, G.; Vitr, M.; Anderer, P. The effects of aging on sleep architecture in healthy subjects. Adv. Exp. Med. Biol. 2015, 821, 93–100. [Google Scholar] [CrossRef]
- Nooyens, A.C.J.; Visscher, T.L.S.; Schuit, A.J.; van Rossum, C.T.M.; Verschuren, W.M.M.; van Mechelen, W.; Seidell, J.C. Effects of retirement on lifestyle in relation to changes in weight and waist circumference in Dutch men: A prospective study. Public Health Nutr. 2005, 8, 1266–1274. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wu, J.; Zhang, S.; Yan, S.; He, L.; Mkandawire, N.; Song, X.; Gan, Y.; Li, W.; Yang, T.; et al. Prevalence and risk factors of physical inactivity among middle-aged and older Chinese in Shenzhen: A cross-sectional study. BMJ Open 2018, 8, e019775. [Google Scholar] [CrossRef] [Green Version]
- Palarea-Albaladejo, J.; Martín-Fernández, J.A.; Soto, J.A. Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data. J. Classif. 2012, 29, 144–169. [Google Scholar] [CrossRef]
- Szinovacz, M.E. Changes in housework after retirement: A panel analysis. J. Marriage Fam. 2000, 62, 78–92. [Google Scholar] [CrossRef]
- Barnett, I.; van Sluijs, E.M.; Ogilvie, D. Physical activity and transitioning to retirement: A systematic review. Am. J. Prev. Med. 2012, 43, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Smiley, A.; King, D.; Bidulescu, A. The Association between Sleep Duration and Metabolic Syndrome: The NHANES 2013/2014. Nutrients 2019, 11, 2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krittanawong, C.; Kumar, A.; Wang, Z.; Jneid, H.; Baber, U.; Mehran, R.; Tang, W.H.W.; Bhatt, D.L. Sleep Duration and Cardiovascular Health in a Representative Community Population (from NHANES, 2005 to 2016). Am. J. Cardiol. 2020, 127, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Wang, J.; Chen, S.-H.; Li, J.-Q.; Lu, Q.-D.; Vitiello, M.V.; Wang, F.; Tang, X.-D.; Shi, J.; Lu, L.; et al. Association of Longitudinal Patterns of Habitual Sleep Duration With Risk of Cardiovascular Events and All-Cause Mortality. JAMA Netw. Open 2020, 3, e205246. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Yang, J.; Zhao, B.; Fan, Y.; Wang, W.; Ma, X. Objective Sleep Efficiency Predicts Cardiovascular Disease in a Community Population: The Sleep Heart Health Study. J. Am. Heart Assoc. 2021, 10. [Google Scholar] [CrossRef]
- Yano, Y.; Gao, Y.; Johnson, D.A.; Carnethon, M.; Correa, A.; Mittleman, M.A.; Sims, M.; Mostofsky, E.; Wilson, J.G.; Redline, S. Sleep Characteristics and Measures of Glucose Metabolism in Blacks: The Jackson Heart Study. J. Am. Heart Assoc. 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Mariani, S.; Redline, S. Sleep Irregularity and Risk of Cardiovascular Events. J. Am. Coll. Cardiol. 2020, 75, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Boucher, A.B.; Adesanya, E.A.O.; Owei, I.; Gilles, A.K.; Ebenibo, S.; Wan, J.; Edeoga, C.; Dagogo-Jack, S. Dietary habits and leisure-time physical activity in relation to adiposity, dyslipidemia, and incident dysglycemia in the pathobiology of prediabetes in a biracial cohort study. Metabolism 2015, 64, 1060–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, L.; Ding, X.; Tang, W.; Li, Q.; Mao, D.; Wang, Y. Prevalence and Risk Factors Associated with Dyslipidemia in Chongqing, China. Int. J. Environ. Res. Public Health 2015, 12, 13455–13465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lira, F.S.; Rosa Neto, J.C.; Antunes, B.M.; Fernandes, R.A. The relationship between inflammation, dyslipidemia and physical exercise: From the epidemiological to molecular approach. Curr. Diabetes Rev. 2014, 10, 391–396. [Google Scholar] [CrossRef]
- Wicker, P.; Frick, B. Intensity of physical activity and subjective well-being: An empirical analysis of the WHO recommendations. J. Public Health 2017, 39, e19–e26. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Leitzmann, M.; Tonstad, S.; Vatten, L.J. Physical activity and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis. Eur. J. Epidemiol. 2015, 30, 529–542. [Google Scholar] [CrossRef]
- Janurek, J.; Abdel Hadi, S.; Mojzisch, A.; Häusser, J.A. The Association of the 24 Hour Distribution of Time Spent in Physical Activity, Work, and Sleep with Emotional Exhaustion. Int. J. Environ. Res. Public Health 2018, 15, 1927. [Google Scholar] [CrossRef] [Green Version]
- McGregor, D.E.; Palarea-Albaladejo, J.; Dall, P.M.; Stamatakis, E.; Chastin, S.F.M. Differences in physical activity time-use composition associated with cardiometabolic risks. Prev. Med. Rep. 2019, 13, 23–29. [Google Scholar] [CrossRef]
- Rasmussen, C.L.; Palarea-Albaladejo, J.; Bauman, A.; Gupta, N.; Nabe-Nielsen, K.; Jørgensen, M.B.; Holtermann, A. Does Physically Demanding Work Hinder a Physically Active Lifestyle in Low Socioeconomic Workers? A Compositional Data Analysis Based on Accelerometer Data. Int. J. Environ. Res. Public Health 2018, 15, 1306. [Google Scholar] [CrossRef] [Green Version]
- Pelclová, J.; Štefelová, N.; Hodonská, J.; Dygrýn, J.; Gába, A.; Zając-Gawlak, I. Reallocating Time from Sedentary Behavior to Light and Moderate-to-Vigorous Physical Activity: What Has a Stronger Association with Adiposity in Older Adult Women? Int. J. Environ. Res. Public Health 2018, 15, 1444. [Google Scholar] [CrossRef] [Green Version]
- Dumuid, D.; Lewis, L.K.; Olds, T.S.; Maher, C.; Bondarenko, C.; Norton, L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: A compositional isotemporal substitution analysis. Maturitas 2018, 110, 104–110. [Google Scholar] [CrossRef]
- Dumuid, D.; Olds, T.; Lewis, L.K.; Martin-Fernández, J.A.; Barreira, T.; Broyles, S.; Chaput, J.P.; Fogelholm, M.; Hu, G.; Kuriyan, R.; et al. The adiposity of children is associated with their lifestyle behaviours: A cluster analysis of school-aged children from 12 nations. Pediatr. Obes. 2018, 13, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Olds, T.; Lewis, L.K.; Martin-Fernández, J.A.; Katzmarzyk, P.T.; Barreira, T.; Broyles, S.T.; Chaput, J.P.; Fogelholm, M.; Hu, G.; et al. Health-Related Quality of Life and Lifestyle Behavior Clusters in School-Aged Children from 12 Countries. J. Pediatr. 2017, 183, 178–183.e172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.; Olds, T.; Gold, L.; Lycett, K.; Dumuid, D.; Muller, J.; Mensah, F.K.; Burgner, D.; Carlin, J.B.; Edwards, B.; et al. Time-Use Patterns and Health-Related Quality of Life in Adolescents. Pediatrics 2017, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
<50 Years Group | ≥50 Years Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | p | Total | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 | p | |
(n = 2894) | (n = 965) | (n = 728) | (n = 527) | (n = 674) | (n = 1412) | (n = 309) | (n = 539) | (n = 196) | (n = 368) | |||
Age, years old, mean ± SD | 36.95 ± 8.20 | 37.62 ± 7.91 | 36.42 ± 8.74 | 37.08 ± 7.57 | 36.86 ± 8.35 | 0.353 | 58.96 ± 6.60 | 59.75 ± 7.06 | 58.16 ± 6.08 | 58.90 ± 6.07 | 57.86 ± 6.38 | <0.01 |
Gender, n(%) | <0.01 | <0.01 | ||||||||||
Male | 1096 (37.9) | 330 (34.2) | 267 (36.7) | 194 (36.8) | 305 (45.3) | 609 (43.1) | 162 (52.4) | 234 (43.4) | 81 (41.3) | 132 (35.9) | ||
Female | 1798 (62.1) | 635 (65.8) | 461 (63.3) | 333 (63.2) | 369 (54.7) | 803 (56.9) | 147 (47.6) | 305 (56.6) | 115 (58.7) | 236 (64.1) | ||
Education, n(%) | <0.01 | <0.01 | ||||||||||
Junior high school or below | 1376 (47.5) | 275 (28.5) | 407 (55.9) | 155 (29.4) | 539 (80.0) | 1223 (86.6) | 201 (65.0) | 492 (91.3) | 171 (87.2) | 359 (97.6) | ||
Senior high school or above | 1518(52.5) | 690 (71.5) | 321 (44.1) | 372 (70.6) | 135 (20.0) | 189 (13.4) | 108 (35.0) | 47 (8.7) | 25 (12.8) | 9 (2.5) | ||
Occupation, n(%) | <0.01 | <0.01 | ||||||||||
Institution staff | 1093 (37.8) | 492 (51.0) | 248 (34.1) | 254 (48.2) | 99 (14.7) | 215 (15.2) | 99 (32.0) | 57 (10.6) | 37 (18.9) | 22 (6.0) | ||
Managers or technician | 1625 (56.2) | 441 (45.7) | 404 (55.5) | 252 (47.8) | 528 (78.3) | 422 (29.9) | 81 (26.2) | 136 (25.2) | 56 (28.6) | 149 (40.5) | ||
Unemployed or retired person | 176 (6.1) | 32 (3.32) | 76 (10.4) | 21 (4.0) | 47 (7.0) | 775 (54.9) | 129 (41.7) | 346 (64.2) | 103 (52.6) | 197 (53.5) | ||
BMI (kg/m2), mean ± SD | 24.39 ± 3.76 | 26.27 ± 3.95 | 23.95 ± 3.25 | 24.95 ± 3.38 | 23.06 ± 3.58 | <0.01 | 25.65 ± 3.81 | 26.05 ± 3.64 | 25.45 ± 3.57 | 25.63 ± 4.08 | 25.71 ± 3.47 | 0.38 |
Smoking status, n(%) | <0.01 | 0.02 | ||||||||||
Yes | 778 (26.9) | 225 (23.3) | 191 (26.2) | 123 (23.3) | 239 (35.5) | 513 (36.3) | 133 (43.0) | 196 (36.4) | 59 (30.1) | 125 (34.0) | ||
No | 2116 (73.1) | 740 (76.7) | 537 (73.8) | 404 (76.7) | 435 (64.5) | 899 (63.7) | 176 (57.0) | 343 (63.6) | 137 (69.9) | 243 (66.0) | ||
Alcohol use status, n(%) | <0.01 | 0.01 | ||||||||||
Yes | 626 (21.6) | 180 (18.7) | 151 (20.7) | 90 (17.1) | 205 (30.4) | 329 (23.3) | 89 (28.8) | 130 (24.1) | 34 (17.3) | 76 (20.7) | ||
No | 2268 (78.4) | 785 (81.3) | 577 (79.3) | 437 (82.9) | 469 (69.6) | 1083 (76.7) | 220 (71.2) | 409 (75.9) | 162 (82.7) | 292 (79.3) | ||
Family annual income (yuan/year), n(%) | <0.01 | <0.01 | ||||||||||
<30,000 | 1018 (35.2) | 254 (26.3) | 261 (35.9) | 155 (29.4) | 348 (51.6) | 707 (37.9) | 117 (37.9) | 284 (52.7) | 93 (47.4) | 21 (57.9) | ||
30,000~79,999 | 1354 (46.8) | 462 (47.9) | 349 (47.9) | 255 (48.4) | 288 (42.7) | 584 (41.4) | 132 (42.7) | 223 (41.4) | 86 (43.9) | 143 (38.9) | ||
80,000~ | 522 (18.0) | 249 (25.8) | 118 (16.2) | 117 (22.2) | 38 (5.6) | 121 (8.6) | 60 (19.4) | 32 (5.9) | 17 (8.7) | 12 (3.26) |
<50 Years Group | ≥50 Years Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | p | Total | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 | p | |
(n = 2894) | (n = 965) | (n = 728) | (n = 527) | (n = 674) | (n = 1412) | (n = 309) | (n = 539) | (n = 196) | (n = 368) | |||
Activities pattern, mean | <0.01 * | <0.01 * | ||||||||||
MVPA (min/day) | 187.32 | 77.80 ab | 74.23 cd | 144.27 ace | 325.45 bde | <0.01 | 166.08 | 99.48 abc | 76.55 ade | 130.06 bdh | 289.00 edh | <0.01 |
LPA (min/day) | 111.05 | 176.34 ab | 179.98 cd | 28.48 ace | 144.25 bde | <0.01 | 175.15 | 147.27abc | 180.00 ad | 178.31 be | 166.29 cde | <0.01 |
SB (min/day) | 472.63 | 544.32 abc | 250.53 ad | 695.64 bde | 246.85 ce | <0.01 | 297.94 | 565.43 abc | 191.49 ade | 222.06 bd | 224.57 ce | <0.01 |
Sleep (min/day) | 471.10 | 451.60 abc | 493.27 ade | 481.20 bdh | 467.40 ceh | <0.01 | 438.04 | 428.16 ab | 447.44 ac | 455.66 bd | 425.46 cd | 0.02 |
Dietary pattern (principal component scores), mean | <0.01 * | <0.01 * | ||||||||||
Healthy diet | −0.06 | 0.03 a | −0.12 ab | −0.02 | 0.09 b | <0.01 | 0.34 | −0.06 abc | −0.40 ade | 1.66 bdh | −0.25 edh | 0.02 |
High-salt and oil diet | −0.04 | 0.18 ab | −0.12 ac | −0.10 d | 0.06 bcd | <0.01 | 0.01 | 0.12 a | −0.05 b | −0.17 abc | 0.07 c | 0.04 |
High-staple diet | 0.07 | −0.25 abc | 0.04 ad | −0.08 be | 0.39 cde | <0.01 | 0.17 | −0.01 a | −0.18 | 0.24 ab | 0.15 c | <0.01 |
<50 Years Group | ≥50 Years Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total (n = 2894) | Cluster 1 (n = 965) | Cluster 2 (n = 728) | Cluster 3 (n = 527) | Cluster 4 (n = 674) | p | Total (n = 1412) | Cluster 1 (n = 309) | Cluster 2 (n = 539) | Cluster 3 (n = 196) | Cluster 4 (n = 368) | p | |
<0.01 * | <0.01 * | |||||||||||
TC | 4.76 | 4.83 a | 4.71 | 4.63 ab | 4.81 b | <0.01 | 5.22 | 5.30 ab | 5.27 | 5.13 a | 5.14 b | 0.03 |
TG | 1.62 | 1.63 | 1.62 | 1.55 | 1.64 | 0.30 | 1.96 | 2.27 abc | 1.88 a | 1.90 b | 1.84c | <0.01 |
HDL-C | 1.30 | 1.28 | 1.31 | 1.31 | 1.31 | 0.98 | 1.33 | 1.32 | 1.32 | 1.33 | 1.34 | 0.25 |
LDL-C | 2.86 | 2.98 abc | 2.83 a | 2.73 bd | 2.86 bcd | <0.01 | 3.10 | 3.12 | 3.16 | 3.02 | 3.04 | 0.09 |
Newly Diagnosed Dyslipidemia | Prevalent Dyslipidemia | ||||||
---|---|---|---|---|---|---|---|
Cluster | n (%) | Model 1 AOR (95% CI) | Model 2 AOR (95% CI) | Cluster | n (%) | Model 1 AOR (95% CI) | Model 2 AOR (95% CI) |
<50 years old | |||||||
1 | 115 (11.9%) a | 1.000 (Reference) | 1.000 (Reference) | 1 | 385 (39.9%) a | 1.000 (Reference) | 1.000 (Reference) |
2 | 69 (9.5%) | 0.654 (0.458, 0.936) * | 0.688 (0.475, 0.995) * | 2 | 298 (40.9%) | 0.801 (0.560, 1.145) | 0.875 (0.700, 1.095) |
3 | 57 (10.8%) | 0.738 (0.507, 1.074) | 0.901 (0.604, 1.345) | 3 | 187 (35.5%) b | 0.663 (0.368, 1.195) | 0.824 (0.640, 1.059) |
4 | 46 (6.8%) a | 0.355 (0.238, 0.529) † | 0.421 (0.277, 0.640) * | 4 | 317 (47.0%) ab | 0.794 (0.557, 1.132) | 0.848 (0.671, 1.073) |
≥50 years old | |||||||
5 | 91(29.4%) a | 1.000 (Reference) | 1.000 (Reference) | 5 | 143 (46.3%) abc | 1.000 (Reference) | 1.000 (Reference) |
6 | 116(21.5%) | 0.595 (0.400, 0.887) † | 0.638 (0.412, 0.988) * | 6 | 265 (49.2%) a | 0.808 (0.559, 1.169) | 0.824 (0.569, 1.194) |
7 | 42(21.4%) | 0.681 (0.406, 1.140) | 0.800 (0.460, 1.392) | 7 | 104 (53.1%) b | 1.050 (0.664, 1.659) | 1.080 (0.680, 1.705) |
8 | 49(13.3%) a | 0.300 (0.190, 0.470) † | 0.365 (0.221, 0.602) † | 8 | 187 (50.8%) c | 0.683 (0.462, 1.008) | 0.702 (0.475, 1.039) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, X.; Chen, Y.; Ma, X.; Wang, D.; Wang, H.; Song, Y.; Hua, Y.; Wang, P.; Liu, A. Relations of Lifestyle Behavior Clusters to Dyslipidemia in China: A Compositional Data Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7763. https://doi.org/10.3390/ijerph18157763
Na X, Chen Y, Ma X, Wang D, Wang H, Song Y, Hua Y, Wang P, Liu A. Relations of Lifestyle Behavior Clusters to Dyslipidemia in China: A Compositional Data Analysis. International Journal of Environmental Research and Public Health. 2021; 18(15):7763. https://doi.org/10.3390/ijerph18157763
Chicago/Turabian StyleNa, Xiaona, Yangyang Chen, Xiaochuan Ma, Dongping Wang, Haojie Wang, Yang Song, Yumeng Hua, Peiyu Wang, and Aiping Liu. 2021. "Relations of Lifestyle Behavior Clusters to Dyslipidemia in China: A Compositional Data Analysis" International Journal of Environmental Research and Public Health 18, no. 15: 7763. https://doi.org/10.3390/ijerph18157763
APA StyleNa, X., Chen, Y., Ma, X., Wang, D., Wang, H., Song, Y., Hua, Y., Wang, P., & Liu, A. (2021). Relations of Lifestyle Behavior Clusters to Dyslipidemia in China: A Compositional Data Analysis. International Journal of Environmental Research and Public Health, 18(15), 7763. https://doi.org/10.3390/ijerph18157763