Comparison of Subjective and Objective Methods to Measure the Physical Activity of Non-Depressed Middle-Aged Healthy Subjects with Normal Cognitive Function and Mild Cognitive Impairment—A Cross-Sectional Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Ethical Issue
2.3. Procedure
2.4. Subjective PA Measurement
2.5. Objective PA Measurement
2.6. Anthropometric Parameters and Body Composition
2.7. Resting Metabolic Rate
2.8. Evaluation of Cognition and Depression
2.9. The Minimum Sample Size
2.10. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Comparison of MCI and NCF Participants
3.3. Comparison of Subjective and Objective Methods of Measuring Physical Activity
3.4. Relationship between Total Physical Activity and Selected Variables
3.5. Relationship between MoCA Points and Selected Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Herzig, K.H.; Ahola, R.; Leppäluoto, J.; Jokelainen, J.; Jämsä, T.; Keinänen-Kiukaanniemi, S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. Int. J. Obes. 2014, 38, 1089–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization; Public Health Agency of Canada. Preventing Chronic Diseases: A Vital Investment; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- World Health Organization. A Guide for Population–Based Approaches to Increasing Levels of Physical Activity: Implementation of the WHO Global Strategy on Diet, Physical Activity and Health; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- World Health Organization. The Global Burden of Disease: 2004 Update; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Yaffe, K.; Barnes, D.; Nevitt, M.; Lui, L.Y.; Covinsky, K. A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Arch. Intern. Med. 2001, 161, 1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurin, D.; Verreault, R.; Lindsay, J.; MacPherson, K.; Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 2001, 58, 498–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Kokmen, E.; Tagelos, E.G. Aging, memory, and mild cognitive impairment. Int. Psychogeriatr. 1997, 9, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Kivipelto, M.; Ngandu, T.; Laatikainen, T.; Winblad, B.; Soininen, H.; Tuomilehto, J. Risk score for the prediction of dementia risk in 20 years among middle aged people: A longitudinal, population-based study. Lancet Neurol. 2006, 5, 735–741. [Google Scholar] [CrossRef]
- Manly, J.J.; Tang, M.X.; Schupf, N.; Stern, Y.; Vonsattel, J.P.; Mayeux, R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann. Neurol. 2008, 63, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Ismail, Z.; Elbayoumi, H.; Fischer, C.E.; Hogan, D.B.; Millikin, C.P.; Schweizer, T.; Mortby, M.E.; Smith, E.E.; Patten, S.B.; Fiest, K.M. Prevalence of Depression in Patients with Mild Cognitive Impairment: A Systematic Review and Meta-analysis. JAMA Psychiatry 2017, 74, 58–67. [Google Scholar] [CrossRef]
- Langa, K.M.; Levine, D.A. The diagnosis and management of mild cognitive impairment: A clinical review. JAMA 2014, 312, 2551–2561. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Ainsworth, B.M. How do I measure physical activity in my patients? Questionnaires and objective methods. Br. J. Sports Med. 2008, 43, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Biernat, E.; Strupnicki, R. An overview of internationally applicable questionnaires designed for assessing physical activity. Phys. Educ. Sport 2005, 49, 61–73. [Google Scholar]
- Hagströmer, M.; Pekka, O.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef]
- International Physical Activity Questionnaire. Available online: https://sites.google.com/site/theipaq/ (accessed on 15 February 2021).
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Sjostrom, M.; Ekelund, U.; Poortvliet, E. Assessment of physical activity using IPAQ (version 4) and activity monitors (CSA). Meas. Phys. Educ. Exerc. Sci. 2000, 4, 263–264. [Google Scholar]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Connor Gorber, S.; Tremblay, M. A comparison of direct versus self–report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiroma, E.J.; Schepps, M.A.; Harezlak, J.; Chen, K.Y.; Matthews, C.E.; Koster, A.; Caserotti, P.; Glynn, N.W.; Harris, T.B. Daily physical activity patterns from hip- and wrist-worn accelerometers. Physiol. Meas. 2016, 37, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef]
- Curry, W.B.; Thompson, J.L. Comparability of accelerometer- and IPAQ-derived physical activity and sedentary time in South Asian women: A cross-sectional study. Eur. J. Sport Sci. 2015, 15, 655–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipert, A.; Jegier, A. Comparison of different physical activity measurement methods in adults aged 45 to 64 years under free–living conditions. Clin. J. Sport Med. 2017, 27, 400–408. [Google Scholar] [CrossRef]
- Innerd, P.; Catt, M.; Collerton, J.; Davies, K.; Trenell, M.; Kirkwood, T.B.; Jagger, C. A comparison of subjective and objective measures of physical activity from the Newcastle 85+ study. Age Ageing 2015, 44, 691–694. [Google Scholar] [CrossRef] [Green Version]
- Colley, R.C.; Butler, G.; Garriguet, D.; Prince, S.A.; Roberts, K.C. Comparison of self-reported and accelerometer-measured physical activity among Canadian youth. Health Rep. 2019, 30, 3–12. [Google Scholar]
- Ahmad, M.H.; Salleh, R.; Nor, N.S.M.; Baharuddin, A.; Hasani, W.S.R.; Omar, A.; Jamil, A.T.; Appukutty, M.; Wan Muda, W.A.M.; Aris, T. Comparison between self-reported physical activity (IPAQ-SF) and pedometer among overweight and obese women in the MyBFF@home study. BMC Womens Health 2018, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Eaton, C.B.; Driban, J.B.; McAlindon, T.E.; Lapane, K.L. Comparison of self-report and objective measures of physical activity in US adults with osteoarthritis. Rheumatol. Int. 2016, 36, 1355–1364. [Google Scholar] [CrossRef]
- O’Neill, B.; McDonough, S.M.; Wilson, J.J.; Bradbury, I.; Hayes, K.; Kirk, A.; Kent, L.; Cosgrove, D.; Bradley, J.M.; Tully, M.A. Comparing accelerometer, pedometer and a questionnaire for measuring physical activity in bronchiectasis: A validity and feasibility study? Respir. Res. 2017, 18, 16. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, S.; Tiedemann, A.; Sherrington, C.; van der Ploeg, H.P. Assessing physical activity in people with posttraumatic stress disorder: Feasibility and concurrent validity of the International Physical Activity Questionnaire—Short form and actigraph accelerometers. BMC Res. Notes 2014, 7, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magierska, J.; Magierski, R.; Fendler, W.; Kłoszewska, I.; Sobów, T.M. Clinical application of the Polish adaptation of the Montreal Cognitive Assessment (MoCA) test in sreening for cognitive impairment. Neurol. Neurochir. Pol. 2012, 46, 130–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Biernat, E. International Physical Activity Questionnaire—Polish long version. Pol. J. Sport Med. 2013, 1, 1–15. [Google Scholar]
- Leavitt, M.O. 2008 Physical Activity Guidelines for Americans; U.S. Department of Health and Human Services: Washington, DC, USA, 2008. [Google Scholar]
- Hills, A.P.; Mokhtar, N.; Byrne, N.M. Assessment of physical activity and energy expenditure: An overview of objective measures. Front. Nutr. 2014, 1, 5. [Google Scholar] [CrossRef]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the computer science and applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, N.; Sokołowski, R.; Mazur, E.; Podhorecka, M.; Polak-Szabela, A.; Kędziora-Kornatowska, K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) dtection among people aged over 60? Meta-Analysis. Psychiatr. Pol. 2016, 50, 1039–1052. [Google Scholar] [CrossRef]
- Hagstromer, M.; Ainsworth, B.E.; Oja, P.; Sjostrom, M. Comparison of a subjective and an objective measure of physical activity in a population sample. J. Phys. Act. Health 2010, 7, 541–550. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Oyeyemi, A.L.; Umar, M.; Oguche, F.; Aliyu, S.U.; Oyeyemi, A.Y. Accelerometer-determined physical activity and its comparison with the International Physical Activity Questionnaire in a sample of Nigerian adults. PLoS ONE 2014, 9, e87233. [Google Scholar] [CrossRef]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Valecchi, D.; Bacci, D.; Abbate, R.; Gensini, G.F.; Casini, A.; Macchi, C. Physical activity and risk of cognitive decline: A meta–analysis of prospective studies. J. Intern. Med. 2011, 269, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Van der Wardt, V.; Hancox, J.E.; Burgon, C.; Bajwa, R.; Goldberg, S.; Harwood, R.H. Measuring physical activity levels in people with mild cognitive impairment or mild dementia. J. Aging Phys. Act. 2020, 29, 10–16. [Google Scholar] [CrossRef]
- Ekelund, U.; Sepp, H.; Brage, S.; Becker, W.; Jakes, R.; Hennings, M.; Wareham, N.J. Criterion-related validity of the last 7-day, short form of the International Physical Activity Questionnaire in Swedish adults. Public Health Nutr. 2006, 9, 258–265. [Google Scholar] [CrossRef]
- Matthews, C.E.; Ainsworth, B.E.; Hanby, C.; Pate, R.R.; Addy, C.; Freedson, P.S.; Jones, D.A.; Macera, C.A. Development and testing of a short physical activity recall questionnaire. Med. Sci. Sports Exerc. 2005, 37, 986–994. [Google Scholar]
- Skender, S.; Ose, J.; Chang-Claude, J.; Paskow, M.; Brühmann, B.; Siegel, E.M.; Steindorf, K.; Ulrich, C.M. Accelerometry and physical activity questionnaires—A systematic review. BMC Public Health 2016, 16, 515. [Google Scholar] [CrossRef] [Green Version]
- Sabia, S.; van Hees, V.T.; Shipley, M.J.; Trenell, M.I.; Hagger-Johnson, G.; Elbaz, A.; Kivimaki, M.; Singh-Manoux, A. Association between questionnaire- and accelerometer-assessed physical activity: The role of sociodemographic factors. Am. J. Epidemiol. 2014, 179, 781–790. [Google Scholar] [CrossRef]
- Sirard, J.R.; Pate, R.R. Physical activity assessment in children and adolescents. Sports Med. 2001, 31, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Ham, S.A.; Reis, J.P.; Strath, S.J.; Dubose, K.D.; Ainsworth, B.E. Discrepancies between methods of identifying objectively determined physical activity. Med. Sci. Sports Exerc. 2007, 39, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, A.M.; Ahola, R.; Kulmala, J.; Hakonen, H.; Vähä-Ypyä, H.; Herzig, K.H.; Auvinen, J.; Keinänen-Kiukaanniemi, S.; Sievänen, H.; Tammelin, T.H.; et al. Measuring physical activity in free-living conditions-comparison of three accelerometry-based methods. Front. Physiol. 2017, 7, 681. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.; Barreira, T.V.; Schuna, J.M. Comparison of step outputs for waist and wrist accelerometer attachment sites. Med. Sci. Sports Exerc. 2015, 47, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.; Bauman, A.; Chey, T.; Trost, S.; Mummery, K. Comparison of surveys used to measure physical activity. Aust. N. Z. J. Public Health 2004, 28, 128–134. [Google Scholar] [CrossRef]
- Chapie, A.; Arena, S. Benefits and barriers of activity trackers among older adults. Home Healthc. Now 2020, 38, 165–166. [Google Scholar] [CrossRef]
- Kononova, A.; Li, L.; Kamp, K.; Bowen, M.; Rikard, R.V.; Cotton, S.; Peng, W. The Use of Wearable Activity Trackers Among Older Adults: Focus Group Study of Tracker Perceptions, Motivators, and Barriers in the Maintenance Stage of Behavior Change. JMIR mHealth uHealth 2019, 7, e9832. [Google Scholar] [CrossRef] [PubMed]
- Kawagoshi, A.; Kiyokawa, N.; Sugawara, K.; Takahashi, H.; Sakata, S.; Satake, M.; Shioya, T. Effects of low-intensity exercise and home-based pulmonary rehabilitation with pedometer feedback on physical activity in elderly patients with chronic obstructive pulmonary disease. Respir. Med. 2015, 109, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, C.; Gross, A.; Brinkman, C.; Pope, R.; Allen, K.; Hastings, S.; Bogen, B.E.; Goode, A.P. The impact of wearable motion sensing technology on physical activity in older adults. Exp. Gerontol. 2018, 112, 9–19. [Google Scholar] [CrossRef]
- Link-Age Connect. 2019 Technology Survey Older Adults Age 55–100. Available online: https://linkageconnect.com/wp-content/uploads/2019/05/2019-Link-age-Connect-Technology-Study-Report.pdf (accessed on 29 June 2021).
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Hussin, N.M.; Shahar, S.; Yahya, H.M.; Din, N.C.; Singh, D.K.A.; Omar, M.A. Incidence and predictors of mild cognitive impairment (MCI) within a multi-ethnic Asian populace: A community-based longitudinal study. BMC Public Health 2019, 19, 1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurologia 2017, 32, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Filley, C.M. Alzheimer’s disease in women. Am. J. Obstet. Gynecol. 1997, 176, 1–7. [Google Scholar] [CrossRef]
- Sallis, J.F.; Prochaska, J.J.; Taylor, W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef]
- Mitáš, J.; Cerin, E.; Reis, R.S.; Conway, T.L.; Cain, K.L.; Adams, M.A.; Schofield, G.; Sarmiento, O.L.; Christiansen, L.B.; Davey, R.; et al. Do associations of sex, age and education with transport and leisure-time physical activity differ across 17 cities in 12 countries? Int. J. Behav. Nutr. Phys. Act. 2019, 16, 121. [Google Scholar] [CrossRef]
- Valkenet, K.; Veenhof, C. Validity of three accelerometers to investigate lying, sitting, standing and walking. PLoS ONE 2019, 14, e0217545. [Google Scholar] [CrossRef]
- John, D.; Freedson, P. ActiGraph and Actical physical activity monitors: A peek under the hood. Med. Sci. Sports Exerc. 2012, 44, S86–S89. [Google Scholar] [CrossRef] [Green Version]
- Panza, F.; Frisardi, V.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Imbimbo, B.P.; Santamato, A.; Vendemiale, G.; Seripa, D.; Pilotto, A.; et al. Late-life depression, mild cognitive impairment, and dementia: Possible continuum? Am. J. Geriatr. Psychiatry 2010, 2, 98–116. [Google Scholar] [CrossRef]
- Steffens, D.C. Depressive symptoms and mild cognitive impairment in the elderly: An ominous combination. Biol. Psychiatry 2012, 71, 762–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luck, T.; Luppa, M.; Wiese, B.; Maier, W.; van den Bussche, H.; Eisele, M.; Jessen, F.; Weeg, D.; Weyerer, S.; Pentzek, M.; et al. Prediction of incident dementia: Impact of impairment in instrumental activities of daily living and mild cognitive impairment-results from the German study on ageing, cognition, and dementia in primary care patients. Am. J. Geriatr. Psychiatry 2012, 20, 943–954. [Google Scholar] [CrossRef]
- Heerman, W.J.; Bennett, W.L.; Kraschnewski, J.L.; Nauman, E.; Staiano, A.E.; Wallston, K.A. Willingness to participate in weight-related research as reported by patients in PCORnet clinical data research networks. BMC Obes. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arguello, D.; Andersen, K.; Morton, A.; Freedson, P.S.; Intille, S.S.; John, D. Validity of proximity sensor-based wear-time detection using the ActiGraph GT9X. J. Sports Sci. 2018, 36, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Montoye, A.H.K.; Pivarnik, J.M.; Mudd, L.M.; Biswas, S.; Pfeiffer, K.A. Validation and comparison of accelerometers worn on the hip, thigh, and wrists for measuring physical activity and sedentary behavior. AIMS Public Health 2016, 3, 298–312. [Google Scholar] [CrossRef]
Total (n = 75) | MCI (n = 27) | NCF (n = 48) | p * | Effect 1 Size | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Q1–Q3) | Mean ± SD | Median (Q1–Q3) | Mean ± SD | Median (Q1–Q3) | |||
Age [years] | 58 ± 5 | 57 (53–62) | 60 ± 4 | 60 (56–63) | 56 ± 5 | 56 (52–61) | 0.0018 | 0.9 |
Weight [kg] | 77.4 ± 18.4 | 78.4 (61.4–84.8) | 78.3 ± 17.2 | 79.8 (64.8–89.3) | 76.9 ± 19.3 | 74.3 (60.9–84.8) | 0.3861 | 0.1 |
Height [cm] | 169 ± 10 | 168 (163–176) | 169 ± 11 | 169 (156–178) | 169 ± 9 | 168 (164–175) | 0.8553 | 0.0 |
BMI [kg/m2] | 26.96 ± 5.47 | 25.87 (23.00–28.21) | 27.34 ± 5.75 | 26.00 (25.18–32.08) | 26.75 ± 5.35 | 25.73 (23.00–28.21) | 0.6310 | 0.2 |
Fat mass [%] | 35.1 ± 10.5 | 35.0 (26.3–44.2) | 35.6 ± 11.7 | 31.3 (26.3–45.1) | 34.9 ± 9.9 | 35.0 (25.6–42.4) | 0.9604 | 0.1 |
Fat free mass [%] | 64.9 ± 10.5 | 65.0 (55.8–73.7) | 64.4 ± 11.7 | 68.7 (54.9–73.7) | 65.2 ± 9.9 | 65.0 (57.6–74.5) | 0.9604 | −0.1 |
Fat mass [kg] | 27.9 ± 12.6 | 24.7 (17.7–37.1) | 28.6 ± 13.7 | 24.3 (17.9–37.1) | 27.5 ± 12.2 | 24.8 (16.8–37.3) | 0.8815 | 0.1 |
Fat free mass [kg] | 49.5 ± 11.7 | 46.8 (40.9–59.0) | 49.7 ± 11.5 | 49.9 (40.9–61.4) | 49.4 ± 11.9 | 45.7 (41.2–53.9) | 0.7363 | 0.0 |
RMR [kcal/d] | 1665 ± 304 | 1675 (1410–1883) | 1685 ± 279 | 1785 (1412–1883) | 1653 ± 320 | 1651 (1408–1857) | 0.4300 | 0.1 |
MoCA [points] | 26 ± 3 | 27 (24–29) | 23 ± 2 | 24 (22–24) | 28 ± 1 | 29 (27–29) | <0.0001 | −3.2 |
HAM–D [points] | 5 ± 3 | 4 (2 –7) | 5 ± 3 | 4 (3–6) | 4 ± 3 | 4 (2–7) | 0.1765 | 0.3 |
Total (n = 75) | MCI (n = 27) | NCF (n = 48) | p * | |
---|---|---|---|---|
n (%) | ||||
Sex [% of women] | 48 (64.0) | 13 (48.2) | 35 (72.9) | 0.0320 |
Place of residence | ||||
City > 500,000 inhabitants | 47 (62.6) | 12 (44.4) | 35 (72.9) | 0.0982 |
City 50,000–500,000 inhabitants | 3 (4.0) | 2 (7.4) | 1 (2.1) | |
Town < 50,000 inhabitants | 14 (18.7) | 7 (25.8) | 7 (14.6) | |
Village | 11 (14.7) | 6 (22.2) | 5 (10.4) | |
Family status | ||||
Single | 18 (24.0) | 5 (18.5) | 13 (27.1) | 0.1758 |
Married | 53 (70.7) | 22 (81.5) | 31 (64.6) | |
Informal relationship | 3 (5.3) | 0 (0.0) | 4 (8.3) | |
Education | ||||
Higher | 56 (74.6) | 14 (51.9) | 42 (87.5) | 0.0019 |
Secondary | 17 (22.7) | 11 (40.7) | 6 (12.5) | |
Primary | 2 (2.7) | 2 (7.4) | 0 (0.0) | |
Social and professional status | ||||
Active | 52 (69.3) | 18 (66.7) | 34 (70.8) | 0.1115 |
Pensioner | 18 (24.0) | 9 (33.3) | 9 (18.8) | |
Unemployed | 5 (6.7) | 0 (0.0) | 5 (10.4) | |
Smoking | 4 (5.3) | 2 (7.4) | 2 (4.2) | 0.5488 |
Alcohol consumption 1 | 40 (53.3) | 12 (44.4) | 28 (58.3) | 0.2471 |
Total (n = 75) | MCI (n = 27) | NCF (n = 48) | p * | Effect Size 1 | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Q1–Q3) | Mean ± SD | Median (Q1–Q3) | Mean ± SD | Median (Q1–Q3) | |||
Moderate activity [MET—min/day] | 340 ± 357 | 215 (83–456) | 344 ± 343 | 248 (103–369) | 338 ± 368 | 193 (79–466) | 0.6815 | 0.0 |
Moderate activity [min/day] | 93 ± 97 | 60 (21–141) | 92 ± 95 | 63 (23–99) | 94 ± 99 | 58 (21–146) | 0.7825 | 0.0 |
Vigorous activity [MET—min/day] | 115 ± 205 | 57 (0–137) | 78 ± 113 | 6 (0–137) | 137 ± 241 | 69 (0–154) | 0.3367 | −0.3 |
Vigorous activity [min/day] | 14 ± 25 | 6 (0–17) | 10 ± 14 | 1 (0–17) | 17 ± 30 | 8 (0–19) | 0.3864 | −0.3 |
Sedentary behaviour [min/day] | 409 ± 167 | 394 (300–490) | 369 ± 133 | 369 (283–480) | 431 ± 181 | 420 (304–516) | 0.1814 | −0.4 |
Total physical activity [MET—min/day] | 619 ± 496 | 481 (280–750) | 563 ± 451 | 444 (229–733) | 651 ± 522 | 486 (353–770) | 0.3341 | −0.2 |
Total physical activity [min/day] | 163 ± 126 | 124 (75–214) | 149 ± 131 | 113 (69–197) | 170 ± 123 | 135 (79–223) | 0.2943 | −0.2 |
Total physical activity [kcal/day] | 798 ± 779 | 621 (426–848) | 690 ± 451 | 621 (313–956) | 859 ± 912 | 614 (443–842) | 0.6789 | −0.2 |
Total (n = 75) | MCI (n = 27) | NCF (n = 48) | p * | Effect Size 1 | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Q1–Q3) | Mean ± SD | Median (Q1–Q3) | Mean ± SD | Median (Q1–Q3) | |||
Wear [%] | 96.8 ± 6.0 | 98.9 (96.5–99.6) | 97.0 ± 4.8 | 98.8 (96.9–99.7) | 96.7 ± 6.7 | 99.0 (96.5–99.6) | 0.8680 | 0.2 |
Kcal/day | 1351 ± 403 | 1257 (1041–1581) | 1207 ± 349 | 1150 (911–1460) | 1432 ± 412 | 1335 (1133–1712) | 0.0247 | −0.6 |
MET rate | 1.67 ± 1.68 | 1.65 (1.53–1.77) | 1.56 ± 0.13 | 1.55 (1.45–1.68) | 1.73 ± 0.16 | 1.71 (1.61–1.85) | <0.0001 | −1.2 |
Total physical activity [counts/min] | 501 ± 293 | 444 (273–720) | 351 ± 233 | 291 (165–532) | 586 ± 291 | 547 (93–765) | 0.0003 | −0.8 |
Sedentary behaviour [min/day] | 269 ± 88 | 264 (208–333) | 310 ± 78 | 309 (277–351) | 246 ± 86 | 232 (187–287) | 0.0004 | 0.8 |
Light activity [min/day] | 536 ± 72 | 528 (499–594) | 529 ± 83 | 519 (499–566) | 540 ± 65 | 535 (499–596) | 0.4730 | −0.1 |
Moderate activity [min/day] | 166 ± 69 | 158 (112–213) | 128 ± 52 | 124 (86–173) | 188 ± 68 | 179 (140–241) | 0.0003 | −1.0 |
Sedentary behaviour [%] | 27.6 ± 8.0 | 26.8 (21.7–33.7) | 32.1 ± 7.4 | 33.0 (28.5–36.8 | 25.0 ± 7.1 | 24.3 (19.6–28.7 | 0.0001 | 1.0 |
Light activity [%] | 55.3 ± 5.3 | 55.7 (51.3–59.0) | 54.7 ± 5.5 | 54.3 (52.0–57.1) | 55.7 ± 5.2 | 56.1 (51.2–59.7 | 0.6509 | −0.2 |
Moderate activity [%] | 17.1 ± 6.8 | 15.7 (11.4–22.8) | 13.2 ± 5.2 | 11.8 (8.6–15.7) | 19.3 ± 6.7 | 19.2 (14.3–23.7) | 0.0001 | −1.1 |
Steps/d | 13,680 ± 3382 | 13,592 (10,723–16,764) | 12,358 ± 2963 | 11,795 (9983–15,076) | 14,423 ± 3404 | 14,242 (12,064–17,175) | 0.0079 | −0.6 |
Total (n = 75) | MCI (n = 27) | NCF (n = 48) | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Total physical activity 1 | 0.2893 | 0.0118 | 0.1972 | 0.3242 | 0.2601 | 0.0742 |
Sedentary behaviour 2 | 0.0095 | 0.9357 | 0.0177 | 0.9301 | 0.0986 | 0.5050 |
Moderate activity 3 | 0.3315 | 0.0037 | 0.2053 | 0.3044 | 0.3896 | 0.0062 |
Kcal/day 4 | 0.0704 | 0.5486 | −0.0250 | 0.9014 | 0.1397 | 0.3436 |
κ (95% CI) | SE | Z | p | |
---|---|---|---|---|
Total physical activity 1 | 0.32 (−0.11–0.53) | 0.12 | 2.80 | 0.0051 |
Sedentary behaviour 2 | −0.04 (−0.27–0.18) | 0.12 | −0.38 | 0.7063 |
Moderate activity 3 | 0.41 (0.22–0.60) | 0.12 | 3.53 | 0.0004 |
Kcal/day 4 | 0.10 (−0.12–0.32) | 0.12 | 0.87 | 0.3865 |
Kendall’s Tau-B | p | |
---|---|---|
Total physical activity 1 | 0.2897 | 0.0002 |
Sedentary behaviour 2 | −0.0386 | 0.6239 |
Moderate activity 3 | 0.3581 | <0.0001 |
Kcal/day 4 | 0.0880 | 0.2640 |
β | SE | t | p | |
---|---|---|---|---|
Sex 1 | −0.1178 | 0.1162 | −1.0133 | 0.3143 |
Age [years] | 0.1110 | 0.1163 | 0.9539 | 0.3433 |
Weight [kg] | 0.0160 | 0.1170 | 0.1367 | 0.8916 |
Place of living 2 | −0.0142 | 0.1170 | −0.1214 | 0.9037 |
Family situation 3 | 0.0828 | 0.1166 | 0.7100 | 0.4800 |
Education 4 | −0.1034 | 0.1164 | −0.8882 | 0.3774 |
Socio-professional status 5 | −0.2201 | 0.1142 | −1.9275 | 0.0578 |
Alcoholic drinks [units/week] | 0.2084 | 0.1145 | 1.8202 | 0.0728 |
HAM–D [points] | 0.0844 | 0.1166 | 0.7237 | 0.4716 |
MoCA [points] | −0.0781 | 0.1167 | −0.6695 | 0.5053 |
RMR [kcal/d] | 0.0761 | 0.1167 | 0.6517 | 0.5166 |
β | SE | t | p | |
---|---|---|---|---|
Alcoholic drinks [units/week] | 0.2404 | 0.1124 | 2.1391 | 0.0358 |
Socio-professional status 1 | −0.2508 | 0.1124 | −2.2314 | 0.0288 |
β | SE | t | p | |
---|---|---|---|---|
Sex 1 | −0.3499 | 0.1096 | −3.1918 | 0.0021 |
Age [years] | −0.2024 | 0.1146 | −1.7658 | 0.0816 |
Weight [kg] | −0.5019 | 0.1012 | −4.9575 | <0.0001 |
Place of living 2 | −0.0068 | 0.1170 | −0.0579 | 0.9539 |
Family situation 3 | −0.1508 | 0.1157 | −1.3035 | 0.1965 |
Education 4 | −0.0121 | 0.1170 | −0.1032 | 0.9181 |
Socio-professional status 5 | −0.1306 | 0.1160 | −1.1254 | 0.2641 |
Alcoholic drinks [units/week] | −0.0459 | 0.1169 | −0.3928 | 0.6956 |
HAM–D [points] | 0.1135 | 0.1163 | 0.9758 | 0.3324 |
MoCA [points] | 0.2834 | 0.1122 | 2.5249 | 0.0137 |
RMR [kcal/d] | −0.4672 | 0.1035 | −4.5151 | <0.0001 |
β | SE | t | p | |
---|---|---|---|---|
Sex 1 | −0.1271 | 0.1264 | −1.0055 | 0.3182 |
Age [years] | −0.0528 | 0.1111 | −0.4750 | 0.6363 |
Weight [kg] | −0.3812 | 0.1704 | −2.2377 | 0.0285 |
MoCA [points] | 0.2423 | 0.1099 | 2.2040 | 0.0309 |
RMR [kcal/d] | −0.0703 | 0.1941 | −0.3623 | 0.7183 |
β | SE | t | p | |
---|---|---|---|---|
Sex 1 | −0.0778 | 0.1167 | −0.6666 | 0.5071 |
Age [years] | −0.4480 | 0.1046 | −4.2809 | 0.0001 |
Weight [kg] | −0.0469 | 0.1169 | −0.4008 | 0.6897 |
Place of living 2 | −0.0343 | 0.1170 | −0.2929 | 0.7705 |
Family situation 3 | 0.0888 | 0.1166 | 0.7617 | 0.4487 |
Education 4 | 0.4279 | 0.1058 | 4.0447 | 0.0001 |
Socio-professional status 5 | 0.2158 | 0.1143 | 1.8881 | 0.0630 |
Alcoholic drinks [units/week] | 0.0928 | 0.1165 | 0.7961 | 0.4286 |
HAM–D [points] | −0.1002 | 0.1165 | −0.8608 | 0.3922 |
Total physical activity [MET—min/day] | −0.0781 | 0.1167 | −0.6695 | 0.5053 |
RMR [kcal/d] | −0.0319 | 0.1170 | −0.2727 | 0.7859 |
Total physical activity [counts/min] | 0.2834 | 0.1122 | 2.5249 | 0.0137 |
β | SE | t | p | |
---|---|---|---|---|
Age [years] | −0.3336 | 0.1115 | −2.9909 | 0.0038 |
Education 1 | 0.3644 | 0.1022 | 3.5656 | 0.0007 |
Socio-professional status 2 | −0.0275 | 0.1141 | −0.2411 | 0.8102 |
Total physical activity [counts/min] | 0.2167 | 0.1008 | 2.1505 | 0.0350 0.1400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarewicz, A.; Jamka, M.; Wasiewicz-Gajdzis, M.; Bajerska, J.; Miśkiewicz-Chotnicka, A.; Kwiecień, J.; Lisowska, A.; Gagnon, D.; Herzig, K.-H.; Mądry, E.; et al. Comparison of Subjective and Objective Methods to Measure the Physical Activity of Non-Depressed Middle-Aged Healthy Subjects with Normal Cognitive Function and Mild Cognitive Impairment—A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 8042. https://doi.org/10.3390/ijerph18158042
Makarewicz A, Jamka M, Wasiewicz-Gajdzis M, Bajerska J, Miśkiewicz-Chotnicka A, Kwiecień J, Lisowska A, Gagnon D, Herzig K-H, Mądry E, et al. Comparison of Subjective and Objective Methods to Measure the Physical Activity of Non-Depressed Middle-Aged Healthy Subjects with Normal Cognitive Function and Mild Cognitive Impairment—A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2021; 18(15):8042. https://doi.org/10.3390/ijerph18158042
Chicago/Turabian StyleMakarewicz, Aleksandra, Małgorzata Jamka, Maria Wasiewicz-Gajdzis, Joanna Bajerska, Anna Miśkiewicz-Chotnicka, Jarosław Kwiecień, Aleksandra Lisowska, Dominque Gagnon, Karl-Heinz Herzig, Edyta Mądry, and et al. 2021. "Comparison of Subjective and Objective Methods to Measure the Physical Activity of Non-Depressed Middle-Aged Healthy Subjects with Normal Cognitive Function and Mild Cognitive Impairment—A Cross-Sectional Study" International Journal of Environmental Research and Public Health 18, no. 15: 8042. https://doi.org/10.3390/ijerph18158042
APA StyleMakarewicz, A., Jamka, M., Wasiewicz-Gajdzis, M., Bajerska, J., Miśkiewicz-Chotnicka, A., Kwiecień, J., Lisowska, A., Gagnon, D., Herzig, K. -H., Mądry, E., & Walkowiak, J. (2021). Comparison of Subjective and Objective Methods to Measure the Physical Activity of Non-Depressed Middle-Aged Healthy Subjects with Normal Cognitive Function and Mild Cognitive Impairment—A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 18(15), 8042. https://doi.org/10.3390/ijerph18158042