Impact of Surgical Table Orientation on Flow Disruptions and Movement Patterns during Pediatric Outpatient Surgeries
Abstract
:1. Introduction
- How do different types of surgical table orientations impact the workflow of surgical team members?
- How do different types of surgical table orientations impact the overall movement of surgical team members during the intraoperative phase of the surgery?
2. Materials and Methods
2.1. Surgical Table Orientation
2.2. Flow Disruptions
2.3. Surgical Team Movement
2.4. Analyses
3. Results
3.1. Surgical Table Orientation and Flow Disruptions
3.1.1. Impact of Surgical Table Orientation on FDs
3.1.2. Impact of Surgical Table Orientation on Minor FDs
3.1.3. Impact of Surgical Table Orientation on Major FDs
3.1.4. Impact of Surgical Table Orientation on Type of FDs
3.2. Surgical Table Orientation and Distance Traveled in the OR
3.3. Surgical Table Orientation and the Number of Contacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnaig, N.; Dailey, S.; Archdeacon, M. Proper patient positioning and complication prevention in orthopaedic surgery. J. Bone Jt. Surg. Am. Vol. 2014, 96, 1135–1140. [Google Scholar] [CrossRef]
- Gefen, A.; Creehan, S.; Black, J. Critical biomechanical and clinical insights concerning tissue protection when positioning patients in the operating room: A scoping review. Int. Wound J. 2020, 17, 1405–1423. [Google Scholar] [CrossRef]
- Goodman, T.; Spry, C. Chapter 5: Positioning the patient for surgery. In Essentials of Perioperative Nursing; Jones and Bartlett Publishers: Burlington, MA, USA, 2016; pp. 141–174. [Google Scholar]
- Adedeji, R.; Oragui, E.; Khan, W.; Maruthainar, N. The importance of correct patient positioning in theatres and implications of mal-positioning. J. Perioper. Pr. 2010, 20, 143–147. [Google Scholar] [CrossRef]
- Spruce, L.; Van Wicklin, S.A. Back to basics: Positioning the patient. AORN J. 2014, 100, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Daccarett, M.S.; Gaddie, T.; Streubel, P.N. Chapter 15—Adult distal humerus fractures: Open reduction internal fixation. In Case Competencies in Orthopaedic Surgery; Frank, R.M., Forsythe, B., Provencher, M.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 138–148. [Google Scholar]
- Szmuk, P.; Abramson, D.; Warters, D.R.; Pereira, K.; Katz, J. Accidental extreme neck extension during repositioning of an operating room table. Anesthesiology 2001, 94, 940–941. [Google Scholar] [CrossRef]
- Rozet, I.; Vavilala, M.S. Risks and benefits of patient positioning during neurosurgical care. Anesthesiol. Clin. 2007, 25, 631–653. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.A.; Prager, R.L.; Abernathy, J.; Martinez, E.A.; Salas, E.; Seifert, P.C.; Groom, R.C.; Spiess, B.D.; Searles, B.E.; Sundt, T.M.; et al. Patient safety in the cardiac operating room: Human factors and teamwork. Circulation 2013, 128, 1139–1169. [Google Scholar] [CrossRef]
- Wiegmann, D.A.; ElBardissi, A.W.; Dearani, J.A.; Daly, R.C.; Sundt, T.M. Disruptions in surgical flow and their relationship to surgical errors: An exploratory investigation. Surgery 2007, 142, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.; Abernathy, J.H.; Swinton, G.; Allison, D.; Greenstein, J.; Shappell, S.; Juang, K.; Reeves, S.T. Realizing improved patient care through human-centered operating room design. Anesthesiology 2013, 119, 1066–1077. [Google Scholar] [CrossRef]
- Wheelock, A.; Suliman, A.; Wharton, R.; Babu, E.D.; Hull, L.; Vincent, C.; Sevdalis, N.; Arora, S. The impact of operating room distractions on stress, workload, and teamwork. Ann. Surg. 2015, 261, 1079–1084. [Google Scholar] [CrossRef] [Green Version]
- Weigl, M.; Antoniadis, S.; Chiapponi, C.; Bruns, C.; Sevdalis, N. The impact of intra-operative interruptions on surgeons’ perceived workload: An observational study in elective general and orthopedic surgery. Surg. Endosc. 2014, 29, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, B.M.; Chaboyer, W.; Fairweather, N. Factors that influence the expected length of operation: Results of a prospective study. BMJ Qual. Saf. 2011, 21, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Catchpole, K.R.; Giddings, A.E.B.; De Leval, M.R.; Peek, G.J.; Godden, P.J.; Utley, M.; Gallivan, S.; Hirst, G.; Dale, T. Identification of systems failures in successful paediatric cardiac surgery. Ergonomics 2006, 49, 567–588. [Google Scholar] [CrossRef]
- de Leval, M.R.; Carthey, J.; Wright, D.J.; Farewell, V.T.; Reason, J.T. Human factors and cardiac surgery: A multicenter study. J. Thorac. Cardiovasc. Surg. 2000, 119, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.; Khoshkenar, A.; Taaffe, K.M.; Catchpole, K.; Machry, H.; Bayramzadeh, S. Minor flow disruptions, traffic-related factors and their effect on major flow disruptions in the operating room. BMJ Qual. Saf. 2018, 28, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Taaffe, K.; Lee, B.; Ferrand, Y.; Fredendall, L.; San, D.; Salgado, C.; Shvorin, D.; Khoshkenar, A.; Reeves, S. The influence of traffic, area location, and other factors on operating room microbial load. Infect. Control Hosp. Epidemiol. 2018, 39, 391–397. [Google Scholar] [CrossRef]
- Taaffe, K.; Joseph, A.; Khoshkenar, A.; Machry, H.; Allison, D.; Reeves, S.T. Proactive evaluation of an operating room prototype. J. Patient Saf. 2020. [Google Scholar] [CrossRef]
- Holden, R.J.; Carayon, P.; Gurses, A.P.; Hoonakker, P.; Hundt, A.S.; Ozok, A.A.; Rivera-Rodriguez, A.J. SEIPS 2.0: A human factors framework for studying and improving the work of healthcare professionals and patients. Ergonomics 2013, 56, 1669–1686. [Google Scholar] [CrossRef] [Green Version]
- Bretonnier, M.; Michinov, E.; Morandi, X.; Riffaud, L. Interruptions in surgery: A comprehensive review. J. Surg. Res. 2020, 247, 190–196. [Google Scholar] [CrossRef]
- Andersson, A.E.; Bergh, I.; Karlsson, J.; Eriksson, B.I.; Nilsson, K. Traffic flow in the operating room: An explorative and descriptive study on air quality during orthopedic trauma implant surgery. Am. J. Infect. Control 2012, 40, 750–755. [Google Scholar] [CrossRef]
- Bayramzadeh, S.; Joseph, A.; Allison, D.; Shultz, J.; Abernathy, J. Using an integrative mock-up simulation approach for evidence-based evaluation of operating room design prototypes. Appl. Ergon. 2018, 70, 288–299. [Google Scholar] [CrossRef] [PubMed]
Flow Disruption Types | Definition |
---|---|
Environmental Hazards | Incidents involving the interaction of surgical staff with the environment such as: Staff Slipping/falling/tripping Staff interaction with sharp objects and contaminated needles Collision between staff and objects Excessive reach for accessing patient, objects, or equipment |
Layout | Spatial organization or positioning of certain items in the operating room that hinder the surgical staff member’s performance by blocking their route or impeding visibility. These items include: Connectors or wires Equipment or furniture Permanent structures or fixed equipment |
Interruptions | Incidents unrelated to surgical procedures that distract the surgical staff: Incoming or outgoing calls from phones or pagers People who are external to the core surgical team Dropping or picking up items from the floor while conducting during an activity. Shift changes during surgical procedures Searching for missing items/supply/instrument during an activity Door openings during surgeries Interacting with personal phones |
Equipment Failure | Incidents related to malfunctioning or broken equipment during surgical procedures |
Usability | Problems associated with: Computers (operating software, programs, and utilities) Pointing devices Monitors Sterile field barriers (e.g., surgical drapes, gowns, or gloves), packaging materials (unwrapping or opening packaging containing supplies) |
Surgical Table Orientation | Total | ||||
---|---|---|---|---|---|
A | B | C | D | ||
Number of surgeries observed | 9 | 13 | 4 | 12 | 38 |
Total length of intraoperative phase across all surgeries (min) | 260 | 278 | 62 | 223 | 823 |
Average length of intraoperative phase (min), M ± SD | 28.9 ± 22.8 | 21.4 ± 34.0 | 15.45 ± 7.8 | 18.5 ± 16.8 | 21.65 ± 24.41 |
Surgery site position | |||||
Upper body (head/neck) | 2 | 9 | 4 | 9 | 24 |
Lower body | 7 | 4 | 3 | 14 | |
Operating room number (area) | |||||
OR 1 (599 sf) | 9 | 8 | 4 | 3 | 24 |
OR 2 (463 sf) | 4 | 4 | |||
OR 3 (389 sf) | 1 | 8 | 9 | ||
OR 4 (531 sf) | 1 | 1 | |||
Average number of staff members present during surgery, M ± SD | 5.4 ± 2.4 | 5 ± 0.8 | 5.75 ± 2.1 | 4.6 ± 1.1 | 5.07 ± 1.5 |
FD Characteristics | Surgical Table Orientation | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | |||||||
(F) | M ± SD | (F) | M ± SD | (F) | M ± SD | (F) | M ± SD | (F) | M ± SD | |
Number of FDs | 21 | 1.14 ± 1.07 | 378 | 1.96 ± 1.19 | 89 | 1.54 ± 0.56 | 324 | 2.15 ± 1.47 | 1001 | 1.77 ± 1.24 |
Flow Disruptions—By Severity | ||||||||||
Major FDs | 54 | 0.38 ± 0.52 | 104 | 0.59 ± 0.37 | 25 | 0.39 ± 0.17 | 86 | 0.67 ± 0.63 | 269 | 0.54 ± 0.49 |
Minor FDs | 156 | 0.76 ± 0.58 | 274 | 1.37 ± 0.91 | 64 | 1.15 ± 0.43 | 238 | 1.47 ± 0.93 | 732 | 1.22 ± 0.83 |
Flow Disruptions—By Type | ||||||||||
Environmental Hazard FDs | 64 | 0.33 ± 0.23 | 98 | 0.49 ± 0.35 | 16 | 0.27 ± 0.18 | 87 | 0.49 ± 0.33 | 265 | 0.42 ± 0.31 |
Layout-related FDs | 96 | 0.56 ± 0.70 | 230 | 1.20 ± 0.88 | 61 | 1.06 ± 0.45 | 181 | 1.24 ± 0.91 | 568 | 1.04 ± 0.83 |
Interruption-related FDs | 30 | 0.09 ± 0.09 | 36 | 0.15 ± 0.26 | 6 | 0.17 ± 0.09 | 54 | 0.41 ± 0.41 | 126 | 0.21 ± 0.30 |
Equipment failure FDs | 5 | 0.10 ± 0.23 | 3 | 0.04 ± 0.11 | 0 | 0.01 ± 0.00 | 0 | 0.00 ± 0.00 | 8 | 0.04 ± 0.13 |
Usability FDs | 14 | 0.06 ± 0.06 | 11 | 0.08 ± 0.12 | 6 | 0.06 ± 0.09 | 2 | 0.01 ± 0.03 | 33 | 0.05 ± 0.09 |
Surgical Team Member Involvement in FDs | ||||||||||
Surgeon | 23 | 0.25 ± 0.47 | 44 | 0.42 ± 0.40 | 11 | 0.14 ± 0.28 | 71 | 0.67 ± 1.02 | 149 | 0.43 ± 0.67 |
AN provider | 68 | 0.27 ± 0.18 | 137 | 0.51 ± 0.49 | 18 | 0.29 ± 0.12 | 78 | 0.49 ± 0.44 | 301 | 0.43 ± 0.39 |
Circulating nurse | 83 | 0.32 ± 0.25 | 103 | 0.48 ± 0.36 | 39 | 0.61 ± 0.14 | 54 | 0.29 ± 0.50 | 279 | 0.39 ± 0.38 |
Scrub Nurse | 36 | 0.15 ± 0.21 | 70 | 0.39 ± 0.56 | 19 | 0.25 ± 0.21 | 78 | 0.45 ± 0.40 | 203 | 0.34 ± 0.42 |
Coefficient | Estimate | Std. Error | t Value | p-Value | Rate Ratios | 95%CI on RR |
---|---|---|---|---|---|---|
Intercept | 0.44 | 0.20 | 2.25 | 0.03 | ||
Table Orientation B | 0.39 | 0.16 | 2.52 | 0.01 | 1.48 | (1.09, 2.01) |
Table Orientation D | 0.58 | 0.16 | 3.55 | <0.001 | 1.79 | (1.30, 2.47) |
Anesthesia Provider | 0.68 | 0.19 | 3.53 | <0.001 | 1.97 | (1.36, 2.89) |
Circulating Nurse | 0.43 | 0.19 | 2.22 | 0.03 | 1.54 | (1.06, 2.28) |
Scrub Nurse | 0.42 | 0.21 | 1.99 | 0.05 | 1.52 | (1.01, 2.30) |
Duration | 0.00 | 0.00 | 10.18 | <0.001 | 1.00 | (1.00, 1.00) |
Dispersion | 3.648 | |||||
Deviance at convergence | 531.26 | df = 107 | ||||
Deviance at intercept | 905.23 | df = 164 |
Coefficient | Estimate | Std. Error | t-Statistic | p-Value | Rate Ratio | 95%CI on RR |
---|---|---|---|---|---|---|
Intercept | 0.49 | 0.15 | 3.342 | 0.001 | 1.63 | (1.22, 2.16) |
Table Orientation B | 0.35 | 0.16 | 2.202 | 0.03 | 1.42 | (1.04, 1.94) |
Table Orientation D | 0.58 | 0.16 | 3.507 | <0.001 | 1.78 | (1.29, 2.46) |
Anesthesia | 0.48 | 0.14 | 3.438 | <0.001 | 1.62 | (1.23, 2.12) |
Surgeon | −0.53 | 0.20 | −2.703 | 0.007 | 0.59 | (0.39, 0.85) |
Duration | 0.00 | 0.00 | 10.281 | <0.001 | 1.00 | (1.00, 1.00) |
Dispersion | 2.772 | |||||
Deviance at convergence | 426.01 | df = 165 | ||||
Deviance at intercept | 748.49 | df = 170 |
Coefficient | Estimate | Std. Error | t-Statistic | p-Value | Rate Ratios | 95%CI on RR |
---|---|---|---|---|---|---|
Intercept | −0.12 | 0.15 | −0.795 | 0.43 | 0.88 | (0.65, 1.19) |
Scrub Nurse | 0.58 | 0.22 | 2.627 | 0.009 | 1.78 | (1.14, 2.71) |
Surgical site on lower part of the body | −0.92 | 0.29 | −3.217 | 0.002 | 0.40 | (0.22, 0.69) |
Duration | 0.00 | 0.00 | 6.76 | <0.001 | 1.00 | (1.00, 1.00) |
Dispersion | 2.492 | |||||
Deviance at convergence | 353.08 | df = 167 | ||||
Deviance at intercept | 466.35 | df = 170 |
Surgical Team Member | Surgical Table Orientation | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | |||||||
D (m) | (D/min), M ± SD | D (m) | (D/min), M ± SD | D (m) | (D/min), M ± SD | D (m) | (D/min), M ± SD | D (m) | (D/min), M ± SD | |
All team members | 2426.5 | 8.85 ± 4.18 | 1909.3 | 6.47 ± 3.61 | 752.4 | 11.47 ± 3.79 | 1688.1 | 8.28 ± 3.54 | 6776.4 | 8.13 ± 3.90 |
Surgeon | 318.2 | 0.96 ± 0.96 | 170.08 | 0.87 ± 0.63 | 92.8 | 1.19 ± 2.37 | 205.4 | 0.87 ± 1.15 | 786.4 | 0.92 ± 1.09 |
Anesthesia provider | 123.8 | 0.57 ± 0.48 | 238.59 | 1.11 ± 1.36 | 95.6 | 1.76 ± 0.70 | 130.2 | 0.57 ± 0.65 | 588.2 | 0.88 ± 0.98 |
Scrub nurse | 296 | 1.13 ± 1.00 | 217.9 | 0.68 ± 0.86 | 141.7 | 1.83 ± 1.53 | 652.7 | 3.57 ± 3.07 | 1308.3 | 1.82 ± 2.24 |
Circulating nurse | 1688.5 | 6.20 ± 2.98 | 1282.8 | 3.82 ± 2.44 | 422.3 | 6.69 ± 1.32 | 699.9 | 3.28 ± 3.96 | 4093.5 | 4.51 ± 3.24 |
Coefficient | Estimate | Std. Error | z-Score | p-Value | Rate Ratios | 95%CI on RR |
---|---|---|---|---|---|---|
Intercept | −4.61 | 0.74 | −6.202 | <0.001 | 0.01 | (0.002, 0.04) |
Table Orientation B | 1.04 | 0.50 | 2.063 | 0.04 | 2.83 | (1.07, 7.83) |
Circulating Nurse | 3.22 | 0.65 | 4.96 | <0.001 | 25.07 | (7.81, 103.63) |
Scrub Nurse | 2.57 | 0.68 | 3.753 | <0.001 | 13.06 | (3.68, 56.48) |
Duration | 0.00 | 0.00 | 4.422 | <0.001 | 1.00 | (1.00, 1.001) |
Deviance at convergence | 129.01 | df = 166 | ||||
Deviance at intercept | 192.87 | df = 170 |
Surgical Table Orientation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surgical Team Member | A | B | C | D | Total | |||||
(F) | M ± SD | (F) | M ± SD | (F) | M ± SD | (F) | M ± SD | (F) | M ± SD | |
All team members | 496 | 2.09 ± 1.53 | 572 | 2.15 ± 1.86 | 194 | 2.90 ± 2.21 | 527 | 2.58 ± 1.40 | 1789 | 2.35 ± 1.64 |
Surgeon | 121 | 0.45 ± 0.47 | 100 | 0.54 ± 0.51 | 62 | 0.79 ± 1.58 | 152 | 0.89 ± 0.92 | 435 | 0.66 ± 0.79 |
Anesthesia provider | 36 | 0.21 ± 0.21 | 74 | 0.42 ± 0.60 | 26 | 0.49 ± 0.25 | 57 | 0.30 ± 0.40 | 193 | 0.34 ± 0.43 |
Scrub nurse | 77 | 0.35 ± 0.35 | 127 | 0.46 ± 0.77 | 55 | 0.70 ± 0.68 | 175 | 0.75 ± 0.62 | 434 | 0.55 ± 0.63 |
Circulating nurse | 262 | 1.08 ± 0.85 | 271 | 0.72 ± 0.61 | 51 | 0.92 ± 0.39 | 143 | 0.65 ± 0.83 | 727 | 0.80 ± 0.72 |
Coefficient | Estimate | Std. Error | t-Statistic | p-Value | Rate Ratios | 95%CI on RR |
---|---|---|---|---|---|---|
Intercept | 1.62 | 0.29 | 5.652 | <0.001 | ||
Table Orientation C | 1.04 | 0.28 | 3.752 | <0.001 | 2.82 | (1.62, 4.81) |
OR 4 | −1.36 | 0.16 | −8.467 | <0.001 | 0.26 | (0.19, 0.35) |
Anesthesia | −1.02 | 0.22 | −4.726 | <0.001 | 0.36 | (0.23, 0.54) |
Number of people in OR | 0.17 | 0.05 | 3.239 | 0.001 | 1.19 | (1.07, 1.31) |
Surgical site on lower part of the body | 1.28 | 0.17 | 7.444 | <0.001 | 3.59 | (2.57, 5.04) |
Dispersion | 8.011 | |||||
Deviance at convergence | 1320.0 | df = 165 | ||||
Deviance at intercept | 2527.7 | df = 170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, A.; Neyens, D.; Mihandoust, S.; Taaffe, K.; Allison, D.; Prabhu, V.; Reeves, S. Impact of Surgical Table Orientation on Flow Disruptions and Movement Patterns during Pediatric Outpatient Surgeries. Int. J. Environ. Res. Public Health 2021, 18, 8114. https://doi.org/10.3390/ijerph18158114
Joseph A, Neyens D, Mihandoust S, Taaffe K, Allison D, Prabhu V, Reeves S. Impact of Surgical Table Orientation on Flow Disruptions and Movement Patterns during Pediatric Outpatient Surgeries. International Journal of Environmental Research and Public Health. 2021; 18(15):8114. https://doi.org/10.3390/ijerph18158114
Chicago/Turabian StyleJoseph, Anjali, David Neyens, Sahar Mihandoust, Kevin Taaffe, David Allison, Vishnunarayan Prabhu, and Scott Reeves. 2021. "Impact of Surgical Table Orientation on Flow Disruptions and Movement Patterns during Pediatric Outpatient Surgeries" International Journal of Environmental Research and Public Health 18, no. 15: 8114. https://doi.org/10.3390/ijerph18158114
APA StyleJoseph, A., Neyens, D., Mihandoust, S., Taaffe, K., Allison, D., Prabhu, V., & Reeves, S. (2021). Impact of Surgical Table Orientation on Flow Disruptions and Movement Patterns during Pediatric Outpatient Surgeries. International Journal of Environmental Research and Public Health, 18(15), 8114. https://doi.org/10.3390/ijerph18158114