A Bibliometric Analysis of 14,822 Researches on Myocardial Reperfusion Injury by Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. MeSH Analyses
2.3. LDA Analyses
3. Results
3.1. Characteristics of the Publications
3.2. MeSH Analyses
3.3. LDA Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lillo-Moya, J.; Rojas-Solé, C.; Muñoz-Salamanca, D.; Panieri, E.; Saso, L.; Rodrigo, R. Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants 2021, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Schanze, N.; Bode, C.; Duerschmied, D. Platelet Contributions to Myocardial Ischemia/Reperfusion Injury. Front. Immunol. 2019, 10, 1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury—Reply. N. Engl. J. Med. 2007, 357, 2409–2410. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, M.; Zhou, J.; Wu, D.; Ye, J.; Sun, G.; Sun, X. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis. Front. Pharmacol. 2020, 11, 570867. [Google Scholar] [CrossRef]
- Davidson, S.M.; Ferdinandy, P.; Andreadou, I.; Bøtker, H.E.; Heusch, G.; Ibáñez, B.; Ovize, M.; Schulz, R.; Yellon, D.M.; Hausenloy, D.J.; et al. Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 89–99. [Google Scholar] [CrossRef]
- O’Neill, W.W.; Martin, J.L.; Dixon, S.R.; Bartorelli, A.L.; Trabattoni, D.; Oemrawsingh, P.V.; Atsma, D.E.; Chang, M.; Marquardt, W.; Oh, J.K.; et al. Acute Myocardial Infarction with Hyperoxemic Therapy (AMIHOT): A prospective, randomized trial of intracoronary hyperoxemic reperfusion after percutaneous coronary intervention. J. Am. Coll. Cardiol. 2007, 50, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Tan, W.; Qiu, Z.; Song, Y.; Gao, S.A. Bibliometric analysis in gene research of myocardial infarction from 2001 to 2015. PeerJ 2018, 6, e4354. [Google Scholar] [CrossRef]
- Iftikhar, P.M.; Uddin, M.F.; Ali, F.; Arastu, A.H.; Khan, J.; Munawar, M.; Suleman, J. The Top Most-Cited and Influential Published Articles in Atrial Fibrillation from 1900 to 2019. Am. J. Cardiol. 2020, 125, 420–426. [Google Scholar] [CrossRef]
- Devos, P.; Menard, J. Bibliometric analysis of research relating to hypertension reported over the period 1997–2016. J. Hypertens. 2019, 37, 2116–2122. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Gau, M.; Tang, K.; Hwang, G. Directions of the 100 most cited nursing student education research: A bibliometric and co-citation network analysis. Nurs. Educ. Today 2021, 96, 104645. [Google Scholar] [CrossRef]
- Brandt, J.S.; Hadaya, O.; Schuster, M.; Rosen, T.; Sauer, M.V.; Ananth, C.V. A Bibliometric Analysis of Top-Cited Journal Articles in Obstetrics and Gynecology. JAMA Network. Open 2019, 2, e1918007. [Google Scholar] [CrossRef]
- Ahmad, T.; Nasir, S.; Musa, T.H.; AlRyalat, S.; Khan, M.; Hui, J. Epidemiology, diagnosis, vaccines, and bibliometric analysis of the 100 top-cited studies on Hepatitis E virus. Hum. Vaccin. Immunother. 2021, 17, 857–871. [Google Scholar] [CrossRef]
- Chen, X.; Xie, H.; Wang, F.L.; Liu, Z.; Xu, J.; Hao, T. A bibliometric analysis of natural language processing in medical research. BMC Med. Inform. Decis. Mak. 2018, 18 (Suppl. 1), 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Feng, C.; Li, M.; Pei, Q.; Li, Y.; Zhu, H.; Song, X.; Pei, H.; Tan, F. A bibliometric analysis of 23,492 publications on rectal cancer by machine learning: Basic medical research is needed. Therap. Adv. Gastroenterol. 2020, 13, 320843838. [Google Scholar] [CrossRef]
- Stout, N.L.; Alfano, C.M.; Belter, C.W.; Nitkin, R.; Cernich, A.; Lohmann, S.K.; Chan, L. A Bibliometric Analysis of the Landscape of Cancer Rehabilitation Research (1992–2016). J. Natl. Cancer Inst. 2018, 110, 815–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Feng, C.; Wu, Y.; Gao, L.; Guo, X.; Wang, Z.; Xing, B. Publication Landscape Analysis on Gliomas: How Much Has Been Done in the Past 25 Years? Front. Oncol. 2019, 9, 1463. [Google Scholar] [CrossRef]
- Dozmorov, M.G. GitHub Statistics as a Measure of the Impact of Open-Source Bioinformatics Software. Front. Bioeng. Biotech. 2018, 6, 198. [Google Scholar] [CrossRef]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 2014, 9, e98679. [Google Scholar]
- Jennings, R.B.; Sommers, H.M.; Smyth, G.A.; Flack, H.A.; Linn, H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch. Pathol. 1960, 70, 68. [Google Scholar]
- Zhao, F.; Shi, B.; Liu, R.; Zhou, W.; Shi, D.; Zhang, J. Theme trends and knowledge structure on choroidal neovascularization: A quantitative and co-word analysis. BMC Ophthalmol. 2018, 18, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausenloy, D.J.; Yellon, D.M. Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J. Clin. Invest. 2013, 123, 92–100. [Google Scholar] [CrossRef]
- Neri, M.; Riezzo, I.; Pascale, N.; Pomara, C.; Turillazzi, E. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists. Mediat. Inflamm. 2017, 2017, 7018393. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, L.; Wang, Z.; Liu, J. Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing. Cells 2019, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Heusch, G. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol. 2020, 17, 773–789. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, K.; Lee, J.J.; Frenneaux, M.P.; Feelisch, M.; Madhani, M. Nitrite and myocardial ischaemia reperfusion injury. Where are we now? Pharmacol. Ther. 2021, 223, 107819. [Google Scholar] [CrossRef] [PubMed]
- van der Weg, K.; Majidi, M.; Haeck, J.D.; Tijssen, J.G.; Green, C.L.; Koch, K.T.; Kuijt, W.J.; Krucoff, M.W.; Gorgels, A.P.; de Winter, R.J. Ventricular arrhythmia burst is an independent indicator of larger infarct size even in optimal reperfusion in STEMI. J. Electrocardiol. 2016, 49, 345–352. [Google Scholar] [CrossRef] [Green Version]
- van der Weg, K.; Kuijt, W.J.; Bekkers, S.C.; Tijssen, J.G.; Green, C.L.; Lemmert, M.E.; Krucoff, M.W.; Gorgels, A.P. Reperfusion ventricular arrhythmia bursts identify larger infarct size in spite of optimal epicardial and microvascular reperfusion using cardiac magnetic resonance imaging. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 246–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majidi, M.; Kosinski, A.S.; Al-Khatib, S.M.; Smolders, L.; Cristea, E.; Lansky, A.J.; Stone, G.W.; Mehran, R.; Gibbons, R.J.; Crijns, H.J.; et al. Implications of ventricular arrhythmia “bursts” with normal epicardial flow, myocardial blush, and ST-segment recovery in anterior ST-elevation myocardial infarction reperfusion: A biosignature of direct myocellular injury “downstream of downstream”. Eur. Heart J. Acute Cardiovasc. Care 2015, 4, 51–59. [Google Scholar] [CrossRef]
- van der Weg, K.; Prinzen, F.W.; Gorgels, A.P.M. Editor’s Choice- Reperfusion cardiac arrhythmias and their relation to reperfusion-induced cell death. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; He, G. Effect of Cardioplegic and Organ Preservation Solutions and Their Components on Coronary Endothelium-Derived Relaxing Factors. Ann. Thorac. Surg. 2005, 80, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Pisarenko, O.; Studneva, I. Modulating the Bioactivity of Nitric Oxide as a Therapeutic Strategy in Cardiac Surgery. J. Surg. Res. 2021, 257, 178–188. [Google Scholar] [CrossRef] [PubMed]
Affiliation | Country | Documents |
---|---|---|
Fourth Military Medical University | China | 814 |
Chiang Mai University | Thailand | 376 |
Renmin Hospital of Wuhan University | China | 352 |
Huazhong University of Science and Technology | China | 349 |
Central South University | China | 266 |
University of California | USA | 251 |
University College London | UK | 244 |
Capital Medical University | China | 226 |
Medical College of Wisconsin | USA | 223 |
University of Alberta | Canada | 202 |
Journal Title | Country | Documents | IF 2020 |
---|---|---|---|
Cardiovascular Research | UK | 661 | 10.787 |
American Journal of Physiology-Heart and Circulatory Physiology | USA | 587 | 4.733 |
Circulation | USA | 456 | 26.690 |
Journal of Molecular and Cellular Cardiology | UK | 417 | 5.000 |
Journal of Cardiovascular Pharmacology | USA | 363 | 3.105 |
Annals of Thoracic Surgery | USA | 303 | 4.330 |
Basic Research in Cardiology | Germany | 299 | 17.165 |
Journal of Thoracic and Cardiovascular Surgery | USA | 285 | 5.209 |
European Journal of Pharmacology | Netherlands | 238 | 4.432 |
Circulation Research | USA | 203 | 17.367 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Liu, Z.; Shi, R. A Bibliometric Analysis of 14,822 Researches on Myocardial Reperfusion Injury by Machine Learning. Int. J. Environ. Res. Public Health 2021, 18, 8231. https://doi.org/10.3390/ijerph18158231
Li C, Liu Z, Shi R. A Bibliometric Analysis of 14,822 Researches on Myocardial Reperfusion Injury by Machine Learning. International Journal of Environmental Research and Public Health. 2021; 18(15):8231. https://doi.org/10.3390/ijerph18158231
Chicago/Turabian StyleLi, Chan, Zhaoya Liu, and Ruizheng Shi. 2021. "A Bibliometric Analysis of 14,822 Researches on Myocardial Reperfusion Injury by Machine Learning" International Journal of Environmental Research and Public Health 18, no. 15: 8231. https://doi.org/10.3390/ijerph18158231
APA StyleLi, C., Liu, Z., & Shi, R. (2021). A Bibliometric Analysis of 14,822 Researches on Myocardial Reperfusion Injury by Machine Learning. International Journal of Environmental Research and Public Health, 18(15), 8231. https://doi.org/10.3390/ijerph18158231