Effect of Platelet-Rich Fibrin Application on Non-Infectious Complications after Surgical Extraction of Impacted Mandibular Third Molars
Abstract
:1. Introduction
- -
- Dental surgery-as a restoration of bone defects, filling of post-extraction alveoli, guided bone regeneration procedures, closure of oro-auricular junctions, procedures to raise the floor of the maxillary sinus;
- -
- Periodontology-treatment of recessions, treatment of bone defects, treatment of periapical lesions;
- -
- Developmental dentistry-pulpotomy procedures, revascularization, apices.
2. Materials and Methods
2.1. Baseline Characteristics
2.2. Preparation of Platelet-Rich Fibrin
2.3. Surgical Technique for Removal of Impacted Lower Third Molars
2.4. Methodology of Evaluation of Complications after the Removal of Impacted Lower Third Molar
2.4.1. Measurement of Swelling
- -
- Vertical line AB determined by Point A—the lateral angle of the eye exocanthion (Ex) and Point B—the point of the angle of the mandible gonion (Go);
- -
- Horizontal line CD delimited by Point C—the most lateral on the wing of the nose point—alare (Al), and the most distal point of the ear scrape, skin Point D—tragus (T);
- -
- Horizontal line DE defined by Point D, the most proximal point of the earlobe tragus (T), the skin point, and the corner of the mouth, Point E—cheilon (Ch).
2.4.2. Trismus Intensity Measurement
2.4.3. Measurement of Pain Intensity
2.4.4. Body and Perioperative Site Temperature Measurement
2.5. Methodology of Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Comparative Analysis of Pain Intensity after Surgical Removal of Impacted Lower Wisdom Tooth at Six and Twelve Hours after Surgery and Postoperative Days 1, 2, 3, 4, 5, 6, and 7 between the Study and Control Groups
3.3. Comparative Analysis of Jaw Opening Size before Surgery and 1st, 2nd, and 7th Postoperative Days between the Study and Control Groups
3.4. Comparative Analysis of Soft Tissue Edema Measured by Lines: AB, CD, DE before Surgery and on Postoperative Days 1, 2, and 7 between the Study and Control Groups
3.5. Comparative Analysis of Body and the Operated Site Temperature in the Study and Control Groups Measured before Surgery and on Postoperative Days 1, 2 and 7
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandal, S.; Pahadia, M.; Sahu, S.; Joshi, A.; Suryawanshi, D.; Tiwari, A. Clinical and Imaging Evaluation of Third Molars: A Review. J. Appl. Dent. Med. Sci. 2015, 1, 3–9. [Google Scholar]
- Kumar, M.P.; Aysha, S. Angulations of impacted mandibular third molar: A radiographic study in Saveetha dental college. J. Pharm. Sci. Res. 2015, 7, 981–983. [Google Scholar]
- Khanal, P.; Dixit, S.; Singh, R.; Dixit, P. Difficulty index in extraction of impacted mandibular third molars and their post-operative complications. Kathmandu Univ. Med. J. 2014, 3, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Trybek, G.; Jaroń, A.; Grzywacz, A. Association of Polymorphic and Haplotype Variants of the MSX1 Gene and the Impacted Teeth Phenomenon. Genes 2021, 12, 577. [Google Scholar] [CrossRef] [PubMed]
- Janas, A.; Stelmach, R.; Osica, P. Atypical dislocation of impacted permanent teeth in children. Own Experience. Dev. Period Med. 2015, 3, 383–388. [Google Scholar]
- Barbosa-Rebellato, N.L.; Thomé, A.C.; Costa-Maciel, C.; Oliveira, J.; Scariot, R. Factors associated with complications of removal of third molars: A transversal study. Med. Oral Patol. Oral Cir. Bucal. 2011, 16, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, F.; Daniel, N.G. Extraction of impacted mandibular third molars: Postoperative complications and their risk factors. J. Can. Dent. Assoc. 2007, 73, 325. [Google Scholar]
- Pitekova, L.; Satko, I.; Novotnakova, D. Complications after third molar surgery. Bratisl. Lek. Listy 2010, 111, 296–298. [Google Scholar]
- Jerjes, W.; El-Maaytah, M.; Swinson, B. Experience versus complication rate in third molar surgery. Head Face Med. 2006, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Bello, S.A.; Adeyemo, W.L.; Bamgbose, B.O.; Obi, E.V.; Adeyinka, A.A. Effect of age, impaction types and operative time on inflammatory tissue reactions following lower third molar surgery. Head Face Med. 2011, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Zandi, M.; Amini, P.; Keshavarz, A. Effectiveness of cold therapy in reducing pain, trismus, and oedema after impacted mandibular third moalr surgery: A randomized, self-controlled, observer-blind, split-mouth clinical trial. Int. J. Oral Maxillofac. Surg. 2015, 25, 118–123. [Google Scholar] [CrossRef]
- Jonczyk, P.; Tynior, W.; Kandefer, B.; Potempa, M.; Szczerba, K.; Kajdaniuk, D. Rola glikokortykosteroidoterapii w chirurgii stomatologicznej. Twój Prz. Stomatol. 2016, 3, 46–53. [Google Scholar]
- Buesa-Bárez, J.M.; Martin-Ares, M.; Martínez-Rodriguez, N. Masseter and temporalis muscle electromyography findings after lower third molar extraction. Med. Oral Patol. Oral Cir. Bucal. 2018, 23, e92–e97. [Google Scholar] [CrossRef]
- Agrawa, M.; Agrawa, V. Platelet Rich Fibrin and its Applications in Dentistry—A Review Article. Nat. J. Med. Res. 2014, 2, 51–58. [Google Scholar]
- Agarwal, A.; Gupta, N.D.; Jain, A. Platelet rich fibrin combined with decalcified freeze-dried bone allograft for the treatment of human intrabony periodontal defects: A randomized split mouth clinical trail. Acta Odontol. Scand. 2016, 74, 36–43. [Google Scholar] [CrossRef]
- Kapustecki, M.; Niedzielska, I.; Borgiel-Marek, H.; Różanowski, B. Alternative method to treat oroantral communication and fistula with autogenous bone graft and platelet rich fibrin. Med. Oral Patol. Oral Cir. Bucal. 2016, 21, 608–613. [Google Scholar]
- Pazera, R.; Szczepańska, J. Exploitation of the platelet rich fibrin (PRF) potential in paedodontics. Nowa Stomatol. 2015, 1, 35–39. [Google Scholar] [CrossRef]
- Dachi, S.F.; Howell, F.V. A survey of 3874 routine full-mouth radiographs: II. A study of impacted teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 1961, 14, 1165–1169. [Google Scholar] [CrossRef]
- Üstün, Y.; Erdoǧan, Ö.; Esen, E.; Karsli, E.D. Comparison of the effects of 2 doses of methylprednisolone on pain, swelling, and trismus after third molar surgery. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 96, 535–539. [Google Scholar] [CrossRef]
- Downie, W.W.; Leatham, P.A.; Rhind, V.M.; Wright, V.; Branco, J.A.; Anderson, J.A. Studies with pain rating scales. Ann. Rheum. Dis. 1978, 37, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.C.; Choi, S.S.; Wang, S.J.; Kim, S.G. Minor complications after mandibular third molar surgery type, incidence and possible prevention. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 102, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Sigron, G.R.; Pourmand, P.P.; Mache, B.; Stadlinger, B.; Locher, M.C. The most common complications after wisdom-tooth removal. Swiss Dent. J. 2014, 124, 1042–1046. [Google Scholar] [PubMed]
- Jaroń, A.; Preuss, O.; Konkol, B.; Trybek, G. Quality of Life of Patients after Kinesio Tape Applications Following Impacted Mandibular Third Molar Surgeries. J. Clin. Med. 2021, 10, 2197. [Google Scholar] [CrossRef] [PubMed]
- Zeman, P.; Kasl, J.; Tupý, R.; Frei, R.; Kott, O.; Kautzner, J. Evaluation of the MRI Findings on a Tendon Graft after the Anatomic Anterior Cruciate Ligament Reconstruction in Patients with Versus without the Application of Platelet-Rich Fibrin-Results of the Prospective Randomised Study. Acta Chir. Orthop. Traumatol. Cech. 2018, 85, 343–350. [Google Scholar]
- Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part III: Leucocyte activation: A new feature for platelet concentrates? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 101, 51–55. [Google Scholar] [CrossRef]
- He, Y.; Chen, J.; Huang, Y.; Pan, Q.; Nie, M. Local application of platelet-rich fibrin during lower third molar extraction improves treatment outcomes. J. Oral Maxillofac. Surg. 2017, 75, 2497–2506. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.A. Evolution; current status and advances in application of platelet concentrate in periodontics and implantology. World J. Clin. Cases 2017, 5, 159. [Google Scholar] [CrossRef]
- Arora, S.; Kotwal, U.; Dogra, M.; Doda, V. Growth factor variation in two types of autologous platelet biomaterials: PRP Versus PRF. Indian J. Hematol. Bio. 2017, 33, 288–292. [Google Scholar] [CrossRef]
- Hoaglin, D.R.; Lines, G.K. Prevention of localized osteitis in mandibular third-molar sites using platelet-rich fibrin. Int. J. Dent. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Ozgul, O.; Senses, F.; Er, N.; Tekin, U.; Tuz, H.H.; Alkan, A.; Atil, F. Efficacy of platelet rich fibrin in the reduction of the pain and swelling after impacted third molar surgery: Randomized multicenter split-mouth clinical trial. Head Face Med. 2015, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Bilginaylar, K.; Uyanik, L.O. Evaluation of the effects of platelet-rich fibrin and piezosurgery on outcomes after removal of ımpacted mandibular third molars. Br. J. Oral Maxillofac. Sur. 2016, 54, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Mozzati, M.; Martinasso, G.; Pol, R.; Polastri, C.; Cristiano, A.; Muzio, G.; Canuto, R. The impact of plasma rich in growth factors on clinical and biological factors involved in healing processes after third molar extraction. J. Biomed. Mater. Res. A 2010, 95, 741–746. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Narendar, R.; Kavin, T.; Venkataraman, S.; Gokulanathan, S. Incidence of trismus in transalveolar extraction of lower third molar. J. Pharm. Bioallied. Sci. 2017, 9, 222. [Google Scholar] [CrossRef]
- Kushner, I. The phenomenon of the acute phase response. Ann. N. Y. Acad. Sci. 1982, 389, 39–48. [Google Scholar] [CrossRef]
- Calvo, A.M.; Brozoski, D.T.; Giglio, F.P.; Gonçalves, P.Z.; Sant’ana, E.; Dionísio, T.J.; Santos, C.F. Are antibiotics necessary after lower third molar removal? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Jain, M. Theoretical mathematical model on temperature regulation during wound healing after plastic surgery of two dimensional human peripheral regions. Int. J. Math. 2014, 10, 73–82. [Google Scholar] [CrossRef]
- Czarkowska-Pączek, B.; Przybylski, J. Zarys Fizjologii Wysiłku Fizycznego. Podręcznik dla Studentów; Urban & Partner: Wrocław, Poland, 2006. [Google Scholar]
- Dohan Ehrenfest, D.M.; de Peppo, G.M.; Doglioli, P.; Sammartino, G. Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): A gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors 2009, 27, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Janicki, S.; Fiebig, A.; Sznitowska, M.; Achmatowicz, T. Farmacja Stosowana: Podręcznik dla Studentów Farmacji; Wydaw. Lekarskie PZWL: Warszawa, Poland, 2003. [Google Scholar]
- Avner, J.R. Acute fever. Pediatr. Rev. 2009, 30, 5. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Sato, A.; Hughes, M.A.; Cherry, G.W. Stimulation of fibroblast growth in vitro by intermittent radiant warming. Wound Repair Regen. 2000, 8, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Banwell, P.E.; Bakker, M.C.; Gillespie, P.G.; McGrouther, D.A.; Roberts, A.H. Topical radiant heating in wound healing: An experimental study in a donor site wound model. Int. Wound J. 2004, 1, 233–240. [Google Scholar] [CrossRef]
- Singh, A.; Kohli, M.; Gupta, N. Platelet rich fibrin: A novel approach for osseous regeneration. J. Maxillofac; Oral Surg. 2012, 11, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Gurler, G.; Delilbasi, C. Effects of leukocyte-platelet rich fibrin on postoperative complications of direct sinus lifting. Minerva Stomatol. 2016, 65, 207–212. [Google Scholar]
- Asutay, F.; Yolcu, Ü.; Geçör, O.; Acar, A.H.; Öztürk, S.A.; Malkoç, S. An evaluation of effects of platelet-rich-fibrin on postoperative morbidities after lower third molar surgery. Niger. J. Clin. Pract. 2017, 20, 1531–1536. [Google Scholar] [CrossRef] [Green Version]
- Gülşen, U.; Şentürk, M.F. Effect of platelet rich fibrin on edema and pain following third molar surgery: A split mouth control study. BMC Oral Health 2017, 17, 79. [Google Scholar] [CrossRef] [PubMed]
- Caymaz, M.G.; Uyanik, L.O. Comparison of the effect of advanced platelet-rich fibrin and leukocyte- and platelet-rich fibrin on outcomes after removal of impacted mandibular third molar: A randomized split-mouth study. Niger. J. Clin. Pract. 2019, 22, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Thong, I.S.K.; Jensen, M.P.; Miró, J.; Tan, G. The validity of pain intensity measures: What do the NRS, VAS, VRS, and FPS-R measure? Scand. J. Pain 2018, 18, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Hjermstad, M.J.; Fayers, P.M.; Haugen, D.F.; Caraceni, A.; Hanks, G.W.; Loge, J.H. European Palliative Care Research Collaborative (EPCRC. (2011). Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: A systematic literature review. J. Pain Symptom Manage. 2011, 41, 1073–1093. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Valente, M.A.; Pais-Ribeiro, J.L.; Jensen, M.P. Validity of four pain intensity rating scales. Pain 2011, 152, 2399–2404. [Google Scholar] [CrossRef]
- Jaroń, A.; Trybek, G. The Pattern of Mandibular Third Molar Impaction and Assessment of Surgery Difficulty: A Retrospective Study of Radiographs in East Baltic Population. Int. J. Environ. Res. Public Health 2021, 18, 6016. [Google Scholar] [CrossRef]
- MacGregor, A.J. The radiological assessment of ectopic lower third molars. Ann. R Coll. Surg. Engl. 1979, 61, 107–113. [Google Scholar]
- Daugela, P.; Grimuta, V.; Sakavicius, D.; Jonaitis, J.; Juodzbalys, G. Influence of leukocyte-and platelet-rich fibrin (L-PRF) on the outcomes of impacted mandibular third molar removal surgery: A split-mouth randomized clinical trial. Quintessence Int. 2018, 49, 377–378. [Google Scholar]
- Pasqualini, D.; Cocero, N.; Castella, A.; Mela, L.; Bracco, P. Primary and secondary closure of the surgical wound after removal of impacted mandibular third molars: A comparative study. Int. J. Oral Maxillofac. Surg. 2005, 34, 52–57. [Google Scholar] [CrossRef]
- Rana, M.; Gellrich, N.; Ghassemi, A.; Gerressen, M.; Riediger, D.; Modabber, A. Three-dimensional evaluation of postoperative swelling after third molar surgery using 2 different cooling therapy methods: A randomized observer-blind prospective study. J. Oral Maxillofac. Surg. 2011, 69, 2092–2098. [Google Scholar] [CrossRef] [PubMed]
- Moraschini, V.; Poubel, L.A.; Ferreira, V.F.; Barboza Edos, S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int. J. Oral Maxillofac. Surg. 2015, 44, 377–388. [Google Scholar] [CrossRef]
- Metlerski, M.; Grocholewicz, K.; Jaroń, A.; Lipski, M.; Trybek, G. Comparison of Presurgical Dental Models Manufactured with Two Different Three-Dimensional Printing Techniques. J. Healthc. Eng. 2020, 2020, 8893338. [Google Scholar] [CrossRef]
- Kaczmarzyk, T.; Wichlinski, J.; Stypulkowska, J.; Zaleska, M.; Panas, M.; Woron, J. Single-dose and multi-dose clindamycin therapy fails to demonstrate efficacy in preventing infectious and inflammatory complications in third molar surgery. Int. J. Oral Maxillofac. Surg. 2007, 36, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Milani, B.A.; Bauer, H.C.; Sampaio-Filho, H.; Horliana, A.C.R.T.; Perez, F.E.G.; Tortamano, I.P.; Jorge, W.A. Antibiotic therapy in fully impacted lower third molar surgery: Randomized three-arm; double-blind; controlled trial. Oral Maxillofac. Surg. 2015, 19, 341–346. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Lavery, L.A. Monitoring healing of acute Charcot’s arthropathy with infrared dermal thermometry. J. Rehabil. Res. Dev. 1997, 34, 317. [Google Scholar] [PubMed]
- Fierheller, M.; Sibbald, R.G. A clinical investigation into the relationship between increased periwound skin temperature and local wound infection in patients with chronic leg ulcers. Adv. Skin Wound Care 2010, 23, 369–379. [Google Scholar] [CrossRef]
- Romano, C.L.; Romano, D.; Dell’Oro, F.; Logoluso, N.; Drago, L. Healing of surgical site after total hip and knee replacements show similar telethermographic patterns. J. Orthop. Traumatol. 2011, 12, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Kruse, C.R.; Nuutila, K.; Lee, C.C.; Kiwanuka, E.; Singh, M.; Caterson, E.J.; Eriksson, E.; Sorensen, J.A. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015, 23, 456–464. [Google Scholar] [CrossRef] [PubMed]
Study Group | Control Group | p | ||
---|---|---|---|---|
Age [lata] mean ± SD | 26.16 ± 5.85 | 26.09 ± 7.04 | 0.722 NP | |
Sex | women [n] | 29 (64.44%) | 33 (73.33%) | 0.495 chi2 |
men [n] | 16 (35.56%) | 12 (26.67%) |
Study Group | Control Group | All Patients | p | |
---|---|---|---|---|
WBC [tys./µL] mean ± SD | 6.55 ± 1.45 | 6.41 ± 1.61 | 6.48 ± 1.53 | 0.672 P |
OB [mm/h] mean ± SD | 6.47 ± 3.4 | 5.56 ± 3.1 | 6.01 ± 3.27 | 0.236 NP |
CRP [mg/L] mean ± SD | 1.98 ± 1.84 | 1.88 ± 1.4 | 1.93 ± 1.63 | 0.887 NP |
Study Group | Control Group | All Patients | p | ||
---|---|---|---|---|---|
WHARFE | Mean ± SD | 4.82 ± 2.16 | 5.16 ± 2.03 | 4.99 ± 2.09 | 0.299 NP |
median | 5 | 5 | 5 | ||
quartiles | 3–6 | 4–6 | 3–6 | ||
Winter | Distal | 7 (15.56%) | 6 (13.33%) | 13 (14.44%) | 0.661 chi2 |
Horizontal | 10 (22.22%) | 8 (17.78%) | 18 (20.00%) | ||
mesial | 20 (44.44%) | 18 (40.00%) | 38 (42.22%) | ||
vertical | 8 (17.78%) | 13 (28.89%) | 21 (23.33%) |
Pain Intensity (0–10) | p | |||
---|---|---|---|---|
Study Group (n = 45) | Control Group (n = 45) | |||
Before surgery | mean ± SD | 0 ± 0 | 0 ± 0 | 1 |
Median (quartiles) | 0 (0–0) | 0 (0–0) | P | |
After 6 h | mean ± SD | 4 ± 2.08 | 5.38 ± 2.16 | 0.003 |
Median (quartiles) | 4 (2–5) | 6 (4–7) | P | |
After 12 h | mean ± SD | 4.31 ± 1.99 | 5.11 ± 1.87 | 0.053 |
Median (quartiles) | 5 (3–6) | 5 (4–6) | P | |
1 day | mean ± SD | 3.29 ± 1.87 | 4.49 ± 1.96 | 0.006 |
Median (quartiles) | 4 (2–4) | 5 (3–6) | NP | |
2 days | mean ± SD | 2.87 ± 1.6 | 3.64 ± 1.98 | 0.077 |
Median (quartiles) | 3 (2–4) | 4 (2–5) | NP | |
3 days | mean ± SD | 2.13 ± 1.59 | 2.91 ± 1.99 | 0.039 |
Median (quartiles) | 2 (1–3) | 3 (1–4) | NP | |
4 days | mean ± SD | 1.82 ± 1.56 | 2.47 ± 1.89 | 0.096 |
Median (quartiles) | 2 (1–2) | 2 (1–4) | NP | |
5 days | mean ± SD | 1.4 ± 1.45 | 1.98 ± 1.84 | 0.169 |
Median (quartiles) | 1 (0–2) | 2 (0–3) | NP | |
6 days | mean ± SD | 1.07 ± 1.29 | 1.47 ± 1.46 | 0.178 |
Median (quartiles) | 1 (0–1) | 1 (0–3) | NP | |
7 days | mean ± SD | 0.58 ± 0.75 | 1.11 ± 1.35 | 0.123 |
Median (quartiles) | 0 (0–1) | 1 (0–2) | NP |
Trismus | Study Group (n = 45) | Control Group (n = 45) | p | |
---|---|---|---|---|
Before surgery | mean ± SD | 51.02 ± 6.36 | 48.08 ± 7.14 | 0.042 |
Median (quartiles) | 50.7 (47.06–54.7) | 49.26 (43.21–52.05) | P | |
1 day | mean ± SD | 34.23 ± 8.88 | 27.64 ± 7.44 | <0.001 |
Median (quartiles) | 35 (28–40) | 26.52 (22.23–32) | P | |
2 days | mean ± SD | 35.12 ± 9.15 | 27.68 ± 8.14 | <0.001 |
Median (quartiles) | 34.67 (30–40) | 25 (22.04–30.99) | NP | |
7 days | mean ± SD | 43.08 ± 8.35 | 35.97 ± 8.22 | <0.001 |
Median (quartiles) | 42 (38–47) | 36.47 (30–42) | P |
Line AB [cm] | Study Group (n = 45) | Control Group (n = 45) | p | |
---|---|---|---|---|
Before surgery | mean ± SD | 10.46 ± 0.76 | 10.62 ± 0.75 | 0.239 |
Median (quartiles) | 10.4 (10–11) | 10.5 (10–11) | NP | |
1 day | mean ± SD | 10.93 ± 0.81 | 11.14 ± 1.05 | 0.298 |
Median (quartiles) | 11 (10.2–11.5) | 11 (10.5–12) | NP | |
2 days | mean ± SD | 10.92 ± 0.79 | 11.15 ± 0.99 | 0.23 |
Median (quartiles) | 11 (10.5–11.5) | 11 (10.5–12) | NP | |
7 days | mean ± SD | 10.69 ± 0.83 | 10.8 ± 0.79 | 0.517 |
Median (quartiles) | 10.5 (10–11) | 10.8 (10.4–11.5) | P | |
Line CD [cm] | Study group (n = 45) | Control group (n = 45) | p | |
Before surgery | mean ± SD | 12.03 ± 0.6 | 12.01 ± 0.73 | 0.863 |
Median (quartiles) | 12 (11.5–12.5) | 12 (11.5–12.5) | P | |
1 day | mean ± SD | 12.21 ± 0.62 | 12.26 ± 0.78 | 0.731 |
Median (quartiles) | 12.2 (11.8–12.5) | 12.2 (12–12.6) | P | |
2 days | mean ± SD | 12.2 ± 0.57 | 12.28 ± 0.72 | 0.559 |
Median (quartiles) | 12.2 (11.8–12.5) | 12.2 (11.9–12.8) | P | |
7 days | mean ± SD | 12.07 ± 0.59 | 12.17 ± 0.71 | 0.477 |
Median (quartiles) | 12 (11.5–12.5) | 12.2 (11.8–12.5) | NP | |
Line DE [cm] | Study group (n = 45) | Control group (n = 45) | p | |
Before surgery | mean ± SD | 11.69 ± 0.72 | 11.72 ± 0.89 | 0.846 |
1 day | Median (quartiles) | 11.5 (11.3–12) | 11.5 (11–12.4) | P |
mean ± SD | 12.03 ± 0.67 | 12.1 ± 0.78 | 0.666 | |
2 days | Median (quartiles) | 12 (11.5–12.5) | 12 (11.5–12.5) | P |
mean ± SD | 12.1 ± 0.73 | 12.22 ± 0.79 | 0.438 | |
7 days | Median (quartiles) | 12 (11.5–12.5) | 12.2 (11.6–13) | P |
mean ± SD | 11.8 ± 0.69 | 11.92 ± 0.87 | 0.494 | |
Median (quartiles) | 11.8 (11.4–12) | 12 (11.5–12.5) | P |
Body Temperature [°C] | Study Group (n = 45) | Control Group (n = 45) | p | |
---|---|---|---|---|
Before surgery | mean ± SD | 36.57 ± 0.28 | 36.66 ± 0.25 | 0.196 |
Median (quartiles) | 36.6 (36.4–36.8) | 36.6 (36.5–36.8) | NP | |
1 day | mean ± SD | 36.6 ± 0.45 | 36.76 ± 0.47 | 0.103 |
Median (quartiles) | 36.6 (36.2–36.9) | 36.6 (36.6–37) | NP | |
2 days | mean ± SD | 36.52 ± 0.39 | 36.74 ± 0.47 | 0.022 |
Median (quartiles) | 36.5 (36.2–36.8) | 36.7 (36.4–37) | NP | |
7 days | mean ± SD | 36.58 ± 0.4 | 36.7 ± 0.41 | 0.14 |
Median (quartiles) | 36.5 (36.3–36.8) | 36.6 (36.5–36.9) | NP | |
Surgery site temperature [°C] | Study group (n = 45) | Control group (n = 45) | p | |
Before surgery | mean ± SD | 38.08 ± 0.7 | 38.27 ± 0.53 | 0.17 |
Median (quartiles) | 38.3 (37.7–38.5) | 38.4 (38.1–38.7) | NP | |
1 day | mean ± SD | 38.52 ± 0.54 | 38.56 ± 0.47 | 0.665 |
Median (quartiles) | 38.5 (38.3–38.9) | 38.4 (38.3–38.9) | P | |
2 days | mean ± SD | 38.54 ± 0.45 | 38.38 ± 0.38 | 0.086 |
Median (quartiles) | 38.5 (38.2–38.8) | 38.4 (38.2–38.6) | P | |
7 days | mean ± SD | 38.38 ± 0.43 | 38.28 ± 0.48 | 0.313 |
Median (quartiles) | 38.4 (38.1–38.7) | 38.3 (38.1–38.6) | P |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trybek, G.; Rydlińska, J.; Aniko-Włodarczyk, M.; Jaroń, A. Effect of Platelet-Rich Fibrin Application on Non-Infectious Complications after Surgical Extraction of Impacted Mandibular Third Molars. Int. J. Environ. Res. Public Health 2021, 18, 8249. https://doi.org/10.3390/ijerph18168249
Trybek G, Rydlińska J, Aniko-Włodarczyk M, Jaroń A. Effect of Platelet-Rich Fibrin Application on Non-Infectious Complications after Surgical Extraction of Impacted Mandibular Third Molars. International Journal of Environmental Research and Public Health. 2021; 18(16):8249. https://doi.org/10.3390/ijerph18168249
Chicago/Turabian StyleTrybek, Grzegorz, Justyna Rydlińska, Magda Aniko-Włodarczyk, and Aleksandra Jaroń. 2021. "Effect of Platelet-Rich Fibrin Application on Non-Infectious Complications after Surgical Extraction of Impacted Mandibular Third Molars" International Journal of Environmental Research and Public Health 18, no. 16: 8249. https://doi.org/10.3390/ijerph18168249
APA StyleTrybek, G., Rydlińska, J., Aniko-Włodarczyk, M., & Jaroń, A. (2021). Effect of Platelet-Rich Fibrin Application on Non-Infectious Complications after Surgical Extraction of Impacted Mandibular Third Molars. International Journal of Environmental Research and Public Health, 18(16), 8249. https://doi.org/10.3390/ijerph18168249