Hydrogeochemistry Evidence for Impacts of Chemical Acidic Wastewater on Karst Aquifer in Dawu Water Source Area, Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
3. Results and Discussion
3.1. Cluster Analysis
3.2. Hydrochemical Characteristics of Different Types of Groundwater
3.3. Hydrogeochemical Analysis of Karst Groundwater Polluted by Acidic Chemical Wastewater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Olarinoye, T.; Gleeson, T.; Marx, V.; Seeger, S.; Adinehvand, R.; Allocca, V.; Andreo, B.; Apaestegui, J.; Apolit, C.; Arfib, B.; et al. Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Sci. Data 2020, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Stevanovic, Z. Karst waters in potable water supply: A global scale overview. Environ. Earth Sci. 2019, 78, 662. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.H.; Moosdorf, N.; Stevanovic, Z.; et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef] [Green Version]
- Charlier, J.B.; Ladouche, B.; Marechal, J.C. Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. J. Hydrol. 2015, 523, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Patekar, M.; Banicek, I.; Rubinic, J.; Reberski, J.L.; Boljat, I.; Selak, A.; Filipovic, M.; Terzic, J. Assessing climate change and land-use impacts on drinking water resources in karstic catchments (Southern Croatia). Sustainability 2021, 13, 5239. [Google Scholar] [CrossRef]
- Zirlewagen, J.; Licha, T.; Schiperski, F.; Nödler, K.; Scheytt, T. Use of two artificial sweeteners, cyclamate and acesulfame, to identify and quantify wastewater contributions in a karst spring. Sci. Total Environ. 2016, 547, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Dvory, N.Z.; Livshitz, Y.; Kuznetsov, M.; Adar, E.; Gasser, G.; Pankratov, I.; Lev, O.; Yakirevich, A. Caffeine vs. carbamazepine as indicators of wastewater pollution in a karst aquifer. Hydrol. Earth Syst. Sci. 2018, 22, 6371–6381. [Google Scholar] [CrossRef] [Green Version]
- Medici, G.; Bajak, P.; West, L.J.; Chapman, P.J.; Banwart, S.A. DOC and nitrate fluxes from farmland; impact on a dolostone aquifer KCZ. J. Hydrol. 2021, 595, 125658. [Google Scholar] [CrossRef]
- Yang, P.H.; Li, Y.; Groves, C.; Hong, A.H. Coupled hydrogeochemical evaluation of a vulnerable karst aquifer impacted by septic effluent in a protected natural area. Sci. Total Environ. 2019, 658, 1475–1484. [Google Scholar] [CrossRef]
- Gao, X.B.; Wang, W.Z.; Hou, B.J.; Gao, L.B.; Zhang, J.Y.; Zhang, S.T.; Li, C.C.; Jiang, C.F. Analysis of karst groundwater pollution in northern China. Carsologica Sin. 2020, 39, 287–298. (In Chinese) [Google Scholar]
- Liang, Y.P.; Gao, X.B.; Zhao, C.H.; Tang, C.L.; Shen, H.Y.; Wang, Z.H.; Wang, Y.X. Review: Characterization, evolution, and environmental issues of karst water systems in Northern China. Hydrogeol. J. 2018, 26, 1371–1385. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Jin, D.W.; Xu, F.; Zhao, C.H. Hydrochemical characteristics and evolution processes of karst groundwater in Carboniferous Taiyuan formation in the Pingdingshan coalfield. Environ. Earth Sci. 2020, 79, 151. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Gao, X. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China. Environ. Sci. Pollut. Res. 2016, 23, 6286–6299. [Google Scholar] [CrossRef]
- Acero, P.; Auqué, L.F.; Galve, J.P.; Gutiérrez, F.; Carbonel, D.; Gimeno, M.J.; Yechieli, Y.; Asta, M.P.; Gómez, J.B. Evaluation of geochemical and hydrogeological processes by geochemical modeling in an area affected by evaporite karstification. J. Hydrol. 2015, 529, 1874–1889. [Google Scholar] [CrossRef]
- Ma, R.; Wang, Y.X.; Sun, Z.Y.; Zheng, C.M.; Ma, T.; Prommer, H. Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl. Geochem. 2011, 26, 884–897. [Google Scholar] [CrossRef]
- Li, C.C.; Gao, X.B.; Wang, W.Z.; Zhang, X.; Zhang, X.B.; Jiang, C.F.; Wang, Y.X. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: A case study at Jinci, northern China. J. Hydrol. 2021, 596, 125691. [Google Scholar] [CrossRef]
- Ren, K.; Zeng, J.; Liang, J.P.; Yuan, D.X.; Jiao, Y.J.; Peng, C.; Pan, X.D. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes. Sci. Total Environ. 2021, 761, 143223. [Google Scholar] [CrossRef]
- Doveri, M.; Natali, S.; Franceschi, L.; Menichini, M.; Trifiro, S.; Giannecchini, R. Carbonate aquifers threatened by legacy mining: Hydrodynamics, hydrochemistry, and water isotopes integrated approach for spring water management. J. Hydrol. 2021, 593, 125850. [Google Scholar] [CrossRef]
- Jeannin, P.Y.; Hessenauer, M.; Malard, A.; Chapuis, V. Impact of global change on karst groundwater mineralization in the Jura mountains. Sci. Total Environ. 2016, 541, 1208–1221. [Google Scholar] [CrossRef]
- Yang, Y.Z.; He, S.Y.; Wu, P.; Wu, Q.X.; Han, Z.W.; Luo, W. Temporal response of subterranean karst stream hydrochemistry to urbanization. Environ. Sci. 2019, 40, 4532–4542. [Google Scholar]
- Zhu, X.Y.; Liu, J.L. Numerical study of contaminants transport in fracture-karst water in Dawu well field, Zibo City, Shandong province. Earth Sci. Front. 2001, 8, 171–178. (In Chinese) [Google Scholar]
- Guo, Y.L.; Zhai, Y.Z.; Wu, Q.; Teng, Y.G.; Jiang, G.H.; Wang, J.S.; Guo, F.; Tang, Q.J.; Liu, S.H. Proposed APLIE method for groundwater vulnerability assessment in karst-phreatic aquifer, Shandong province, China: A case study. Environ. Earth Sci. 2016, 75, 112. [Google Scholar] [CrossRef]
- Zhu, H.H.; Zhou, J.W.; Jia, C.; Yang, S.; Wu, J.; Yang, L.Z.; Wei, Z.R.; Liu, H.W.; Liu, Z.Z. Control effects of hydraulic interception wells on groundwater pollutant transport in the Dawu water source area. Water 2019, 11, 1663. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xu, H.; Zhu, H.H.; Zhang, G.L. Present pollution condition and countermeasure of karst groundwater in Dawu-Hutian water source area. Shandong Land Resour. 2013, 29, 53–56. (In Chinese) [Google Scholar]
- Wu, Q.; Guo, Y.L.; Zhai, Y.Z.; Yin, Z.H.; Zhao, H.L.; Zhang, J.J.; Li, C.S. Dynamic variation characteristics of NO3-N in groundwater of Dawu water source and influencing factors. J. China Hydrol. 2017, 37, 68–73. (In Chinese) [Google Scholar]
- Feng, J.G.; Ji, D.S.; Gao, Z.J.; Yang, L.Z.; Zhu, H.H.; Liu, Z.Z. Hydrochemical characteristics and water quality evaluation of Zibo Dawu water source, Shandong province. J. Yangtze River Sci. Res. Inst. 2020, 37, 18–23. (In Chinese) [Google Scholar]
- Bao, X.L.; Fei, Y.H.; Li, Y.S.; Cao, S.W. Determination of the key hydrodynamic parameters of the fault zone using colloidal borescope in the Dawu well field and strategies for contamination prevention and control. Hydrogeol. Eng. Geol. 2020, 47, 56–63. (In Chinese) [Google Scholar]
- Liu, Z.Z.; Zhu, H.H.; Cui, X.W.; Wang, W.; Luan, X.Y.; Chen, L.; Cui, Z.J.; Zhang, L. Groundwater quality evaluation of the Dawu water source area based on water quality index (WQI): Comparison between delphi method and multivariate statistical snalysis method. Water 2021, 13, 1127. [Google Scholar] [CrossRef]
- Zhu, H.H.; Dong, Y.A.; Xing, L.T.; Lan, X.X.; Yang, L.Z.; Liu, Z.Z.; Bian, N.F. Protection of the Liuzheng water source: A karst water system in Dawu, Zibo, China. Water 2019, 11, 698. [Google Scholar] [CrossRef] [Green Version]
- Güler, C.; Thyne, G.D.; Mccray, J.E.; Turner, A.K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma 2010, 159, 390–398. [Google Scholar] [CrossRef]
- Castro, R.P.; Avila, J.P.; Ye, M.; Sansores, A.C. Groundwater quality: Analysis of its temporal and spatial variability in a karst aquifer. Groundwater 2018, 56, 62–72. [Google Scholar] [CrossRef]
- Pan, G.F.; Li, X.Q.; Zhang, J.; Liu, Y.D.; Liang, H. Groundwater-flow-system characterization with hydrogeochemistry: A case in the lakes discharge area of the Ordos Plateau, China. Hydrogeol. J. 2019, 27, 669–683. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision Inspection and Quarantine of the people’s Republic of China (GAQSIQPRC). Standard for Groundwater Quality (GB/T 14848-2017); Standards Press of China: Beijing, China, 2017. [Google Scholar]
- Jiang, Y.J.; Wu, Y.X.; Yuan, D.X. Human impacts on karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong underground river System in Yunan, China. Environ. Sci. Technol. 2009, 43, 7676–7683. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumari, K.; Kumar Singh, U.; Ramanathan, A.L. Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach. Environ. Geol. 2009, 57, 873–884. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Zhou, J.; Liu, Z.; Yang, L.; Liu, Y. Hydrogeochemistry Evidence for Impacts of Chemical Acidic Wastewater on Karst Aquifer in Dawu Water Source Area, Northern China. Int. J. Environ. Res. Public Health 2021, 18, 8478. https://doi.org/10.3390/ijerph18168478
Zhu H, Zhou J, Liu Z, Yang L, Liu Y. Hydrogeochemistry Evidence for Impacts of Chemical Acidic Wastewater on Karst Aquifer in Dawu Water Source Area, Northern China. International Journal of Environmental Research and Public Health. 2021; 18(16):8478. https://doi.org/10.3390/ijerph18168478
Chicago/Turabian StyleZhu, Henghua, Jianwei Zhou, Zhizheng Liu, Lizhi Yang, and Yunde Liu. 2021. "Hydrogeochemistry Evidence for Impacts of Chemical Acidic Wastewater on Karst Aquifer in Dawu Water Source Area, Northern China" International Journal of Environmental Research and Public Health 18, no. 16: 8478. https://doi.org/10.3390/ijerph18168478
APA StyleZhu, H., Zhou, J., Liu, Z., Yang, L., & Liu, Y. (2021). Hydrogeochemistry Evidence for Impacts of Chemical Acidic Wastewater on Karst Aquifer in Dawu Water Source Area, Northern China. International Journal of Environmental Research and Public Health, 18(16), 8478. https://doi.org/10.3390/ijerph18168478