A New Green Model for the Bioremediation and Resource Utilization of Livestock Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Set-Up
2.2. Construction of the Integrated Floating Wetland System
2.3. Sampling and Determination Methods
2.4. Health Risk of Antibiotic Assessment
2.5. Data Analysis
3. Results
3.1. Purification Performance of the Substrate-Free Floating Constructed Wetland
3.2. Biomass and Nutrient Storage of Water Dropwort in the Constructed Wetland
3.3. Safety Assessment and Resource Utilization of Water Dropwort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Z.; Lee, M.R.F.; Ma, L.; Ledgard, S.; Oenema, O.; Velthof, G.L.; Ma, W.; Guo, M.; Zhao, Z.; Wei, S.; et al. Global environmental costs of China’s thirst for milk. Glob. Chang. Biol. 2018, 24, 2198–2211. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F. Review: Use of human-edible animal feeds by ruminant livestock. Animal 2018, 12, 1735–1743. [Google Scholar] [CrossRef]
- Hu, H.; Li, X.; Wu, S.; Yang, C. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives. Bioresour. Technol. 2020, 315, 123809. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ. Int. 2017, 107, 111–130. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia Stratiotes L.). Environ. Sci. Pollut. Res. 2010, 17, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Wahab, N.A. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. J. Water Process Eng. 2018, 22, 239–249. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Yan, P.; Gao, W.; Chen, Y.; Sui, P. Integrated analysis on economic and environmental consequences of livestock husbandry on different scale in China. J. Clean. Prod. 2016, 119, 1–12. [Google Scholar] [CrossRef]
- Luo, L.; He, H.; Yang, C.; Wen, S.; Zeng, G.; Wu, M.; Zhou, Z.; Lou, W. Nutrient removal and lipid production by Coelastrella Sp. in anaerobically and aerobically treated swine wastewater. Bioresour. Technol. 2016, 216, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Wang, L.; Ye, J.; Unc, A. Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnol. Adv. 2018, 36, 1238–1254. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, R.; Ahmad, A.; Iqbal, M. Phytoremediation of heavy metals: Physiological and molecular mechanisms. Bot. Rev. 2009, 75, 339–364. [Google Scholar] [CrossRef]
- Prabakaran, K.; Li, J.; Anandkumar, A.; Leng, Z.; Zou, C.B.; Du, D. Managing environmental contamination through phytoremediation by invasive plants: A review. Ecol. Eng. 2019, 138, 28–37. [Google Scholar] [CrossRef]
- Doren, R.F.; Volin, J.C.; Richards, J.H. Invasive exotic plant indicators for ecosystem restoration: An example from the everglades restoration program. Ecol. Indic. 2009, 9 (Suppl. 6), S29–S36. [Google Scholar] [CrossRef]
- Xu, J.; Shen, G. Growing Duckweed in swine wastewater for nutrient recovery and biomass production. Bioresour. Technol. 2011, 102, 848–853. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Ow, D.W. Promises and prospects of phytoremediation. Plant Physiol. 1996, 110, 715–719. [Google Scholar] [CrossRef]
- Chen, J.; Nie, Q.; Zhang, Y.; Hu, J.; Qing, L. Eco-physiological characteristics of Pistia stratiotes and its removal of pollutants from livestock wastewater. Water Sci. Technol. 2014, 69, 2510–2518. [Google Scholar] [CrossRef] [PubMed]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhou, Q.; Li, X.; Lou, W.; Du, C.; Teng, Q.; Zhang, D.; Liu, H.; Zhong, Y.; Yang, C. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresour. Technol. 2019, 291, 121853. [Google Scholar] [CrossRef]
- Xian, Q.; Hu, L.; Chen, H.; Chang, Z.; Zou, H. Removal of nutrients and veterinary antibiotics from swine wastewater by a constructed macrophyte floating bed system. J. Environ. Manag. 2010, 91, 2657–2661. [Google Scholar] [CrossRef]
- Feng, K.; Xu, Z.-S.; Que, F.; Liu, J.-X.; Wang, F.; Xiong, A.-S. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. Planta 2018, 247, 301–315. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, F.; Tan, H.-W.; Li, M.-Y.; Xu, Z.-S.; Tan, G.-F.; Xiong, A.-S. De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica. Mol. Genet. Genom. 2015, 290, 671–683. [Google Scholar] [CrossRef]
- Lu, C.; Li, X. A review of Oenanthe Javanica (Blume) DC. as traditional medicinal plant and its therapeutic potential. Evid. Based Complement. Alternat. Med. 2019, 2019, 6495819. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Wang, P.; Liu, Y.; Zhao, D.; Leng, X.; An, S. Effects of Oenanthe javanica on nitrogen removal in free-water surface constructed wetlands under low-temperature conditions. Int. J. Environ. Res. Public Health 2019, 16, 1420. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wang, G. Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system. J. Environ. Sci. 2010, 22, 1710–1717. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, T.; Liu, R.; Luo, L. Performance of five plant species in removal of nitrogen and phosphorus from an experimental phytoremediation system in the Ningxia irrigation area. Environ. Monit. Assess. 2017, 189, 497. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Fu, Z.; Yin, Z. Performance of a water hyacinth (Eichhornia crassipes) system in the treatment of wastewater from a duck farm and the effects of using water hyacinth as duck feed. J. Environ. Sci. 2008, 20, 513–519. [Google Scholar] [CrossRef]
- Duan, M.; Zhang, Y.; Zhou, B.; Qin, Z.; Wu, J.; Wang, Q.; Yin, Y. Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure–straw composting. Bioresour. Technol. 2020, 303, 122868. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.K.; Daugherty, K.E. Some physical characteristics and heavy metal analyses of cotton gin waste for potential use as an alternative fuel. Korean J. Chem. Eng. 2004, 21, 640–646. [Google Scholar] [CrossRef] [Green Version]
- Malá, J.; Lagová, M. Comparison of digestion methods for determination of total phosphorus in river sediments. Chem. Pap. 2014, 68, 1015–1021. [Google Scholar] [CrossRef]
- Li, J.; Xie, Z.M.; Xu, J.M.; Sun, Y.F. Risk assessment for safety of soils and vegetables around a lead/zinc mine. Environ. Geochem. Health 2006, 28, 37–44. [Google Scholar] [CrossRef]
- Pan, M.; Wong, C.K.C.; Chu, L.M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the pearl river delta, southern China. J. Agric. Food Chem. 2014, 62, 11062–11069. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Lin, C.-J.; Bi, X.; Liu, J.; Feng, X.; Zhang, H.; Chen, J.; Wu, T. Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicol. Environ. Saf. 2018, 161, 99–110. [Google Scholar] [CrossRef]
- Xu, C.; Wen, X.; Song, W.; Zhang, Y.; Liu, H.; Wang, Y.; Qin, H.; Zhang, Z. Growth responses of Eichhornia crassipes to changes of water quality in ecological treatment engineering. Ecol. Environ. Sci. 2018, 27, 1741–1749. [Google Scholar] [CrossRef]
- Tan, J.; Xu, B.; Zou, F.; Jin, S.; Xu, J. Growth characteristics and nitrogen and phosphorus enrichment ability of Eichhornia Crassipes in Wenshanhe village pond water body. J. Green Sci. Technol. 2018, 20, 103–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Wang, Y.; Liu, H.; Wang, Z.; Yan, S.; Han, Y.; Yang, L. Research on the growth characteristics and accumulation ability to N and P of Eichhornia crassipes in different water areas of Dianchi Lake. J. Ecol. Rural Environ. 2011, 27, 73–77. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=NCST201106015&DbName=CJFQ2011 (accessed on 14 August 2021).
- Xia, C.; Yu, D.; Wang, Z.; Xie, D. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China. Ecol. Eng. 2014, 70, 406–413. [Google Scholar] [CrossRef]
- Cang, L.; Wang, Y.; Zhou, D.; Dong, Y. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. J. Environ. Sci. 2004, 16, 371–374. Available online: https://www.ncbi.nlm.nih.gov/pubmed/15272705 (accessed on 14 August 2021).
- Nicholson, F.A.; Chambers, B.J.; Williams, J.R.; Unwin, R.J. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol. 1999, 70, 23–31. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Yang, M.; Li, W. Content of heavy metals in animal feeds and manures from farms of different scales in Northeast China. Int. J. Environ. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Schoenmakers, K. How China is getting its farmers to kick their antibiotics habit. Nature 2020, 586, S60–S62. [Google Scholar] [CrossRef]
- FAO; WHO. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods CX/MRL 2-2018. 2018. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXM%2B2%252FMRL2e.pdf (accessed on 14 August 2021).
- Yang, Y.; Wang, G.; Pan, X. China Food Composition 2002; Peking University Medical Press: Beijing, China, 2002. [Google Scholar]
- Wang, S.; Lay, S.; Yu, H.; Shen, S. Dietary guidelines for chinese residents (2016): Comments and comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, S.; Wang, Y.; Li, Y.; Xiao, R.; Li, H.; He, Y.; Zhang, M.; Wang, D.; Li, X.; et al. Nitrogen removal and mass balance in newly-formed Myriophyllum aquaticum mesocosm during a single 28-day incubation with swine wastewater treatment. J. Environ. Manag. 2016, 166, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Sudiarto, S.I.A.; Renggaman, A.; Choi, H.L. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics. J. Environ. Manag. 2019, 231, 763–769. [Google Scholar] [CrossRef]
- Zhou, Q.; Lin, Y.; Li, X.; Yang, C.; Han, Z.; Zeng, G.; Lu, L.; He, S. Effect of zinc ions on nutrient removal and growth of Lemna aequinoctialis from anaerobically digested swine wastewater. Bioresour. Technol. 2018, 249, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Lolis, L.A.; Alves, D.C.; Fan, S.; Lv, T.; Yang, L.; Li, Y.; Liu, C.; Yu, D.; Thomaz, S.M. Negative correlations between native macrophyte diversity and water hyacinth abundance are stronger in its introduced than in its native range. Divers. Distrib. 2020, 26, 242–253. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Bowler, P.; Xiong, W. Invasive aquatic plants in China. Aquat. Invasions 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Zheng, Z.C.; Li, T.X.; Zeng, F.F.; Zhang, X.Z.; Yu, H.Y.; Wang, Y.D.; Liu, T. Accumulation characteristics of and removal of nitrogen and phosphorus from livestock wastewater by Polygonum hydropiper. Agric. Water Manag. 2013, 117, 19–25. [Google Scholar] [CrossRef]
- Akansha, J.; Nidheesh, P.V.; Gopinath, A.; Anupama, K.V.; Suresh Kumar, M. Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere 2020, 253, 126652. [Google Scholar] [CrossRef]
- Chang, J.; Wu, S.; Dai, Y.; Liang, W.; Wu, Z. Nitrogen removal from nitrate-laden wastewater by integrated vertical-flow constructed wetland systems. Ecol. Eng. 2013, 58, 192–201. [Google Scholar] [CrossRef]
- Mayo, A.W.; Hanai, E.E.; Kibazohi, O. Nitrification–denitrification in a coupled high rate—Water hyacinth ponds. Phys. Chem. Earth Parts A B C 2014, 72–75, 88–95. [Google Scholar] [CrossRef]
- Sasse, J.; Martinoia, E.; Northen, T. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Ji, Y.; Li, C.; Luo, P.; Wang, W.; Zhang, Y.; Nover, D. Effects of phytoremediation treatment on bacterial community structure and diversity in different petroleum-contaminated soils. Int. J. Environ. Res. Public Health 2018, 15, 2168. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Komada, M.; Ookuma, A.; Itahashi, S.; Banzai, K. Purification performance of a shallow free-water-surface constructed wetland receiving secondary effluent for about 5 years. Ecol. Eng. 2014, 69, 126–133. [Google Scholar] [CrossRef]
- Duan, J.; Feng, Y.; Yu, Y.; He, S.; Xue, L.; Yang, L. Differences in the treatment efficiency of a cold-resistant floating bed plant receiving two types of low-pollution wastewater. Environ. Monit. Assess. 2016, 188, 283. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, A.C.; Evans, J.M. Aquatic plants: An opportunity feedstock in the age of bioenergy. Biofuels 2010, 1, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Cui, W.; Cheng, J.J.; Stomp, A.-M. Production of high-starch duckweed and its conversion to bioethanol. Biosyst. Eng. 2011, 110, 67–72. [Google Scholar] [CrossRef]
- Cui, W.; Cheng, J.J. Growing duckweed for biofuel production: A review. Plant Biol. 2015, 17, 16–23. [Google Scholar] [CrossRef]
- Abubackar, H.N.; Keskin, T.; Arslan, K.; Vural, C.; Aksu, D.; Yavuzyılmaz, D.K.; Ozdemir, G.; Azbar, N. Effects of size and autoclavation of fruit and vegetable wastes on biohydrogen production by dark dry anaerobic fermentation under mesophilic condition. Int. J. Hydrogen Energy 2019, 44, 17767–17780. [Google Scholar] [CrossRef]
- Dismukes, G.C.; Carrieri, D.; Bennette, N.; Ananyev, G.M.; Posewitz, M.C. Aquatic phototrophs: Efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 2008, 19, 235–240. [Google Scholar] [CrossRef] [PubMed]
Organ | C Content (g·kg−1) | N Content (g·kg−1) | P Content (g·kg−1) | |||
---|---|---|---|---|---|---|
Day 0 | Day 40 | Day 0 | Day 40 | Day 0 | Day 40 | |
Root | 649.35 ± 30.02 | 425.79 ± 6.82 * | 35.41 ± 0.75 | 45.19 ± 0.31 * | 3.44 ± 0.33 | 8.73 ± 0.14 * |
Stem | 611.38 ± 31.24 | 392.11 ± 29.07 * | 32.95 ± 0.35 | 35.87 ± 0.41 * | 5.71 ± 1.53 | 10.01 ± 0.25 * |
Leaf | 622.01 ± 30.16 | 519.75 ± 27.79 * | 48.68 ± 0.21 | 53.76 ± 0.20 * | 7.64 ± 0.06 | 9.30 ± 0.08 * |
Species | Accumulated Biomass (kg·m−2) | N Accumulation (g·m−2) | P Accumulation (g·m−2) | Reference | |
---|---|---|---|---|---|
Aboveground Part | Underground Part | ||||
Water dropwort | 16.05 | 13.55 | 98.18 | 19.84 | This study |
Water hyacinth | 7.08~46.95 | 5.79~38.42 | 11.04~144.90 | 0.93~36.10 | [33,34,35] |
Heavy Metals | Root (mg∙kg−1) | Stem (mg∙kg−1) | Leaf (mg∙kg−1) | Standard Limit (mg∙kg−1) | Standard Origin |
---|---|---|---|---|---|
Cu | 0.749 ± 0.026 a 1 | 0.032 ± 0.006 c | 0.404 ± 0.017 b | 10.0 | GB15199-94 |
Cd | 0.016 ± 0.001 a | not detected | 0.006 ± 0.000 b | 0.05 | GB15201-94 |
Pb | 0.611 ± 0.001 a | 0.054 ± 0.003 b | 0.065 ± 0.010 b | 0.2 | GB14935-94 |
Cr | 5.830 ± 0.031 a | 0.102 ± 0.002 c | 2.798 ± 0.001 b | 0.5 | GB14961-94 |
As | 0.809 ± 0.025 a | 0.015 ± 0.001 c | 0.057 ± 0.001 b | 0.5 | GB4810-94 |
Antibiotics | Aboveground Part (μg∙kg−1) | Underground Part (μg∙kg−1) | FAO Acceptable Daily Intake (μg) [42] | Human Exposure (μg) |
---|---|---|---|---|
Sulfathiazole | not detected | not detected | ||
Sulfadimidine | 0.1267 ± 0.0088 | 0.0433 ± 0.0033 | 2795 | 0.4928 |
Sulfamethazine | not detected | not detected | ||
Ampicillin | not detected | not detected | ||
Cefalexin | not detected | not detected | ||
Amoxicillin | not detected | not detected | ||
Cefotaxime | not detected | not detected | ||
Penicillin G | not detected | not detected | ||
Oxytetracycline | 0.4067 ± 0.0260 | 1.0267 ± 0.0727 | 1677 | 0.1582 |
Doxycycline | 1.1933 ± 0.0784 | 3.1133 ± 0.1157 | 1677 | 0.4642 |
Tetracycline | 0.9767 ± 0.0869 | 3.2367 ± 0.1299 | 1677 | 0.3799 |
Aureomycin/Chlortetracycline | 1.1833 ± 0.0669 | 1.2767 ± 0.0606 | 1677 | 0.4603 |
Tilmicosin | not detected | not detected | ||
Tylosin | not detected | not detected | ||
Erythromycin | not detected | not detected | ||
Azithromycin | not detected | not detected |
Nutrition | Root | Stem | Leaf |
---|---|---|---|
Soluble total sugar (mg∙g−1) | 4.02 ± 0.06 c 1 | 13.61 ± 0.14 a | 5.35 ± 0.01 b |
Crude protein (mg∙g−1) | 178.40 ± 1.81 b | 159.21 ± 2.17 c | 331.46 ± 0.06 a |
Crude fat (%) | 0.96 ± 0.07 c | 1.53 ± 0.09 b | 3.38 ± 0.10 a |
VC (mg∙100 g−1) | 1.30 ± 0.02 b | 3.90 ± 0.10 a | 0.95 ± 0.05 c |
Crystalline cellulose (μg∙mg−1) | 168.15 ± 4.79 b | 294.37 ± 1.81 a | 112.74 ± 3.26 c |
Total lignin (μg∙mg−1) | 150.56 ± 5.31 a | 92.95 ± 2.49 b | 140.63 ± 1.58 a |
β-VE (μg∙g−1) | 0.0133 ± 0.00155 a | 0.0094 ± 0.00081 b | 0.0087 ± 0.00001 b |
γ-VE (μg∙g−1) | 0.1453 ± 0.00551 b | 0.026 ± 0.00074 c | 1.0693 ± 0.00127 a |
α-VE (μg∙g−1) | 0.6158 ± 0.00692 b | 0.2185 ± 0.00488 c | 2.2106 ± 0.00377 a |
Carotenoids (mg∙100 g−1) | 0.99 ± 0.02 c | 1.94 ± 0.00 b | 15.69 ± 0.09 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Zhao, H.; Liu, J.; Li, B.; Chang, Y.; Yao, D. A New Green Model for the Bioremediation and Resource Utilization of Livestock Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 8634. https://doi.org/10.3390/ijerph18168634
Sun L, Zhao H, Liu J, Li B, Chang Y, Yao D. A New Green Model for the Bioremediation and Resource Utilization of Livestock Wastewater. International Journal of Environmental Research and Public Health. 2021; 18(16):8634. https://doi.org/10.3390/ijerph18168634
Chicago/Turabian StyleSun, Linhe, Huijun Zhao, Jixiang Liu, Bei Li, Yajun Chang, and Dongrui Yao. 2021. "A New Green Model for the Bioremediation and Resource Utilization of Livestock Wastewater" International Journal of Environmental Research and Public Health 18, no. 16: 8634. https://doi.org/10.3390/ijerph18168634
APA StyleSun, L., Zhao, H., Liu, J., Li, B., Chang, Y., & Yao, D. (2021). A New Green Model for the Bioremediation and Resource Utilization of Livestock Wastewater. International Journal of Environmental Research and Public Health, 18(16), 8634. https://doi.org/10.3390/ijerph18168634