Design of a Microbial Remediation Inoculation Program for Petroleum Hydrocarbon Contaminated Sites Based on Degradation Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Degradation Enzymes of Petroleum Hydrocarbon Degradation Bacteria
2.2. Ability to Characterize Microbial Remediation of Petroleum Hydrocarbon Contaminated Sites Using the Molecular Dynamics Method
2.3. Design of Inoculation Program for Petroleum Hydrocarbon Degradation Bacteria: Use of Java
2.4. Optimization of the Microbial Remediation Inoculation Screening Method in Petroleum Hydrocarbon Contaminated Sites—Copeland Method
2.5. Verification of the Effect of the Best Inoculation Program for Petroleum Hydrocarbon Degradation Bacteria—The Molecular Dynamics Method
3. Results and Discussion
3.1. Identification of the Main Degradation Pathways for Microbial Degradation of Petroleum Hydrocarbon Pollutants
3.2. Calculation of Binding Energy of the Degraded Protein of Petroleum Hydrocarbon Degradation Bacteria and Petroleum Hydrocarbon Pollutants
3.3. Design of Inoculation Program for Petroleum Hydrocarbon Degradation Bacteria Based on the Java Language: A Permutation and Combination Program
3.4. Determination of the Optimal Inoculation Program of Petroleum Hydrocarbon Degradation Bacteria Based on the Copeland Method
3.5. Verification of the Degradation Effect of the Optimal Inoculation Program of Petroleum Hydrocarbon Degradation Bacteria Based on the Molecular Docking Method
3.6. Prospect of the Optimal Inoculation Program of Petroleum Hydrocarbon Degradation Bacteria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, T.; Liu, Y.; Zhong, S.; Zhang, L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere 2019, 246, 125726. [Google Scholar] [CrossRef]
- Falkova, M.; Vakh, C.; Shishov, A.; Zubakina, E.; Moskvin, A.; Moskvin, L.; Bulatov, A. Automated IR determination of petroleum products in water based on sequential injection analysis. Talanta 2016, 148, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Truskewycz, A.; Gundry, T.D.; Khudur, L.S.; Kolobaric, A.; Taha, M.; Aburto-Medina, A.; Ball, A.S.; Shahsavari, E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems—Fate and Microbial Responses. Molecules 2019, 24, 3400. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Yan, X.; Li, G.; Ying, Z.; Huang, T.; Zhong, H. Isolation, characterization of Rhodococcus sp. P14 capable of degradation high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar. Pollut. Bull. 2011, 62, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Gidudu, B.; Chirwa, E.M. Biosurfactants as demulsification enhancers in bio-electrokinetic remediation of petroleum contaminated soil. Process Saf. Environ. Prot. 2020, 143, 334–339. [Google Scholar] [CrossRef]
- Obire, O.; Nwaubeta, O.; Oofojekwu, P.C.; Ezenwaka, I.S.; Alegbeleye, W.O. Effects of Refined Petroleum Hydrocarbon on Soil Physicochemical and Bacteriological Characteristics. J. Appl. Sci. Environ. Manag. 2002, 6, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Wang, J.J.; Gaston, L.A.; Li, J.; Dodla, J.K. Remediation of crude oil-contaminated coastal marsh soil: Integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. J. Hazard. Mater. 2020, 396, 122595. [Google Scholar] [CrossRef] [PubMed]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Alvarez, P.; Vogel, T.M. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol. 1991, 57, 2981–2985. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.H.; Chen, K.F.; Kao, C.M.; Liang, S.H.; Chen, T.Y. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants. J. Hazard. Mater. 2011, 186, 2097–2102. [Google Scholar] [CrossRef]
- Hentati, O.; Lachhab, R.; Ayadi, M.; Ksibi, M. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environ. Monit. Assess. 2013, 185, 2989–2998. [Google Scholar] [CrossRef] [PubMed]
- Sammarco, P.W.; Kolian, S.R.; Warby, R.A.F.; Bouldin, J.L.; Subra, W.A.; Porter, S.A. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. Arch. Toxicol. 2016, 90, 829–837. [Google Scholar] [CrossRef]
- Azeez, O.M.; Anigbogu, C.N.; Akhigbe, R.E.; Saka, W.A. Cardiotoxicity induced by inhalation of petroleum products. J. Afr. Assoc. Physiol. Sci. 2015, 3, 14–17. [Google Scholar]
- Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 2017, 3. [Google Scholar] [CrossRef]
- Hunt, L.J.; Duca, D.; Dan, T.; Knopper, L.D. Petroleum hydrocarbon (PHC) uptake in plants: A literature review. Environ. Pollut. 2019, 245, 472–484. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Raju, M.N.; Mallavarapu, M.; Kadiyala, V. Total Petroleum Hydrocarbon—Environmental Fate, Toxicity and Remediation, 1st ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 217–218. [Google Scholar]
- Sam, K.; Coulon, F.; Prpich, G. Management of petroleum hydrocarbon contaminated sites in Nigeria: Current challenges and future direction. Land Use Policy 2017, 64, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Vidonish, J.E.; Zygourakis, K.; Masiello, C.A.; Sabadell, G.; Alvarez, P.J.J. Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation. Engineering 2016, 2, 426–437. [Google Scholar] [CrossRef]
- Chang, K.S.; Lo, W.H.; Lin, W.M.; Wen, J.X.; Yang, S.C.; Huang, C.J.; Hsieh, H.Y. Microwave-Assisted Thermal Remediation of Diesel Contaminated Soil. Eng. J. 2016, 20, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Akbari, A.; Ghoshal, S. Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds. Environ. Sci. Technol. 2015, 49, 14368–14375. [Google Scholar] [CrossRef] [PubMed]
- Zubaidy, E.; Abouelnasr, D.M. Fuel recovery from waste oily sludge using solvent extraction. Process Saf. Environ. Prot. 2010, 88, 318–326. [Google Scholar] [CrossRef]
- Abdulbari, H.A.; Abdurahman, N.H.; Rosli, Y.M.; Mahmood, W.K.; Azhari, H.N. Demulsification of petroleum emulsions Using microwave separation method. Exp. Hematol. 2011, 6, 5376–5382. [Google Scholar]
- Pilli, S.; Bhunia, P.; Yan, S.; Leblanc, R.J.; Tyagi, R.D.; Surampalli, R.Y. Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 2011, 18, 1–18. [Google Scholar] [CrossRef]
- April, T.M.; Foght, J.M.; Currah, R.S. Hydrocarbon-degradation filamentous fungi isolated from flare pit soils in northern and western Canada. Can. J. Microbiol. 1999, 46, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Lal, B.; Khanna, S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J. Appl. Microbiol. 2010, 81, 355–362. [Google Scholar] [CrossRef]
- Leahy, J.G.; Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 1990, 54, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Chandran, P. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castiglione, M.R.; Giorgetti, L.; Becarelli, S.; Siracusa, G.; Gregorio, S.D. Polycyclic aromatic hydrocarbon-contaminated soils: Bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L. Environ. Sci. Pollut. Res. Int. 2016, 23, 7930–7941. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, M. Bioremediation of crude oil-contaminated soil: Comparison of different biostimulation and bioaugmentation treatments. J. Hazard. Mater. 2010, 183, 395–401. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, S.N. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes. Bioresour. Technol. 2012, 111, 148–154. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Hou, Z.W.; Yang, C.Y.; Ma, C.Q.; Tao, F.; Xu, P. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour. Technol. 2011, 102, 4111–4116. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, W.; Chen, G.; Gao, Y.; Wang, J. Preparation of petroleum-degrading bacterial agent and its application in remediation of contaminated soil in Shengli Oil Field, China. Environ. Sci. Pollut. Res. 2014, 21, 7929–7937. [Google Scholar] [CrossRef]
- Ro, S.Y.; Ross, M.O.; Yue, W.D.; Batelu, S.; Rosenzweig, A.C. From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity. J. Biol. Chem. 2018, 293, 10457–10465. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.N.; Ali, S.T.; Allen, M.J.; Grogan, G. Exploring nicotinamide cofactor promiscuity in NAD(P)H-dependent flavin containing monooxygenases (FMOs) using natural variation within the phosphate binding loop. Structure and activity of FMOs from Cellvibrio sp. BR and Pseudomonas stutzeri NF13. J. Mol. Catal. B Enzym. 2014, 109, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lončar, N.; Fiorentini, F.; Bailleul, G.; Savino, S.; Romero, E.; Mattevi, A.; Fraaije, M.W. Characterization of a thermostable flavin-containing monooxygenase from Nitrincola lacisaponensis (NiFMO). Appl. Microbiol. Biotechnol. 2019, 103, 1755–1764. [Google Scholar] [CrossRef]
- Joyce, M.G.; Girvan, H.M.; Munro, A.W.; Leys, D. A Single Mutation in Cytochrome P450 BM3 Induces the Conformational Rearrangement Seen upon Substrate Binding in the Wild-type Enzyme. J. Biol. Chem. 2004, 279, 23287–23293. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.H.; Fushinobu, S.; Ikeda, H.; Wakagi, T.; Shoun, H. Crystal Structures of Cytochrome P450 105P1 from Streptomyces avermitilis: Conformational Flexibility and Histidine Ligation State. J. Bacteriol. 2009, 191, 1211–1219. [Google Scholar] [CrossRef] [Green Version]
- Whittington, D.A.; Rosenzweig, A.C.; Frederick, C.A.; Lippard, S.J. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. Biochemistry 2001, 40, 3476–3482. [Google Scholar] [CrossRef] [PubMed]
- Elango, N.A.; Radhakrishnan, R.; Froland, W.A.; Wallar, B.J.; Earhart, C.A.; Lipscomb, J.D.; Ohlendorf, D.H. Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci. 1997, 6, 556–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, X.; Yang, W.; Feng, X.; Wang, W.; Feng, L.; Bartlam, M.; Wang, L.; Rao, Z. Crystal Structure of Long-Chain Alkane Monooxygenase (LadA) in Complex with Coenzyme FMN: Unveiling the Long-Chain Alkane Hydroxylase. J. Mol. Biol. 2008, 376, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; An, S.; Park, Y.R.; Jang, H.; Cho, U.S. MMOD-induced structural changes of hydroxylase in soluble methane monooxygenase. Sci. Adv. 2019, 5, eaax0059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.C.; Banerjee, R.; Shi, K.; Aihara, H.; Lipscomb, J.D. Structural Studies of the Methylosinus trichosporium OB3b Soluble Methane Monooxygenase Hydroxylase and Regulatory Component Complex Reveal a Transient Substrate Tunnel. Biochemistry 2020, 59, 2946–2961. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Kim, Y.G.; Ahn, J.W.; Chang, J.H. Structural Basis for Broad Substrate Selectivity of Alcohol Dehydrogenase YjgB from Escherichia coli. Molecules 2020, 25, 2404. [Google Scholar] [CrossRef] [PubMed]
- Valencia, E.; Larroy, C.; Ochoa, W.F.; Parés, X.; Fita, I.; Biosca, J.A. Apo and Holo structures of an NADPH-dependent cinnamyl alcohol dehydrogenase from Saccharomyces cerevisiae. J. Mol. Biol. 2004, 341, 1049–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, X.; Zhang, Z.; Zhang, X.; Li, H.Y.; Sun, H.Z.; Mao, Z.W.; Xia, W. Structural Insight into the Substrate Gating Mechanism by Staphylococcus aureus Aldehyde Dehydrogenase. CCS Chem. 2020, 2, 946–954. [Google Scholar] [CrossRef]
- Díaz-Sánchez, Á.G.; González-Segura, L.; Mújica-Jiménez, C.; Rudiño-Piñera, E.; Montiel, C.; Martínez-Castilla, L.P.; Muñoz-Clares, R.A. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine. Plant Physiol. 2012, 158, 1570–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovaleva, E.G.; Lipscomb, J.D. Crystal Structures of Fe2+ Dioxygenase Superoxo, Alkylperoxo and Bound Product Intermediates. Science 2007, 316, 453–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetting, M.W.; Ohlendorf, D.H. The 1.8 crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure 2000, 8, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Earhart, C.A.; Vetting, M.W.; Gosu, R.; Michaud-Soret, I.; Que, L.; Ohlendorf, D.H. Structure of catechol 1,2-dioxygenase from Pseudomonas arvilla. Biochem. Biophys. Res. Commun. 2005, 338, 198–205. [Google Scholar] [CrossRef]
- Cho, J.H.; Jung, D.K.; Lee, K.; Rhee, S. Crystal Structure and Functional Analysis of the Extradiol Dioxygenase LapB from a Long-chain Alkylphenol Degradation Pathway in Pseudomonas. J. Biol. Chem. 2009, 284, 34321–34330. [Google Scholar] [CrossRef] [Green Version]
- Micalella, C.; Martignon, S.; Bruno, S.; Pioselli, B.; Caglio, R.; Valetti, F.; Pessione, E.; Giunta, C.; Rizzi, R.M. X-ray crystallography, mass spectrometry and single crystal microspectrophotometry: A multidisciplinary characterization of catechol 1,2 dioxygenase. BBA Proteins Proteom. 2011, 1814, 817–823. [Google Scholar] [CrossRef]
- Reetz, M.T.; Bocola, M.; Wang, L.W.; Sanchis, J.; Cronin, A.; Arand, M.; Zou, J.; Archelas, A.; Bottalla, A.-L.; Naworyta, A.; et al. Directed Evolution of an Enantioselective Epoxide Hydrolase: Uncovering the Source of Enantioselectivity at Each Evolutionary Stage. J. Am. Chem. Soc. 2009, 131, 7334–7343. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Lonsdale, R.; Kong, X.D.; Xu, J.H.; Zhou, J.; Reetz, M.T. Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angew. Chem. 2015, 54, 12410–12415. [Google Scholar] [CrossRef]
- Kong, X.D.; Yuan, S.; Li, L.; Chen, S.; Xu, J.H.; Zhou, J.H. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. Proc. Natl. Acad. Sci. USA 2014, 111, 15717–15722. [Google Scholar] [CrossRef] [Green Version]
- Weinert, T.; Huwiler, S.G.; Kung, J.W.; Weidenweber, S.; Hellwig, P.; Stark, H.J.; Biskup, T.; Weber, S.; Cotelesage, J.J.; George, G.N.; et al. Structural basis of enzymatic benzene ring reduction. Nat. Chem. Biol. 2015, 11, 586–591. [Google Scholar] [CrossRef]
- Saari, D.G.; Merlin, V.R. The Copeland method. Econ. Theory 1996, 8, 51–76. [Google Scholar] [CrossRef]
- Caillaux, M.A.; Sant’Anna, A.P.; Meza, L.A.; Mello, J.C. Container logistics in Mercosur: Choice of a transshipment port using the ordinal Copeland method, data envelopment analysis and probabilistic composition. Marit. Econ. Logist. 2011, 13, 355–370. [Google Scholar] [CrossRef]
- Li, C.D.; Jin, Q.; Huang, Y.; Liu, J.N.; Chen, G.S. Application of copeland scoring and ranking method in the ecological hazard evaluation of chemical substances. Res. Environ. Sci. 2011, 24, 1161–1165. [Google Scholar]
- Ashraf, W.; Mihdhir, A.; Colin Murrell, J. Bacterial oxidation of propane. FEMS Microbiol. Lett. 1994, 122, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mckenna, E.J.; Coon, M.J. Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans. J. Biol. Chem. 1970, 245, 3882–3889. [Google Scholar] [CrossRef]
- Yi, T.; Lee, E.H.; Yun, G.A.; Hwang, G.S.; Cho, K.S. Novel biodegradation pathways of cyclohexane by Rhodococcus sp. EC1. J. Hazard. Mater. 2011, 191, 393–396. [Google Scholar] [CrossRef]
- Seo, J.S.; Keum, Y.S.; Hu, Y.; Lee, S.E.; Li, Q.X. Phenanthrene degradation in Arthrobacter sp. P1-1: Initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 2006, 65, 2388–2394. [Google Scholar] [CrossRef] [PubMed]
- Beilen, J.B.V.; Li, Z.; Duetz, W.A.; Smits, T.H.M.; Witholt, B. Diversity of Alkane Hydroxylase Systems in the Environment. Oil Gas Sci. Technol. 2003, 58, 427–440. [Google Scholar] [CrossRef]
- Le, N.C.; Mikolasch, A.; Klenk, H.P.; Schauer, F. Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and Mycobacterium neoaurum. Int. Biodeterior. Biodegrad. 2009, 63, 201–207. [Google Scholar]
- Zhao, Q. Construction of an Enhanced Degradation System for Hydrophobic Petroleum Hydrocarbon Degradation Bacteria and Its Degradation Capacity. Master’s Thesis, Wuhan University, Wuhan, China, 2005. [Google Scholar]
- Táncsics, A.; Szabó, I.; Baka, E.; Szoboszlay, S.; Kukolya, J.; Kriszt, B.; Márialigeti, K. Investigation of catechol 2,3-dioxygenase and 16S rRNA gene diversity in hypoxic, petroleum hydrocarbon contaminated groundwater. Syst. Appl. Microbiol. 2010, 33, 398–406. [Google Scholar] [CrossRef]
- Li, M.H.; Wang, X.L.; Chu, Z.H.; Li, Y. Multiple-Site Molecular Modification of Dioxin-Like PCBs to Eliminate Bioconcentration. Pol. J. Environ. Stud. 2021, 30, 1655–1675. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, X.; Jiang, L.; Li, Y. Prediction of octanol-air partition coefficients for polychlorinated biphenyls (PCBs) using 3D-QSAR models. Ecotoxicol. Environ. Saf. 2016, 124, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.R.; Wang, J.A.; Han, Z.J. Bioremediation Mode of Saline Soil Contaminated by Petroleum. J. Anhui Agric. Sci. 2015, 43, 278–283. [Google Scholar]
- Wu, M.; Ye, X.; Chen, K.; Li, W.; Yuan, J.; Jiang, X. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environ. Pollut. 2017, 223, 657–664. [Google Scholar] [CrossRef]
Petroleum Hydrocarbon Pollutants | logBCF [63] | logKOA [64] | Degradation Products | logBCF [63] | logKOA [64] |
---|---|---|---|---|---|
n-Tetradecane | 3.430 | 4.625 | Adipic acid | 0.500 | 9.795 |
Norphytane | 2.362 | 5.937 | 2-Methyl-1, 3-propanediol | 0.500 | 8.825 |
Cyclopentane | 1.646 | 2.207 | 3-Hydroxypropionic acid | 0.500 | 8.074 |
Benzene | 1.072 | 2.780 | Succinic acid | 0.500 | 10.246 |
Degradation Enzyme | n-Tetradecane | Norphytane | Cyclopentane |
---|---|---|---|
6CXH | −91.013 | −124.464 | −28.367 |
4USQ | −69.372 | −100.321 | −25.052 |
6HNS | −86.015 | −90.152 | −30.944 |
3E5K | −108.902 | −131.824 | −28.575 |
1SMJ | −66.647 | −75.650 | −44.472 |
Degradation Enzyme | Tridecane-1-ol | 2,6,10,14- Tetramethylpentadecan-1-ol | Cyclopentanol |
---|---|---|---|
1FZI | −110.404 | −106.555 | −28.650 |
1MHZ | −109.605 | −146.983 | −28.647 |
3B9N | −51.817 | −112.476 | −16.685 |
6D7K | −88.037 | −58.433 | −49.200 |
6VK6 | −103.004 | −132.869 | −31.266 |
Degradation Enzyme | Dodecan-1-ol | 2,6,10-Trimethylpentadecane-1,14-diol | Cyclopentanone |
---|---|---|---|
3E5K | −69.416 | −154.453 | −26.549 |
7BU3 | −75.925 | −80.793 | −23.091 |
1Q1N | −73.881 | −76.893 | −26.337 |
6K10 | −80.342 | −130.382 | −27.720 |
4CAZ | −88.832 | −121.662 | −35.881 |
Degradation Enzyme | Hexan-1-ol | 2-Methyl-1-Propanol | Dihydrofuran-2(3H)-one |
---|---|---|---|
1FZI | −46.861 | −33.517 | −29.305 |
6D7K | −49.145 | −27.987 | −11.258 |
6VK6 | −44.197 | −41.865 | −26.201 |
NO. | Enzyme | NO. | Enzyme | NO. | Enzyme | NO. |
---|---|---|---|---|---|---|
1 | 6CXH | 7 | 1MHZ | 13 | 1Q1N | 1 |
2 | 4USQ | 8 | 3B9N | 14 | 6K10 | 2 |
3 | 6HNS | 9 | 6D7K | 15 | 4CAZ | 3 |
4 | 3E5K | 10 | 6VK6 | 16 | 1FZI | 4 |
5 | 1SMJ | 11 | 3E5K | 17 | 6D7K | 5 |
No. | 7 | 10 |
---|---|---|
Variance | 2439.414 | 1817.936 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; He, W.; Du, M.; Zheng, J.; Du, X.; Li, Y. Design of a Microbial Remediation Inoculation Program for Petroleum Hydrocarbon Contaminated Sites Based on Degradation Pathways. Int. J. Environ. Res. Public Health 2021, 18, 8794. https://doi.org/10.3390/ijerph18168794
Li X, He W, Du M, Zheng J, Du X, Li Y. Design of a Microbial Remediation Inoculation Program for Petroleum Hydrocarbon Contaminated Sites Based on Degradation Pathways. International Journal of Environmental Research and Public Health. 2021; 18(16):8794. https://doi.org/10.3390/ijerph18168794
Chicago/Turabian StyleLi, Xingchun, Wei He, Meijin Du, Jin Zheng, Xianyuan Du, and Yu Li. 2021. "Design of a Microbial Remediation Inoculation Program for Petroleum Hydrocarbon Contaminated Sites Based on Degradation Pathways" International Journal of Environmental Research and Public Health 18, no. 16: 8794. https://doi.org/10.3390/ijerph18168794
APA StyleLi, X., He, W., Du, M., Zheng, J., Du, X., & Li, Y. (2021). Design of a Microbial Remediation Inoculation Program for Petroleum Hydrocarbon Contaminated Sites Based on Degradation Pathways. International Journal of Environmental Research and Public Health, 18(16), 8794. https://doi.org/10.3390/ijerph18168794