Could Kallikrein-Related Serine Peptidase 3 Be an Early Biomarker of Environmental Exposure in Young Women?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statements
2.2. Study Areas and Recruitment
2.3. Blood Sampling and Determination of KCL3
2.4. Determination of Progesterone Levels
2.5. Statistical Analyses
3. Results
3.1. Analysis of the Characteristics of Participants Residing in HEI and LEI Areas
3.2. Analysis of KLK3 in the Three Phases of Menstrual Cycle
3.3. Analysis of the Correlation between KLK3 Values in Nulliparous and Multiparous
3.4. Analysis of Progesterone Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawrence, M.G.; Lai, J.; Clements, J. Kallikreins on Steroids: Structure, Function, and Hormonal Regulation of Prostate-Specific Antigen and the Extended Kallikrein Locus. Endocr. Rev. 2010, 31, 407–446. [Google Scholar] [CrossRef]
- Plazas, X.R.; Rodríguez-Gallego, E.; Alves, M.; Altuna-Coy, A.; Lozano-Bartolomé, J.; Portero-Otin, M.; García-Fontgivell, J.F.; Martínez-González, S.; Segarra, J.; Chacón, M.R. Biofluid quantification of TWEAK/Fn14 axis in combination with a selected biomarker panel improves assessment of prostate cancer aggressiveness. J. Transl. Med. 2019, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huskova, Z.; Knillova, J.; Kolar, Z.; Vrbkova, J.; Kral, M.; Bouchal, J. The Percentage of Free PSA and Urinary Markers Distinguish Prostate Cancer from Benign Hyperplasia and Contribute to a More Accurate Indication for Prostate Biopsy. Biomedicines 2020, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, N.; Takata, M.; Otsuki, N.; Toyama, T.; Ohka, R.; Takehara, K.; Saijoh, K. Expression and Localization of Tissue Kallikrein mRNAs in Human Epidermis and Appendages. J. Investig. Dermatol. 2003, 121, 542–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagar, R.; Msalati, A.A. Changes in Serum PSA During Normal Menstrual Cycle. Indian J. Clin. Biochem. 2012, 28, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, W.W.; Salah, R.K.; Abbas, W.M. Serum Prostate Specific Antigen level in Women with Polycystic Ovary Syndrome. J. Fac. Med. Bagdad 2021, 58, 136–139. [Google Scholar]
- Güllü, S.; Emral, R.; Asik, M.; Cesur, M.; Tonyukuk, V. Diagnostic value of prostatic specific antigen in hirsute women. J. Endocrinol. Investig. 2003, 26, 1198–1202. [Google Scholar] [CrossRef]
- Riesco, O.; Riesco, O.; Storani, M.E.; Blaustein, C.; Aquilano, D.R.; Scaglia, J.; Scaglia, H.E. Circulating levels of prostate specific antigen (PSA) in women with idiopathic hirsutism (IH). Rev. Argent. Endocrinol. Metab. 2005, 42, 137–147. [Google Scholar]
- Muytjens, C.M.J.; Vasiliou, S.K.; Oikonomopoulou, K.; Prassas, I.; Diamandis, E. Putative functions of tissue kallikrein-related peptidases in vaginal fluid. Nat. Rev. Urol. 2016, 13, 596–607. [Google Scholar] [CrossRef]
- Zarghami, N.; Grass, L.; Sauter, E.R.; Diamandis, E. Prostate-specific antigen in serum during the menstrual cycle. Clin. Chem. 1997, 43, 1862–1867. [Google Scholar] [CrossRef] [Green Version]
- Clements, J.A. The Glandular Kallikrein Family of Enzymes: Tissue Specific Expression and Hormonal Regulation. Endocr. Rev. 1989, 10, 393–419. [Google Scholar] [CrossRef]
- Paliouras, M.; Diamandis, E. Intracellular Signaling Pathways Regulate Hormone-Dependent Kallikrein Gene Expression. Tumor Biol. 2008, 29, 63–75. [Google Scholar] [CrossRef]
- Paliouras, M.; Diamandis, E. Androgens act synergistically to enhance estrogen-induced upregulation of human tissue kallikreins 10, 11, and 14 in breast cancer cells via a membrane bound androgen receptor. Mol. Oncol. 2008, 1, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Lorenzetti, S.; Marcoccia, D.; Narciso, L.; Mantovani, A. Cell viability and PSA secretion assays in LNCaP cells: A tiered in vitro approach to screen chemicals with a prostate-mediated effect on male reproduction within the ReProTect project. Reprod. Toxicol. 2010, 30, 25–35. [Google Scholar] [CrossRef]
- Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke 2018, 13, 612–632. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Yan, X.; Chen, F.; Yang, A.; Lu, Y.; Wu, Y. Plasma kallikrein contributes to ambient particulate matter-induced lung injury. Biochem. Biophys. Res. Commun. 2019, 518, 409–415. [Google Scholar] [CrossRef]
- Bosco, L.; Notari, T.; Ruvolo, G.; Roccheri, M.C.; Martino, C.; Chiappetta, R.; Carone, D.; Bosco, G.L.; Carrillo, L.; Raimondo, S.; et al. Sperm DNA fragmentation: An early and reliable marker of air pollution. Environ. Toxicol. Pharmacol. 2018, 58, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Monaco, D.; Riccio, A.; Chianese, E.; Adamo, P.; Di Rosa, S.; Fagnano, M. Chemical characterization and spatial distribution of PAHs and heavy hydrocarbons in rural sites of Campania Region, South Italy. Environ. Sci. Pollut. Res. 2015, 22, 14993–15003. [Google Scholar] [CrossRef]
- Esposito, F.; Nardone, A.; Fasano, E.; Scognamiglio, G.; Esposito, D.; Agrelli, D.; Ottaiano, L.; Fagnano, M.; Adamo, P.; Beccaloni, E.; et al. A systematic risk characterization related to the dietary exposure of the population to potentially toxic elements through the ingestion of fruit and vegetables from a potentially contaminated area. A case study: The issue of the "Land of Fires" area in Campania region, Italy. Environ. Pollut. 2018, 243, 1781–1790. [Google Scholar] [CrossRef]
- Pizzolante, A.; Nicodemo, F.; Pierri, A.; Ferro, A.; Pierri, B.; Buonerba, C.; Beccaloni, E.; Albanese, S.; Basso, B.; Cerino, P. Development of a municipality index of environmental pressure in Campania, Italy. Futur. Sci. OA 2021, 7, FSO720. [Google Scholar] [CrossRef]
- Mazza, A.; Piscitelli, P.; Falco, A.; Santoro, M.L.; Colangelo, M.; Imbriani, G.; Idolo, A.; de Donno, A.; Iannuzzi, L.; Colao, A. Heavy Environmental Pressure in Campania and Other Italian Regions: A Short Review of Available Evidence. Int. J. Environ. Res. Public Health 2018, 15, 105. [Google Scholar] [CrossRef] [Green Version]
- Maresca, V.; Sorbo, S.; Loppi, S.; Funaro, F.; del Prete, D.; Basile, A. Biological effects from environmental pollution by toxic metals in the “land of fires” (Italy) assessed using the biomonitor species Lunularia cruciata L. (Dum). Environ. Pollut. 2020, 265, 115000. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, P.; Volpe, M.G.; Lorenzetti, S.; Mantovani, A.; Notari, T.; Cocca, E.; Cerullo, S.; Di Stasio, M.; Cerino, P.; Montano, L. Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status. Reprod. Toxicol. 2016, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vecoli, C.; Montano, L.; Borghini, A.; Notari, T.; Guglielmino, A.; Mercuri, A.; Turchi, S.; Andreassi, M.G. Effects of Highly Polluted Environment on Sperm Telomere Length: A Pilot Study. Int. J. Mol. Sci. 2017, 18, 1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazza, A.; Piscitelli, P.; Neglia, C.; Della Rosa, G.; Iannuzzi, L. Illegal Dumping of Toxic Waste and Its Effect on Human Health in Campania, Italy. Int. J. Environ. Res. Public Health 2015, 12, 6818–6831. [Google Scholar] [CrossRef] [Green Version]
- Senior, K.; Mazza, A. Italian “Triangle of death” linked to waste crisis. Lancet Oncol. 2004, 5, 525–527. [Google Scholar] [CrossRef]
- Lettieri, G.; Mollo, V.; Ambrosino, A.; Caccavale, F.; Troisi, J.; Febbraio, F.; Piscopo, M. Molecular effects of copper on the reproductive system ofmytilus galloprovincialis. Mol. Reprod. Dev. 2019, 86, 1357–1368. [Google Scholar] [CrossRef]
- Piscopo, M.; Notariale, R.; Tortora, F.; Lettieri, G.; Palumbo, G.; Manna, C. Novel Insights into Mercury Effects on Hemoglobin and Membrane Proteins in Human Erythrocytes. Molecules 2020, 25, 3278. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, G.; Marra, F.; Moriello, C.; Prisco, M.; Notari, T.; Trifuoggi, M.; Giarra, A.; Bosco, L.; Montano, L.; Piscopo, M. Molecular Alterations in Spermatozoa of a Family Case Living in the Land of Fires. A First Look at Possible Transgenerational Effects of Pollutants. Int. J. Mol. Sci. 2020, 21, 6710. [Google Scholar] [CrossRef]
- Piscopo, M. Seasonal dependence of cadmium molecular effects onMytilus galloprovincialis(Lamarck, 1819) protamine-like protein properties. Mol. Reprod. Dev. 2019, 86, 1418–1429. [Google Scholar] [CrossRef]
- Lettieri, G.; D’Agostino, G.; Mele, E.; Cardito, C.; Esposito, R.; Cimmino, A.; Giarra, A.; Trifuoggi, M.; Raimondo, S.; Notari, T.; et al. Discovery of the Involvement in DNA Oxidative Damage of Human Sperm Nuclear Basic Proteins of Healthy Young Men Living in Polluted Areas. Int. J. Mol. Sci. 2020, 21, 4198. [Google Scholar] [CrossRef]
- De Guglielmo, V.; Puoti, R.; Notariale, R.; Maresca, V.; Ausió, J.; Troisi, J.; Verrillo, M.; Basile, A.; Febbraio, F.; Piscopo, M. Alterations in the properties of sperm protamine-like II protein after exposure of Mytilus galloprovincialis (Lamarck 1819) to sub-toxic doses of cadmium. Ecotoxicol. Environ. Saf. 2019, 169, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Montano, L.; Donato, F.; Bianco, P.M.; Lettieri, G.; Guglielmino, A.; Motta, O.; Bonapace, I.M.; Piscopo, M. Semen quality as a potential susceptibility indicator to SARS-CoV-2 insults in polluted areas. Environ. Sci. Pollut. Res. 2021, 1–10. [Google Scholar] [CrossRef]
- Montano, L.; Donato, F.; Bianco, P.; Lettieri, G.; Guglielmino, A.; Motta, O.; Bonapace, I.; Piscopo, M. Air Pollution and COVID-19: A Possible Dangerous Synergy for Male Fertility. Int. J. Environ. Res. Public Health 2021, 18, 6846. [Google Scholar] [CrossRef]
- Lettieri, G.; Notariale, R.; Carusone, N.; Giarra, A.; Trifuoggi, M.; Manna, C.; Piscopo, M. New Insights into Alterations in PL Proteins Affecting Their Binding to DNA after Exposure of Mytilus galloprovincialis to Mercury—A Possible Risk to Sperm Chromatin Structure? Int. J. Mol. Sci. 2021, 22, 5893. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, G.; Notariale, R.; Ambrosino, A.; Di Bonito, A.; Giarra, A.; Trifuoggi, M.; Manna, C.; Piscopo, M. Spermatozoa Transcriptional Response and Alterations in PL Proteins Properties after Exposure of Mytilus galloprovincialis to Mercury. Int. J. Mol. Sci. 2021, 22, 1618. [Google Scholar] [CrossRef] [PubMed]
- Carré, J.; Gatimel, N.; Moreau, J.; Parinaud, J.; Léandri, R. Does air pollution play a role in infertility?: A systematic review. Environ. Health 2017, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Maresca, V.; Fusaro, L.; Sorbo, S.; Siciliano, A.; Loppi, S.; Paoli, L.; Monaci, F.; Karam, E.A.; Piscopo, M.; Guida, M.; et al. Functional and structural biomarkers to monitor heavy metal pollution of one of the most contaminated freshwater sites in Southern Europe. Ecotoxicol. Environ. Saf. 2018, 163, 665–673. [Google Scholar] [CrossRef]
- Yu, H.; Diamandis, E.P. Original Articles Original Articles: Prostate Cancer: Measurement of Serum Prostate Specific Antigen Levels in Women and in Prostatectomized Men With an Ultrasensitive Immunoassay Technique. J. Urol. 1995, 153, 1004–1008. [Google Scholar] [CrossRef]
- Cardenas, A.; Roels, H.; Bernard, A.M.; Barbon, R.; Buchet, J.P.; Lauwerys, R.R.; Rosello, J.; Hotter, G.; Mutti, A.; Franchini, I. Markers of early renal changes induced by industrial pollutants. I. Application to workers exposed to mercury vapour. Occup. Environ. Med. 1993, 50, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, A.; Roels, H.; Bernard, A.M.; Barbon, R.; Buchet, J.P.; Lauwerys, R.R.; Rosello, J.; Ramis, I.; Mutti, A.; Franchini, I. Markers of early renal changes induced by industrial pollutants. II. Application to workers exposed to lead. Occup. Environ. Med. 1993, 50, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roels, H.; Bernard, A.M.; Cardenas, A.; Buchet, J.P.; Lauwerys, R.R.; Hotter, G.; Ramis, I.; Mutti, A.; Franchini, I.; Bundschuh, I. Markers of early renal changes induced by industrial pollutants. III. Application to workers exposed to cadmium. Occup. Environ. Med. 1993, 50, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Diamandis, E. Prostate-specific antigen immunoreactivity in amniotic fluid. Clin. Chem. 1995, 41, 204–210. [Google Scholar] [CrossRef]
- Fochi, R.A.; Perez, A.P.S.; Bianchi, C.V.; Rochel, S.S.; Góes, R.M.; Vilamaior, P.S.; Taboga, S.R.; dos Santos, F.C.A.; Vonnahme, K.; Arndt, W.; et al. Hormonal Oscillations During the Estrous Cycle Influence the Morphophysiology of the Gerbil (Meriones unguiculatus) Female Prostate (Skene Paraurethral Glands)1. Biol. Reprod. 2008, 79, 1084–1091. [Google Scholar] [CrossRef]
- Filella, X.; Molina, R.; Alcover, J.; Carretero, P.; Ballesta, A.M. Detection of nonprostatic PSA in serum and nonserum samples from women. Int. J. Cancer 1996, 68, 424–427. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.; Serrano-Gotarredona, J.; Ávila, S.; Villar-Palasí, J.; Varela, C.; Sancho, J. The Increased Circulating Prostate-Specific Antigen Concentrations in Women with Hirsutism Do Not Respond to Acute Changes in Adrenal or Ovarian Function. J. Clin. Endocrinol. Metab. 1998, 83, 2580–2584. [Google Scholar] [CrossRef]
- Mannello, F.; Gazzanelli, G. Prostate-specific antigen (PSA/hK3): A further player in the field of breast cancer diagnostics? Breast Cancer Res. 2001, 3, 238–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardanian, F.; Heidari, N. Diagnostic value of prostate-specific antigen in women with polycystic ovary syndrome. J. Res. Med Sci. 2011, 16, 999–1005. [Google Scholar]
- Van Krieken, J.H. Prostate Marker Immunoreactivity in Salivary Gland Neoplasms. Am. J. Surg. Pathol. 1993, 17, 410–414. [Google Scholar] [CrossRef]
- Black, W.P.; Martin, B.T.; Whyte, W.G. Plasma progesterone concentrations as an index of ovulation and corpus luteum function in normal and gonadotrophin-stimulated menstrual cycles. BJOG Int. J. Obstet. Gynaecol. 1972, 79, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhao, Y.; Yang, Y.; Hua, J. Correlation between exposure to fine particulate matter and hypertensive disorders of pregnancy in Shanghai, China. Environ. Health 2020, 19, 101. [Google Scholar] [CrossRef] [PubMed]
- Merklinger-Gruchala, A.; Jasienska, G.; Kapiszewska, M. Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health. Int. J. Environ. Res. Public Health 2017, 14, 816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtyla, C.; Zielinska, K.; Wojtyla-Buciora, P.; Panek, G. Prenatal Fine Particulate Matter (PM2.5) Exposure and Pregnancy Outcomes-Analysis of Term Pregnancies in Poland. Int. J. Environ. Res. Public Health 2020, 17, 5820. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.V.; Ravenscroft, J.; Carpenter, D.O.; Schell, L.M.; Akwesasne Task Force on the Environment. Persistent organic pollutants as predictors of increased FSH:LH ratio in naturally cycling, reproductive age women. Environ. Res. 2018, 164, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Oikonomopoulou, K.; Li, L.; Zheng, Y.; Simon, I.; Wolfert, R.L.; Valik, D.; Nekulova, M.; Simickova, M.; Frgala, T.; Diamandis, E. Prediction of ovarian cancer prognosis and response to chemotherapy by a serum-based multiparametric biomarker panel. Br. J. Cancer 2008, 99, 1103–1113. [Google Scholar] [CrossRef] [Green Version]
- Planque, C.; Li, L.; Zheng, Y.; Soosaipillai, A.; Reckamp, K.; Chia, D.; Diamandis, E.; Goodglick, L. A Multiparametric Serum Kallikrein Panel for Diagnosis of Non–Small Cell Lung Carcinoma. Clin. Cancer Res. 2008, 14, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Talieri, M.; Li, L.; Zheng, Y.; Alexopoulou, D.K.; Soosaipillai, A.; Scorilas, A.; Xynopoulos, D.; Diamandis, E. The use of kallikrein-related peptidases as adjuvant prognostic markers in colorectal cancer. Br. J. Cancer 2009, 100, 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Katsaros, D.; Shan, S.J.; de la Longrais, I.R.; Porpiglia, M.; Scorilas, A.; Kim, N.W.; Wolfert, R.L.; Simon, I.; Li, L.; et al. A Multiparametric Panel for Ovarian Cancer Diagnosis, Prognosis, and Response to Chemotherapy. Clin. Cancer Res. 2007, 13, 6984–6992. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-Y.; Collaborators, U.; Huang, P.-Y.; Cheng, C.-H.; Tung, H.-Y.; Fang, Z.; Berglund, A.E.; Chen, A.; French-Kwawu, J.; Harris, D.; et al. KLK3 SNP–SNP interactions for prediction of prostate cancer aggressiveness. Sci. Rep. 2021, 11, 9264. [Google Scholar] [CrossRef]
- Montano, L. Hazardous Waste Management and Health Risks. In Reproductive Biomarkers as Early Indicators for Assessing Environmental Health Risk; Bentham Science Publishers: Sharjah, United Arab Emirate, 2020. [Google Scholar] [CrossRef]
- Montano, L.; Bergamo, P.; Andreassi, M.G.; Lorenzetti, S. The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health. Spermatozoa—Facts Perspect. 2018, 174–202. [Google Scholar] [CrossRef] [Green Version]
Jobs | LEI | HEI |
---|---|---|
Shop assistants in clothing and accessories shops | 12 | 10 |
Shop assistants in food shops | 9 | 3 |
Students | 14 | 16 |
Seasonal agricultural workers not in greenhouses | 2 | 6 |
Secretaries in professional offices | 4 | 2 |
Not studying and not working | 3 | 7 |
Criteria | HEI Group (n = 44) | LEI Group (n = 44) | p-Value |
---|---|---|---|
Age (years.) | 28.66 ± 4.43 | 27.3 ± 3.18 | ns |
Smokers | 8.19% | 5.17% | ns |
Alcohol | 9.84% | 1.72% | ns |
Drugs | not used- | not used | not applicable |
Age of menarche (years) | 11–13 | 11–12 | ns |
Nulliparous | 86.9% | 79.3% | ns |
Multiparous | 13.1% | 20.7% | |
Previous abortions | 14.8% | 3.4% | p < 0.05 |
BMI score | 24.2–29.4 | 23.1–27.4 | ns |
Waist circumference (cm) | 72–110 | 69–90 | ns |
Waist-to-hip ratio | 0.81–0.95 | 0.55–0.78 | p < 0.05 |
Ferriman–Gallwey score 1 | 75.4% | 75.9% | ns |
Ferriman–Gallwey score 2 | 24.6% | 24.1% | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimondo, S.; Gentile, M.; Esposito, G.; Gentile, T.; Ferrara, I.; Crescenzo, C.; Palmieri, M.; Cuomo, F.; De Filippo, S.; Lettieri, G.; et al. Could Kallikrein-Related Serine Peptidase 3 Be an Early Biomarker of Environmental Exposure in Young Women? Int. J. Environ. Res. Public Health 2021, 18, 8833. https://doi.org/10.3390/ijerph18168833
Raimondo S, Gentile M, Esposito G, Gentile T, Ferrara I, Crescenzo C, Palmieri M, Cuomo F, De Filippo S, Lettieri G, et al. Could Kallikrein-Related Serine Peptidase 3 Be an Early Biomarker of Environmental Exposure in Young Women? International Journal of Environmental Research and Public Health. 2021; 18(16):8833. https://doi.org/10.3390/ijerph18168833
Chicago/Turabian StyleRaimondo, Salvatore, Mariacira Gentile, Giusy Esposito, Tommaso Gentile, Ida Ferrara, Claudia Crescenzo, Mariangela Palmieri, Felice Cuomo, Stefania De Filippo, Gennaro Lettieri, and et al. 2021. "Could Kallikrein-Related Serine Peptidase 3 Be an Early Biomarker of Environmental Exposure in Young Women?" International Journal of Environmental Research and Public Health 18, no. 16: 8833. https://doi.org/10.3390/ijerph18168833
APA StyleRaimondo, S., Gentile, M., Esposito, G., Gentile, T., Ferrara, I., Crescenzo, C., Palmieri, M., Cuomo, F., De Filippo, S., Lettieri, G., Piscopo, M., & Montano, L. (2021). Could Kallikrein-Related Serine Peptidase 3 Be an Early Biomarker of Environmental Exposure in Young Women? International Journal of Environmental Research and Public Health, 18(16), 8833. https://doi.org/10.3390/ijerph18168833