Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Sampling and Bacteriophage Isolation
2.1.1. Bacteriophage Propagation and Selection
2.1.2. Molecular Identification of the Bacteriophages
2.2. Poultry Litter and Eggshell Additive
2.3. Stability of Phage SM1 in Poultry Litter
2.4. S. e. Enteritidis Inactivation in Poultry Litter Using Phage SM1
2.5. Phage SM1 Re-Treatment of Poultry Little
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bacteriophage Isolation, Propagation and Selection
3.2. Molecular Identification of Bacteriophage
3.3. Stability of Phage SM1 in Poultry Litter
3.4. S. Enteritidis Inactivation in Poultry Litter Using Phage SM1
3.5. Phage SM1 Re-Treatment of Poultry Litter
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.-Y.; Zhu, G.-J.; Zhang, Y.-Z.; Zhang, L.-B.; Hagan, E.A.; Martinez, S.; Chmura, A.A.; Francisco, L.; Tai, H.; Miller, M.; et al. A qualitative study of zoonotic risk factors among rural communities in southern China. Int. Health 2020, 12, 77–85. [Google Scholar] [CrossRef]
- Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; et al. Food-borne diseases—The challenges of 20years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 2010, 139, S3–S15. [Google Scholar] [CrossRef] [PubMed]
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nat. Cell Biol. 2017, 546, 646–650. [Google Scholar] [CrossRef]
- Woolhouse, M.; Gowtage-Sequeria, M.W.A.S. Host Range and Emerging and Reemerging Pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Control of Neglected Zoonotic Diseases from Advocacy to Action; WHO: Geneve, Switzerland, 2014. [Google Scholar]
- Mouttotou, N.; Ahmad, S.; Kamran, Z.; Koutoulis, K.C. Prevalence, Risks and Antibiotic Resistance of Salmonella in Poultry Production Chain. In Current Topics in Salmonella and Salmonellosis; IntechOpen: London, UK, 2017. [Google Scholar]
- An, R.; Alshalchi, S.; Breimhurst, P.; Munoz-Aguayo, J.; Flores-Figueroa, C.; Vidovic, S. Strong influence of livestock environments on the emergence and dissemination of distinct multidrug-resistant phenotypes among the population of non-typhoidal Salmonella. PLoS ONE 2017, 12, e0179005. [Google Scholar] [CrossRef] [Green Version]
- Odoch, T.; Sekse, C.; L’Abee-Lund, T.M.; Hansen, H.C.H.; Kankya, C.; Wasteson, Y. Diversity and Antimicrobial Resistance Genotypes in Non-Typhoidal Salmonella Isolates from Poultry Farms in Uganda. Int. J. Environ. Res. Public Health 2018, 15, 324. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.; Crouse, A.; Chevallier, L.; Pontier, S.M.; Alzahrani, A.; Silué, N.; Campbell-Valois, F.-X.; Montagutelli, X.; Gruenheid, S.; Malo, D. Enterobacteria and host resistance to infection. Mamm. Genome 2018, 29, 558–576. [Google Scholar] [CrossRef]
- Säde, E.; Murros, A.; Bjorkroth, J. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol. 2013, 34, 252–258. [Google Scholar] [CrossRef]
- Antibiotic/Antimicrobial Resistance. Available online: https://www.cdc.gov/drugresistance/about.html (accessed on 28 May 2021).
- European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, 6406. [Google Scholar]
- Dar, M.; Ahmad, S.; Bhat, S.; Ahmed, R.; Urwat, U.; Mumtaz, P.; Dar, T.; Shah, R.; Ganai, N. Salmonella typhimurium in poultry: A review. World’s Poult. Sci. J. 2017, 73, 345–354. [Google Scholar] [CrossRef]
- Ravenel, M.P. The Bacteriophage and its Behaviour. Nat. Cell Biol. 1926, 118, 183–185. [Google Scholar] [CrossRef] [Green Version]
- Harada, L.K.; Silva, E.C.; Campos, W.F.; Fiol, F.D.S.D.; Vila, M.; Dąbrowska, K.; Krylov, V.N.; Balcão, V.M. Biotechnological applications of bacteriophages: State of the art. Microbiol. Res. 2018, 212–213, 38–58. [Google Scholar] [CrossRef]
- Eldougdoug, N.; Cucic, S.; Abdelhamid, A.; Brovko, L.; Kropinski, A.; Griffiths, M.; Anany, H. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int. J. Food Microbiol. 2019, 293, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Spricigo, D.A.; Bardina, C.; Cortés, P.; Llagostera, M. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int. J. Food Microbiol. 2013, 165, 169–174. [Google Scholar] [CrossRef]
- Thung, T.Y.; Lee, E.; Mahyudin, N.A.; Anuradha, K.; Mazlan, N.; Kuan, C.H.; Pui, C.F.; Ghazali, F.M.; Ab Rashid, N.-K.M.; Rollon, W.D.; et al. Evaluation of a lytic bacteriophage for bio-control of Salmonella Typhimurium in different food matrices. LWT 2019, 105, 211–214. [Google Scholar] [CrossRef]
- Vaz, C.S.L.; Rech, D.V.; Alves, L.; Coldebella, A.; Brentano, L.; Trevisol, I.M. Effect of time of therapy with wild-type lytic bacteriophages on the reduction of Salmonella Enteritidis in broiler chickens. Veter. Microbiol. 2020, 240, 108527. [Google Scholar] [CrossRef]
- Liu, M.; Gill, J.; Young, R.; Summer, E.J. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Wu, B.; Wang, R.; Fane, A.G. The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review. Water Res. 2017, 110, 120–132. [Google Scholar] [CrossRef]
- Abedon, S.; Thomas-Abedon, C. Phage Therapy Pharmacology. Curr. Pharm. Biotechnol. 2010, 11, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Jassim, S.A.A.; Limoges, R.G. Impact of external forces on cyanophage–host interactions in aquatic ecosystems. World J. Microbiol. Biotechnol. 2013, 29, 1751–1762. [Google Scholar] [CrossRef]
- Loc-Carrillo, C.; Abedon, S.T. Pros and cons of phage therapy. Bacteriophage 2011, 1, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Dixon, M.A.; Dar, O.A.; Heymann, D.L. Emerging infectious diseases: Opportunities at the human-animal-environment interface. Veter. Rec. 2014, 174, 546–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- ISO—ISO 10705-1:1995—[WWW Document]. Water Qual.—Detect. Enumer. bacteriophages—Part 1 Enumer. F-Specific RNA Bacteriophages. 1995. Available online: https://www.iso.org/standard/18794.html (accessed on 14 January 2021).
- ISO 6579-1:2017—Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. [WWW Document], n.d. Available online: https://www.iso.org/standard/56712.html (accessed on 14 January 2021).
- American Public Health Association, American Water Works Association, Water Pollution Control Federation, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater Part 1000 Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Pollution Control Federation, Water Environment Federation: Washington DC, USA, 2012. [Google Scholar]
- Jhamb, S. Biopreservation of Food Using Bacteriocins, Bacteriophages and Endolysins. Bombay Tech. 2014, 64, 9–21. [Google Scholar]
- Fisher, R.A.; Gollan, B.; Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Genet. 2017, 15, 453–464. [Google Scholar] [CrossRef]
- Harms, A.; Maisonneuve, E.; Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 2016, 354, aaf4268. [Google Scholar] [CrossRef]
- Stapels, D.A.C.; Hill, P.W.S.; Westermann, A.J.; Fisher, R.A.; Thurston, T.L.; Saliba, A.-E.; Blommestein, I.; Vogel, J.; Helaine, S. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 2018, 362, 1156–1160. [Google Scholar] [CrossRef] [Green Version]
- Barr, J.J.; Auro, R.; Sam-Soon, N.; Kassegne, S.; Peters, G.; Bonilla, N.; Hatay, M.; Mourtada, S.; Bailey, B.; Youle, M.; et al. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc. Natl. Acad. Sci. USA 2015, 112, 13675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joiner, K.L.; Baljon, A.; Barr, J.; Rohwer, F.; Luque, A. Impact of bacteria motility in the encounter rates with bacteriophage in mucus. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, M.; Torshizi, M.A.K.; Rahimi, S.; Dennehy, J. Prophylactic Bacteriophage Administration More Effective than Post-infection Administration in Reducing Salmonella enterica serovar Enteritidis Shedding in Quail. Front. Microbiol. 2016, 7, 1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borie, C.; Sanchez, M.L.; Navarro, C.; Ramírez, S.; Morales, M.A.; Retamales, J.; Robeson, J. Aerosol Spray Treatment with Bacteriophages and Competitive Exclusion Reduces Salmonella Enteritidis Infection in Chickens. Avian Dis. 2009, 53, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.-H.; Kim, M.-S.; Lee, D.-H.; Lee, Y.-N.; Park, J.-K.; Youn, H.-N.; Lee, H.-J.; Yang, S.-Y.; Cho, Y.-W.; Lee, J.-B.; et al. Use of bacteriophage for biological control of Salmonella Enteritidis infection in chicken. Res. Veter-Sci. 2012, 93, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Toro, H.; Price, S.B.; McKee, S.; Hoerr, F.J.; Krehling, J.; Perdue, M.; Bauermeister, L. Use of Bacteriophages in Combination with Competitive Exclusion to Reduce Salmonella from Infected Chickens. Avian Dis. 2005, 49, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Verheust, C.; Pauwels, K.; Mahillon, J.; Helinski, D.R.; Herman, P. Contained use of Bacteriophages: Risk Assessment and Biosafety Recommendations. Appl. Biosaf. 2010, 15, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Strawn, L.; Zheng, J.; Reed, E.A.; Rideout, S.L. Diversity and Dynamics of Salmonella enterica in Water Sources, Poultry Litters, and Field Soils Amended with Poultry Litter in a Major Agricultural Area of Virginia. Front. Microbiol. 2019, 10, 2868. [Google Scholar] [CrossRef] [Green Version]
- Kyakuwaire, M.; Olupot, G.; Amoding, A.; Nkedi-Kizza, P.; Basamba, T.A.; Kizza, N. How Safe is Chicken Litter for Land Application as an Organic Fertilizer? A Review. Int. J. Environ. Res. Public Health 2019, 16, 3521. [Google Scholar] [CrossRef] [Green Version]
Samples | pH | NH3—N (mg L−1) | TS (g kg−1) | VS (g kg−1) | N (mg kg−1) | P (mg kg−1) | K (mg kg−1) |
---|---|---|---|---|---|---|---|
1 Flock poultry litter | 8.16 ± 0.06 | 1687 ± 8 | 892.08 ± 1.46 | 748.51 ± 3.01 | 34,450 ± 228 | 21,316 ± 220 | 10,183 ± 78 |
3 Flocks poultry litter | 7.73 ± 0.04 | 1711 ± 45 | 890.72 ± 23.55 | 691.04 ± 19.18 | 36,054 ± 140 | 22,601 ± 230 | 11,672 ±57 |
6 Flocks poultry litter | 8.43 ± 0.04 | 2091 ± 20 | 866.69 ± 10.89 | 678.53 ± 35.83 | 35,963 ± 178 | 23,670 ±195 | 11,757 ± 38 |
9 Flocks poultry litter | 8.61 ± 0.13 | 3545 ± 158 | 880.02 ± 0.14 | 652.48 ± 2.65 | 28,883 ± 120 | 27,992 ± 165 | 14,279 ±46 |
1 Flock poultry litter + SM1 | 8.38 ± 0.11 | 2468 ± 18 | 892.17 ± 1.95 | 626.13 ± 13.80 | 32,906 ± 200 | 23,700 ± 209 | 12,026 ±29 |
3 Flocks poultry litter + SM1 | 7.72± 0.01 | 2274 ± 65 | 884.57 ± 6.44 | 719.68 ± 15.40 | 38,383 ± 190 | 21,641 ± 187 | 12,060 ± 69 |
6 Flocks poultry litter + SM1 | 7.79 ± 0.07 | 1887 ± 124 | 895.16 ± 1.33 | 751.26 ± 4.64 | 35,471 ± 179 | 18,878 ± 267 | 10,718 ± 58 |
9 Flocks poultry litter + SM1 | 8.88± 0.01 | 3838 ± 165 | 885.71 ± 0.58 | 636.95 ± 16.03 | 24,096 ± 250 | 25,349 ± 278 | 15,127 ± 110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogovski, P.; Silva, R.d.; Cadamuro, R.D.; Souza, E.B.d.; Savi, B.P.; Viancelli, A.; Michelon, W.; Tápparo, D.C.; Treichel, H.; Rodríguez-Lazaro, D.; et al. Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure. Int. J. Environ. Res. Public Health 2021, 18, 8862. https://doi.org/10.3390/ijerph18168862
Rogovski P, Silva Rd, Cadamuro RD, Souza EBd, Savi BP, Viancelli A, Michelon W, Tápparo DC, Treichel H, Rodríguez-Lazaro D, et al. Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure. International Journal of Environmental Research and Public Health. 2021; 18(16):8862. https://doi.org/10.3390/ijerph18168862
Chicago/Turabian StyleRogovski, Paula, Raphael da Silva, Rafael Dorighello Cadamuro, Estêvão Brasiliense de Souza, Beatriz Pereira Savi, Aline Viancelli, William Michelon, Deisi Cristina Tápparo, Helen Treichel, David Rodríguez-Lazaro, and et al. 2021. "Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure" International Journal of Environmental Research and Public Health 18, no. 16: 8862. https://doi.org/10.3390/ijerph18168862
APA StyleRogovski, P., Silva, R. d., Cadamuro, R. D., Souza, E. B. d., Savi, B. P., Viancelli, A., Michelon, W., Tápparo, D. C., Treichel, H., Rodríguez-Lazaro, D., & Fongaro, G. (2021). Salmonella enterica Serovar Enteritidis Control in Poultry Litter Mediated by Lytic Bacteriophage Isolated from Swine Manure. International Journal of Environmental Research and Public Health, 18(16), 8862. https://doi.org/10.3390/ijerph18168862