Bringing Light into Darkness—Comparison of Different Personal Dosimeters for Assessment of Solar Ultraviolet Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dosimeter Types and Principle of Measurement
2.2. Measurement Setup
- 4 units of X2012-10 V1.
- 4 units of X2012-10 V3.
- 5 PSF dosimeters.
- 5 units of VioSpor blue line Type III.
- 2 units of VioSpor blue line Type II* (* These dosimeters were only used for measurements 1–4).
2.3. Use Case GENESIS-UV
3. Results
3.1. Intercalibration Measurements
3.2. Comparison of Steady-State to Personal UV Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blum, H.F. On the mechanism of cancer induction by ultraviolet radiation. II. A quantitative description and its consequences. J. Natl. Cancer Inst. 1959, 23, 319–335. [Google Scholar]
- Lucas, R.M.; McMichael, A.J.; Armstrong, B.K.; Smith, W.T. Estimating the global disease burden due to ultraviolet radiation exposure. Int. J. Epidemiol. 2008, 37, 654–667. [Google Scholar] [CrossRef]
- Glanz, K.; Saraiya, M. Using evidence-based community and behavioral interventions to prevent skin cancer: Opportunities and challenges for public health practice. Prev. Chronic. Dis. 2005, 2, A03. [Google Scholar]
- Arrandale, V.H.; Bornstein, S.; King, A.; Takaro, T.K.; Demers, P.A. Designing exposure registries for improved tracking of occupational exposure and disease. Can. J. Public Health 2016, 107, e119–e125. [Google Scholar] [CrossRef]
- Baldermann, C.; Weiskopf, D. Behavioral and structural prevention of skin cancer: Implementation and effectiveness. Hautarzt 2020, 71, 572–579. [Google Scholar] [CrossRef]
- Huang, X.; Chalmers, A.N. Review of Wearable and Portable Sensors for Monitoring Personal Solar UV Exposure. Ann. Biomed. Eng. 2021, 49, 964–978. [Google Scholar] [CrossRef]
- Diffey, B. The Early Days of Personal Solar Ultraviolet Dosimetry. Atmosphere 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Challoner, A.V.; Corless, D.; Davis, A.; Deane, G.H.; Diffey, B.L.; Gupta, S.P.; Magnus, I.A. Personnel monitoring of exposure to ultraviolet radiation. Clin. Exp. Dermatol. 1976, 1, 175–179. [Google Scholar] [CrossRef]
- Diffey, B. Personal ultraviolet radiation dosimetry with polysulphone film badges. Photodermatology 1984, 1, 151–157. [Google Scholar]
- Herlihy, E.; Gies, P.H.; Roy, C.R.; Jones, M. Personal dosimetry of solar UV radiation for different outdoor activities. Photochem. Photobiol. 1994, 60, 288–294. [Google Scholar] [CrossRef]
- Knuschke, P.; Barth, J. Biologically weighted personal UV dosimetry. J. Photochem. Photobiol. B 1996, 36, 77–83. [Google Scholar] [CrossRef]
- Siani, A.M.; Casale, G.R.; Modesti, S.; Parisi, A.V.; Colosimo, A. Investigation on the capability of polysulphone for measuring biologically effective solar UV exposures. Photochem. Photobiol. Sci. 2014, 13, 521–530. [Google Scholar] [CrossRef]
- Thieden, E.; Agren, M.S.; Wulf, H.C. The wrist is a reliable body site for personal dosimetry of ultraviolet radiation. Photodermatol. Photoimmunol. Photomed. 2000, 16, 57–61. [Google Scholar] [CrossRef]
- Duncan, D.D.; Schneider, W.; West, K.J.; Kirkpatrick, S.J.; West, S.K. The development of personal dosimeters for use in the visible and ultraviolet wavelengths regions. The Salisbury Eye Evaluation Team. Photochem. Photobiol. 1995, 62, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Cockell, C.S.; Scherer, K.; Horneck, G.; Rettberg, P.; Facius, R.; Gugg-Helminger, A.; Driscoll, C.; Lee, P. Exposure of arctic field scientists to ultraviolet radiation evaluated using personal dosimeters. Photochem. Photobiol. 2001, 74, 570–578. [Google Scholar] [CrossRef]
- Quintern, L.E.; Furusawa, Y.; Fukutsu, K.; Holtschmidt, H. Characterization and application of UV detector spore films: The sensitivity curve of a new detector system provides good similarity to the action spectrum for UV-induced erythema in human skin. J. Photochem. Photobiol. B 1997, 37, 158–166. [Google Scholar] [CrossRef]
- Serrano, M.A.; Canada, J.; Moreno, J.C.; Gurrea, G.; Members of the Valencia Solar Radiation Research, G. Occupational UV exposure of environmental agents in Valencia, Spain. Photochem. Photobiol. 2014, 90, 911–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, M.A.; Canada, J.; Moreno, J.C.; Solar Radiation, G. Erythemal ultraviolet exposure in two groups of outdoor workers in Valencia, Spain. Photochem. Photobiol. 2009, 85, 1468–1473. [Google Scholar] [CrossRef] [Green Version]
- Krins, A.; Dörschel, B.; Henniger, J.; Knuschke, P. Mathematical Description of the Reading of Personal UV-Dosemeters taking Polysulphone Film as an Example. Radiat. Prot. Dosim. 1998, 78, 195–203. [Google Scholar] [CrossRef]
- Davis, A.; Deane, G.H.; Diffey, B.L. Possible dosimeter for ultraviolet radiation. Nature 1976, 261, 169–170. [Google Scholar] [CrossRef]
- Krins, A.; Burger, P.M.; Dorschel, B.; Knuschke, P. Measurement and evaluation of natural and artificial UV radiation. Hautarzt 1999, 50, 701–705. [Google Scholar] [CrossRef]
- Krins, A.; Dorschel, B.; Knuschke, P.; Seidlitz, H.K.; Thiel, S. Determination of the calibration factor of polysulphone film UV dosemeters for terrestrial solar radiation. Radiat. Prot. Dosim. 2001, 95, 345–352. [Google Scholar] [CrossRef]
- Knuschke, P.; Unverricht, I.; Ott, G.; Janßen, M. Personenbezogene Messung der UV-Exposition von Arbeitnehmern im Freien; Federal Institute for Occupational Safety and Health: Dortmund/Berlin/Dresden, Germany, 2007; p. 95. [Google Scholar]
- Munakata, N. Biologically effective dose of solar ultraviolet radiation estimated by spore dosimetry in Tokyo since 1980. Photochem. Photobiol. 1993, 58, 386–392. [Google Scholar] [CrossRef]
- Munakata, N.; Morohoshi, F.; Hieda, K.; Suzuki, K.; Furusawa, Y.; Shimura, H.; Ito, T. Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation. Photochem. Photobiol. 1996, 63, 74–78. [Google Scholar] [CrossRef]
- Moehrle, M.; Korn, M.; Garbe, C. Bacillus subtilis spore film dosimeters in personal dosimetry for occupational solar ultraviolet exposure. Int. Arch. Occup. Environ. Health 2000, 73, 575–580. [Google Scholar] [CrossRef]
- Moehrle, M.; Garbe, C. Personal UV dosimetry by Bacillus subtilis spore films. Dermatology 2000, 200, 1–5. [Google Scholar] [CrossRef]
- Rettberg, P.; Horneck, G. Biologically weighted measurement of UV radiation in space and on Earth with the biofilm technique. Adv. Space Res. 2000, 26, 2005–2014. [Google Scholar] [CrossRef]
- Rettberg, P.; Cockell, C.S. Biological UV dosimetry using the DLR-biofilm. Photochem. Photobiol. Sci. 2004, 3, 781–787. [Google Scholar] [CrossRef]
- BioSense. VioSpor Blue Line Technical Data. Available online: http://www.biosense.de/blue-e.htm (accessed on 11 June 2021).
- Diffey, B. A behavioral model for estimating population exposure to solar ultraviolet radiation. Photochem. Photobiol. 2008, 84, 371–375. [Google Scholar] [CrossRef]
- Wittlich, M.; Westerhausen, S.; Kleinespel, P.; Rifer, G.; Stoppelmann, W. An approximation of occupational lifetime UVR exposure: Algorithm for retrospective assessment and current measurements. J. Eur. Acad. Dermatol. Venereol. 2016, 30 (Suppl. 3), 27–33. [Google Scholar] [CrossRef] [Green Version]
- Kelbch, A.; Wittlich, M.; Bott, A. Quantifying the effects of a low-ozone event and shallow stratocumulus clouds on ultraviolet erythemal radiation exposure. Int. J. Biometeorol. 2019, 63, 359–369. [Google Scholar] [CrossRef]
- Krins, A.; Bolsée, D.; Dörschel, B.; Gillotay, D.; Knuschke, P. Angular Dependence of the Efficiency of the UV Sensor Polysulphone Film. Radiat. Prot. Dosim. 2000, 87, 261–266. [Google Scholar] [CrossRef]
- Ryer, A.; Light, U.; Light, V. Light Measurement Handbook; Technical Publications Dept.: Newburyport, MA, USA, 1997.
- Huang, B.; Dai, C.H.; Yu, J.L. Research and test of the cosine response property of UV radiometers. Guangxue Jishu/Opt. Tech. 2010, 36, 176–181. [Google Scholar]
- Larason, T.C.; Cromer, C.L. Sources of Error in UV Radiation Measurements. J. Res. Natl. Inst. Stand. Technol. 2001, 106, 649–656. [Google Scholar] [CrossRef]
- Davis, A.; Kockott, D.; Schroepl, F. Measuring UV-dosage with the help of polysulphone films. In Proceedings of the First European Congress of Photobiology, Grenoble, France, 7–12 September 1986. [Google Scholar]
- Heydenreich, J.; Wulf, H.C. Personal electronic UVR dosimeter measurements: Specific and general uncertainties. Photochem. Photobiol. Sci. 2019, 18, 1461–1470. [Google Scholar] [CrossRef]
- DIN 5031-11:2011-04. Optical Radiation Physics and Illuminating Engineering—Part 11: Radiometer for Measuring Actinic Radiant Quantities—Terms, Characteristics and Their Classification; German Institute for Standardization: Berlin, German; Beuth-Verlag: Berlin, German, 2011. [Google Scholar]
- Seckmeyer, G.; Klingebiel, M.; Riechelmann, S.; Lohse, I.; McKenzie, R.L.; Liley, J.B.; Allen, M.W.; Siani, A.M.; Casale, G.R. A critical assessment of two types of personal UV dosimeters. Photochem. Photobiol. 2012, 88, 215–222. [Google Scholar] [CrossRef]
- Zolzer, F.; Bauer, S. Solar Ultraviolet Radiation Risk Estimates-A Comparison of Different Action Spectra and Detector Responsivities. Int. J. Environ. Res. Public Health 2021, 18, 4887. [Google Scholar] [CrossRef] [PubMed]
- Schmalwieser, A.W.; Casale, G.R.; Colosimo, A.; Schmalwieser, S.S.; Siani, A.M. Review on Occupational Personal Solar UV Exposure Measurements. Atmosphere 2021, 12, 142. [Google Scholar] [CrossRef]
- Schmalwieser, A.W.; Siani, A.M. Review on Nonoccupational Personal Solar UV Exposure Measurements. Photochem. Photobiol. 2018, 94, 900–915. [Google Scholar] [CrossRef]
- Schmalwieser, A.W. Possibilities to estimate the personal UV radiation exposure from ambient UV radiation measurements. Photochem. Photobiol. Sci. 2020, 19, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Schmalwieser, A.W.; Schauberger, G.; Janouch, M.; Nunez, M.; Koskela, T.; Berger, D.; Karamanian, G. Global forecast model to predict the daily dose of the solar erythemally effective UV radiation. Photochem. Photobiol. 2005, 81, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.C.; Vuilleumier, L.; Backes, C.; Nenes, A.; Vernez, D. Satellite-Based Personal UV Dose Estimation. Atmosphere 2021, 12, 268. [Google Scholar] [CrossRef]
- Cheng, W.; Brown, R.; Vernez, D.; Goldberg, D. Estimation of Individual Exposure to Erythemal Weighted UVR by Multi-Sensor Measurements and Integral Calculation. Sensors 2020, 20, 4068. [Google Scholar] [CrossRef]
- Vernez, D.; Milon, A.; Vuilleumier, L.; Bulliard, J.L.; Koechlin, A.; Boniol, M.; Dore, J.F. A general model to predict individual exposure to solar UV by using ambient irradiance data. J. Expo. Sci. Environ. Epidemiol. 2015, 25, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.M.; Kapelos, G.T.; Shoemaker, M.; Watson, M. Shade as an Environmental Design Tool for Skin Cancer Prevention. Am. J. Public Health 2018, 108, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- McWilliam, W.; Wesener, A.; Sukumar, A.; Brown, R.D. Reducing the Incidence of Skin Cancer through Landscape Architecture Design Education. Sustainability 2020, 12, 9402. [Google Scholar] [CrossRef]
- Sun, J.; Lucas, R.M.; Harrison, S.; van der Mei, I.; Armstrong, B.K.; Nowak, M.; Brodie, A.; Kimlin, M.G. The relationship between ambient ultraviolet radiation (UVR) and objectively measured personal UVR exposure dose is modified by season and latitude. Photochem. Photobiol. Sci. 2014, 13, 1711–1718. [Google Scholar] [CrossRef] [Green Version]
- Weihs, P.; Schmalwieser, A.; Reinisch, C.; Meraner, E.; Walisch, S.; Harald, M. Measurements of personal UV exposure on different parts of the body during various activities. Photochem. Photobiol. 2013, 89, 1004–1007. [Google Scholar] [CrossRef]
- Strehl, C.; Wittlich, M. Hautkrebs Durch Natürliche UV-Strahlung—Neue Metrik für die Expositionsermittlung und–Bewertung. 2021; Submitted. [Google Scholar]
- Kauppinen, T. Finnish occupational exposure databases. Appl. Occup. Environ. Hyg. 2001, 16, 154–158. [Google Scholar] [CrossRef] [PubMed]
Measurement Number | Date | Time [CEST] | Incident Angle of Solar Radiation | Weather Conditions |
---|---|---|---|---|
1 | 26 May 2020 | 07:00–17:00 | 0° | Sunny |
2 | 29 May 2020 | 07:00–17:00 | 30° | Sunny |
3 | 18 June 2020 | 08:00–17:00 | 0° | Partly cloudy |
4 | 19 June 2020 | 12:00–15:00 | 0° | Partly cloudy |
5 | 23 June 2020 | 07:00–10:00 | 0° | Sunny |
6 | 24 June 2020 | 07:00–17:00 | 110° | Sunny |
7 | 26 June 2020 | 07:00–17:00 | 60° | Sunny |
8 | 10 September 2020 | 08:00–17:00 | 85° | Sunny |
Measurement Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Time [CEST] | 07:00–17:00 | 07:00–17:00 | 08:00–17:00 | 12:00–15:00 | 07:00–10:00 | 07:00–17:00 | 07:00–17:00 | 18:00–17:00 |
Incident Angle of Solar Radiation | 0° | 30° | 0° | 0° | 0° | 110° | 60° | 85° |
Mean UV Dose (Standard Deviation) [J/m2] | ||||||||
X2012-10 V1 | 4010 (160) | 3590 (170) | 2540 (110) | 1190 (60) | 461 (17) | 1100 (60) | 3210 (190) | 1300 (60) |
X2012-10 V3 | 3690 (85) | 3220 (160) | 2310 (70) | 1090 (36) | 408 (9) | 1001 (48) | 2870 (140) | 1150 (36) |
PSF: | 5390 (380) | 4550 (900) | 3280 (260) | 1400 (160) | 520 (100) | 1200 (180) | 3810 (490) | 870 (50) |
PSF + Filter: | 5520 (310) | 4150 (190) | 3410 (200) | 1450 (70) | 560 (60) | 880 (70) | 2210 (190) | 747 (8) |
VioSpor type III | 4970 (30) | 3190 (40) | 3210 (50) | 1190 (30) | 1161 (17) | 2430 (700) | 5290 (30) | 810 (740) 1 |
VioSpor type II | 3990 (130) | 3200 (6) | 2923 (210) | 1196 (4) | - | - | - | - |
Property | X2012-10 | PSF | VioSpor |
---|---|---|---|
Price (short term) | −−− | +++ | ++ |
Price (long term) | ++ | o | −− |
Temporal resolution | +++ | −−− | −−− |
Reproducibility | ++ | + | − |
Sampling rate | o | ++ | ++ |
Measurement range | +++ | − | −−− |
Size and weight | o | +++ | ++ |
Ease of use (for subject) | + | ++ | ++ |
Evaluation process | +++ | − | − |
Data validity | +++ | + | + |
Upgradability | +++ | −−− | −−− |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strehl, C.; Heepenstrick, T.; Knuschke, P.; Wittlich, M. Bringing Light into Darkness—Comparison of Different Personal Dosimeters for Assessment of Solar Ultraviolet Exposure. Int. J. Environ. Res. Public Health 2021, 18, 9071. https://doi.org/10.3390/ijerph18179071
Strehl C, Heepenstrick T, Knuschke P, Wittlich M. Bringing Light into Darkness—Comparison of Different Personal Dosimeters for Assessment of Solar Ultraviolet Exposure. International Journal of Environmental Research and Public Health. 2021; 18(17):9071. https://doi.org/10.3390/ijerph18179071
Chicago/Turabian StyleStrehl, Claudine, Timo Heepenstrick, Peter Knuschke, and Marc Wittlich. 2021. "Bringing Light into Darkness—Comparison of Different Personal Dosimeters for Assessment of Solar Ultraviolet Exposure" International Journal of Environmental Research and Public Health 18, no. 17: 9071. https://doi.org/10.3390/ijerph18179071
APA StyleStrehl, C., Heepenstrick, T., Knuschke, P., & Wittlich, M. (2021). Bringing Light into Darkness—Comparison of Different Personal Dosimeters for Assessment of Solar Ultraviolet Exposure. International Journal of Environmental Research and Public Health, 18(17), 9071. https://doi.org/10.3390/ijerph18179071