Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Normoxic Base Values Testing and Familiarization
2.3. Acute Hypoxic Exposure for 6 h
2.4. Constant Load Exercise Tests
2.5. Evaluation of AMS
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, P.R.; Pattinson, K.T.; Mason, N.P.; Richards, P.; Hillebrandt, D. High altitude illness. J. R. Army Med. Corps 2011, 157, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Maggiorini, M.; Buhler, B.; Walter, M.; Oelz, O. Prevalence of acute mountain sickness in the Swiss Alps. BMJ 1990, 301, 853–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waeber, B.; Kayser, B.; Dumont, L.; Lysakowski, C.; Tramer, M.R.; Elia, N. Impact of Study Design on Reported Incidences of Acute Mountain Sickness: A Systematic Review. High Alt. Med. Biol. 2015, 16, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Hackett, P.H.; Roach, R.C. High-altitude illness. N. Engl. J. Med. 2001, 345, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Roach, R.C.; Maes, D.; Sandoval, D.; Robergs, R.A.; Icenogle, M.; Hinghofer-Szalkay, H.; Lium, D.; Loeppky, J.A. Exercise exacerbates acute mountain sickness at simulated high altitude. J. Appl. Physiol. 2000, 88, 581–585. [Google Scholar] [CrossRef]
- Wu, T.Y.; Ding, S.Q.; Zhang, S.L.; Duan, J.Q.; Li, B.Y.; Zhan, Z.Y.; Wu, Q.L.; Baomu, S.; Liang, B.Z.; Han, S.R.; et al. Altitude illness in Qinghai-Tibet railroad passengers. High Alt. Med. Biol. 2010, 11, 189–198. [Google Scholar] [CrossRef]
- Ge, R.L.; Stone, J.A.; Levine, B.D.; Babb, T.G. Exaggerated respiratory chemosensitivity and association with SaO2 level at 3568 m in obesity. Respir. Physiol. Neurobiol. 2005, 146, 47–54. [Google Scholar] [CrossRef]
- Schooling, C.M.; Díaz-Gutiérrez, J.; Martínez-González, M.Á.; Pons Izquierdo, J.J.; González-Muniesa, P.; Martínez, J.A.; Bes-Rastrollo, M. Living at Higher Altitude and Incidence of Overweight/Obesity: Prospective Analysis of the SUN Cohort. PLoS ONE 2016, 11, e0164483. [Google Scholar]
- Park, H.Y.; Lim, K. The effects of aerobic exercise at hypoxic condition during 6 weeks on body composition, blood pressure, arterial stiffness, and blood lipid level in obese women. Int. J. Sports Sci. Med. 2017, 1, 1–5. [Google Scholar]
- Urdampilleta, A.; González-Muniesa, P.; Portillo, M.P.; Martínez, J.A. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J. Physiol. Biochem. 2011, 68, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Lippl, F.J.; Neubauer, S.; Schipfer, S.; Lichter, N.; Tufman, A.; Otto, B.; Fischer, R. Hypobaric Hypoxia Causes Body Weight Reduction in Obese Subjects. Obesity 2010, 18, 675–681. [Google Scholar] [CrossRef]
- Rhee, E.-J. Weight Cycling and Its Cardiometabolic Impact. J. Obes. Metab. Syndr. 2017, 26, 237–242. [Google Scholar] [CrossRef]
- Netzer, N.; Strohl, K.; Faulhaber, M.; Gatterer, H.; Burtscher, M. Hypoxia-Related Altitude Illnesses. J. Travel Med. 2013, 20, 247–255. [Google Scholar] [CrossRef]
- Parameswaran, K.; Todd, D.C.; Soth, M. Altered respiratory physiology in obesity. Can. Respir. J. 2006, 13, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Roach, R.C.; Loeppky, J.A.; Icenogle, M.V. Acute mountain sickness: Increased severity during simulated altitude compared with normobaric hypoxia. J. Appl. Physiol. 1996, 81, 1908–1910. [Google Scholar] [CrossRef] [Green Version]
- Chawla, S.; Saxena, S. Physiology of high-altitude acclimatization. Resonance 2014, 19, 538–548. [Google Scholar] [CrossRef]
- San Martin, R.; Brito, J.; Siques, P.; Leon-Velarde, F. Obesity as a Conditioning Factor for High-Altitude Diseases. Obes. Facts 2017, 10, 363–372. [Google Scholar] [CrossRef]
- Esenamanova, M.K.; Kochkorova, F.A.; Tsivinskaya, T.A.; Vinnikov, D.; Aikimbaev, K. Chronic intermittent high altitude exposure, occupation, and body mass index in workers of mining industry. High Alt. Med. Biol. 2014, 15, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Ri-Li, G.; Chase, P.J.; Witkowski, S.; Wyrick, B.L.; Stone, J.A.; Levine, B.D.; Babb, T.G. Obesity: Associations with acute mountain sickness. Ann. Intern. Med. 2003, 139, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Sun, Z.J.; Cao, F.; Zhao, H.; Li, C.W.; Zhang, J. Obesity is a risk factor for acute mountain sickness: A prospective study in Tibet railway construction workers on Tibetan plateau. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 119–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burtscher, M.; Flatz, M.; Faulhaber, M. Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt. Med. Biol. 2004, 5, 335–340. [Google Scholar] [CrossRef]
- Dunnwald, T.; Kienast, R.; Niederseer, D.; Burtscher, M. The Use of Pulse Oximetry in the Assessment of Acclimatization to High Altitude. Sensors 2021, 21, 1263. [Google Scholar] [CrossRef] [PubMed]
- Mazur, K.; Machaj, D.; Jastrzębska, S.; Płaczek, A.; Mazur, D. Prediction of the development and susceptibility to acute mountain sickness (AMS) by monitoring oxygen saturation (SpO2)—Literature review. J. Educ. Health Sport 2020, 10, 79–84. [Google Scholar] [CrossRef]
- Hallal, P.C.; Victora, C.G. Reliability and validity of the International Physical Activity Questionnaire (IPAQ). Med. Sci. Sports Exerc. 2004, 36, 556. [Google Scholar] [CrossRef] [PubMed]
- Dagianti, A.; Penco, M.; Bandiera, A.; Sgorbini, L.; Fedele, F. Clinical application of exercise stress echocardiography: Supine bicycle or treadmill? Am. J. Cardiol. 1998, 81, 62G–67G. [Google Scholar] [CrossRef]
- Roach, R.C.; Hackett, P.H.; Oelz, O.; Bärtsch, P.; Luks, A.M.; MacInnis, M.J.; Baillie, J.K.; Achatz, E.; Albert, E.; Andrews, J.S.; et al. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt. Med. Biol. 2018, 19, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Dehnert, C.; Grunig, E.; Mereles, D.; von Lennep, N.; Bartsch, P. Identification of individuals susceptible to high-altitude pulmonary oedema at low altitude. Eur. Respir. J. 2005, 25, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Beidleman, B.A.; Fulco, C.S.; Muza, S.R.; Rock, P.B.; Staab, J.E.; Forte, V.A.; Brothers, M.D.; Cymerman, A. Effect of six days of staging on physiologic adjustments and acute mountain sickness during ascent to 4300 meters. High Alt. Med. Biol. 2009, 10, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Rathat, C.; Richalet, J.P.; Herry, J.P.; Larmignat, P. Detection of high-risk subjects for high altitude diseases. Int. J. Sports Med. 1992, 13 (Suppl. 1), S76–S78. [Google Scholar] [CrossRef] [PubMed]
- Naimark, A.; Cherniack, R.M. Compliance of the respiratory system and its components in health and obesity. J. Appl. Physiol. 1960, 15, 377–382. [Google Scholar] [CrossRef]
- Lazarus, R.; Sparrow, D.; Weiss, S.T. Effects of obesity and fat distribution on ventilatory function: The normative aging study. Chest 1997, 111, 891–898. [Google Scholar] [CrossRef]
- Favret, F.; Richalet, J.P. Exercise and hypoxia: The role of the autonomic nervous system. Respir. Physiol. Neurobiol. 2007, 158, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Loeppky, J.A.; Icenogle, M.V.; Charlton, G.A.; Conn, C.A.; Maes, D.; Riboni, K.; Gates, L.; Melo, M.F.; Roach, R.C. Hypoxemia and acute mountain sickness: Which comes first? High Alt. Med. Biol. 2008, 9, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Dhar, P.; Sharma, V.K.; Das, S.K.; Barhwal, K.; Hota, S.K.; Singh, S.B. Differential responses of autonomic function in sea level residents, acclimatized lowlanders at >3500 m and Himalayan high altitude natives at >3500 m: A cross-sectional study. Respir. Physiol. Neurobiol. 2018, 254, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Lundby, C.; Calbet, J.; van Hall, G.; Saltin, B.; Sander, M. Sustained sympathetic activity in altitude acclimatizing lowlanders and high-altitude natives. Scand. J. Med. Sci. Sports 2018, 28, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.W.; Taylor, B.J.; Hulsebus, M.L.; Johnson, B.D.; Snyder, E.M. Hypoxia induced changes in lung fluid balance in humans is associated with beta-2 adrenergic receptor density on lymphocytes. Respir. Physiol. Neurobiol. 2012, 183, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Lumachi, F.; Marzano, B.; Fanti, G.; Basso, S.M.; Mazza, F.; Chiara, G.B. Hypoxemia and hypoventilation syndrome improvement after laparoscopic bariatric surgery in patients with morbid obesity. In Vivo 2010, 24, 329–331. [Google Scholar]
- Siebenmann, C.; Ryrso, C.K.; Oberholzer, L.; Fisher, J.P.; Hilsted, L.M.; Rasmussen, P.; Secher, N.H.; Lundby, C. Hypoxia-induced vagal withdrawal is independent of the hypoxic ventilatory response in men. J. Appl. Physiol. 2019, 126, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Strapazzon, G.; Cogo, A.; Semplicini, A. Acute mountain sickness in a subject with metabolic syndrome at high altitude. High Alt. Med. Biol. 2008, 9, 245–248. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.H.; Gao, X.B.; Wu, X.J.; Yu, J.; Chen, J.F.; Bian, S.Z.; Ding, X.H.; Huang, L. Correlation between blood pressure changes and AMS, sleeping quality and exercise upon high-altitude exposure in young Chinese men. Mil. Med. Res. 2014, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Stoltzfus, K.B.; Naylor, D.; Cattermole, T.; Ankeney, A.; Mount, R.; Chang, R.; Gibson, C.A. Blood Pressure Changes While Hiking at Moderate Altitudes: A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 7978. [Google Scholar] [CrossRef] [PubMed]
- Naeije, R. Physiological adaptation of the cardiovascular system to high altitude. Prog. Cardiovasc. Dis. 2010, 52, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Bilo, G.; Caravita, S.; Torlasco, C.; Parati, G. Blood pressure at high altitude: Physiology and clinical implications. Kardiol. Pol. 2019, 77, 596–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuruskan, E.; Ercil, H.; Unal, U.; Alma, E.; Anil, H.; Sumbul, H.E.; Deniz, M.E.; Goren, M.R. Predictive Factors Affecting the Success of Nephrectomy for the Treatment of Nephrogenic Hypertension: Multicenter Study. Urol. Int. 2021, 105, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Mai, K.; Klug, L.; Rakova, N.; Piper, S.K.; Mahler, A.; Bobbert, T.; Schulz-Menger, J.; Spranger, J.; Boschmann, M.; Luft, F.C. Hypoxia and exercise interactions on skeletal muscle insulin sensitivity in obese subjects with metabolic syndrome: Results of a randomized controlled trial. Int. J. Obes. 2020, 44, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zeng, J.; Yan, Y.; Xu, F. Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis. Int. J. Environ. Res. Public Health 2021, 18, 9078. https://doi.org/10.3390/ijerph18179078
Xu J, Zeng J, Yan Y, Xu F. Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis. International Journal of Environmental Research and Public Health. 2021; 18(17):9078. https://doi.org/10.3390/ijerph18179078
Chicago/Turabian StyleXu, Jing, Jinshu Zeng, Yelei Yan, and Fei Xu. 2021. "Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis" International Journal of Environmental Research and Public Health 18, no. 17: 9078. https://doi.org/10.3390/ijerph18179078
APA StyleXu, J., Zeng, J., Yan, Y., & Xu, F. (2021). Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis. International Journal of Environmental Research and Public Health, 18(17), 9078. https://doi.org/10.3390/ijerph18179078