Rare Defects: Looking at the Dark Face of the Thrombosis
Abstract
:1. Introduction
1.1. Inherited Disorders of Fibrinogen and Thrombosis: Afibrinogenemia and Dysfibrinogenemia
1.1.1. Afibrinogenemia
1.1.2. Dysfibrinogenemia
1.1.3. Prothrombin
1.1.4. Factor V (FV)
1.1.5. Factor VII (FVII) Deficiency
1.1.6. Factor FXI (FXI)
2. Tissue Factor Pathway Inhibitor (TFPI)
2.1. Thrombomodulin
2.2. Disorders of Fibrinolysis
3. ADAMTS13
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations:
References
- Cushman, M.; Heit, J.A.; Spencer, F.A.; White, R.H. The epidemiology of venous thromboembolism. J. Thromb. Thrombolysis 2016, 41, 3–14. [Google Scholar]
- Blanco-Vaca, F.; Borrell, M.; Souto, J.C. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: The GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am. J. Hum. Genet. 2000, 67, 1452–1459. [Google Scholar]
- Bucciarelli, P.; Rosendaal, F.R.; Tripodi, A.; Mannucci, P.M.; De Stefano, V.; Palareti, G.; Finazzi, G.; Baudo, F.; Quintavalla, R. Risk of venous thromboembolism and clinical manifestations in carriers of antithrombin, protein C, protein S deficiency, or activated protein C resistance: A multicenter collaborative family study. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1026–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadatnia, M.; Salehi, M.; Movahedian, A.; Shariat, S.Z.; Salari, M.; Tajmirriahi, M.; Asadimobarakeh, E.; Salehi, R.; Amini, G.; Ebrahimi, H.; et al. Factor V Leiden, factor V Cambridge, factor II GA20210, and methylenetetrahydrofolate reductase in cerebral venous and sinus thrombosis: A case-control study. J. Res. Med. Sci. 2015, 20, 554–562. [Google Scholar] [CrossRef] [PubMed]
- De Haan, H.G.; Bezemer, I.D.; Doggen, C.J.; Le Cessie, S.; Reitsma, P.H.; Arellano, A.R.; Tong, C.H.; Devlin, J.J.; Bare, L.A.; Rosendaal, F.R.; et al. Multiple SNP testing improves risk prediction of first venous thrombosis. Blood 2012, 120, 656–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, S.; Wang, L.; Smith, E.N.; Gordon, W.; van Hylckama Vlieg, A.; de Andrade, M.; Brody, J.A.; Pattee, J.W.; Haessler, J.; Brumpton, B.M.; et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood 2019, 134, 1645–1657. [Google Scholar] [CrossRef]
- Olaf, M.; Cooney, R. Deep Venous Thrombosis. Emerg. Med. Clin. N. Am. 2017, 35, 743–770. [Google Scholar] [CrossRef]
- Heit, J.A.; Cunningham, J.M.; Petterson, T.M.; Armasu, S.M.; Rider, D.N.; De Andrade, M. Genetic variation within the anticoagulant, procoagulant, fibrinolytic and innate immunity pathways as risk factors for venous thromboembolism. J. Thromb. Haemost. 2011, 9, 1133–1142. [Google Scholar] [CrossRef] [Green Version]
- Peyvandi, F. Epidemiology and treatment of congenital fibrinogen deficiency. Thromb. Res. 2012, 130 (Suppl. 2), S7–S11. [Google Scholar] [CrossRef]
- Acharya, S.S.; Dimichele, D.M. Rare inherited disorders of fibrinogen. Haemophilia 2008, 14, 1151–1158. [Google Scholar] [CrossRef]
- Korte, W.; Poon, M.C.; Iorio, A.; Makris, M. Thrombosis in Inherited Fibrinogen Disorders. Transfus. Med. Hemother. 2017, 44, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Margaglione, M.; Vecchione, G.; Cappucci, F.; Macarini, L.; D’Andrea, G.; Di Matteo, C.; Grandone, E. Venous thrombosis in afibrinogenemia: A successful use of rivaroxaban. Haemophilia 2015, 21, e431–e433. [Google Scholar] [CrossRef]
- Franchini, M.; Lippi, G. Fibrinogen replacement therapy: A critical review of the literature. Blood Transfus. 2012, 10, 23–27. [Google Scholar] [PubMed]
- Bornikova, L.; Peyvandi, F.; Allen, G.; Bernstein, J.; Manco-Johnson, M.J. Fibrinogen replacement therapy for congenital fibrinogen deficiency. J. Thromb. Haemost. 2011, 9, 1687–1704. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Denis, C.V.; Subbarao, S.; Degen, J.L.; Sato, T.N.; Hynes, R.O.; Wagner, D.D. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J. Clin. Investig. 2000, 106, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.E. Diagnosis and management of dysfibrinogenemia. Clin. Adv. Hematol. Oncol. 2018, 16, 602–605. [Google Scholar] [PubMed]
- Shapiro, S.E.; Phillips, E.; Manning, R.A.; Morse, C.V.; Murden, S.L.; Laffan, M.A.; Mumford, A.D. Clinical phenotype, laboratory features and genotype of 35 patients with heritable dysfibrinogenaemia. Br. J. Haematol. 2013, 160, 220–227. [Google Scholar] [CrossRef]
- Hayes, T. Dysfibrinogenemia and thrombosis. Arch. Pathol. Lab. Med. 2002, 126, 1387–1390. [Google Scholar] [CrossRef]
- Casini, A.; De Moerloose, P.; Neerman-Arbez, M. Clinical Features and Management of Congenital Fibrinogen Deficiencies. Semin. Thromb. Hemost. 2016, 42, 366–374. [Google Scholar]
- Miesbach, W.; Galanakis, D.; Scharrer, I. Treatment of patients with dysfibrinogenemia and a history of abortions during pregnancy. Blood Coagul. Fibrinolysis 2009, 20, 366–370. [Google Scholar] [CrossRef]
- Haverkate, F.; Samama, M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb. Haemost. 1995, 73, 151–161. [Google Scholar]
- Miesbach, W.; Scharrer, I.; Henschen, A.; Neerman-Arbez, M.; Spitzer, S.; Galanakis, D. Inherited dysfibrinogenemia: Clinical phenotypes associated with five different fibrinogen structure defects. Blood Coagul. Fibrinolysis 2010, 21, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.A.; Marsh, J.J.; Chiles, P.G.; Magana, M.M.; Liang, N.C.; Soler, X.; Desantis, D.J.; Ngo, D.; Woods, V.L., Jr. High prevalence of dysfibrinogenemia among patients with chronic thromboembolic pulmonary hypertension. Blood 2009, 114, 1929–1936. [Google Scholar] [CrossRef] [Green Version]
- Mosesson, M.W. Fibrinogen and fibrin polymerization. Appraisal of the binding events that accompany fibrin generation and fibrin clot assembly. Blood Coagul. Fibrinolysis 1997, 8, 257–267. [Google Scholar] [CrossRef]
- Aiqiu, W.; Yangyang, W.; Liqun, X.; Jie, Y.; Peng, C.; Donghong, D.; Faquan, L. Congenital dysfibrinogenemia caused by γAla327Val mutation: Structural abnormality of D region. Hematology 2021, 26, 305–311. [Google Scholar]
- Lancellotti, S.; Basso, M.; De Cristofaro, R. Congenital prothrombin deficiency: An update. Semin. Thromb. Hemost. 2013, 39, 596–606. [Google Scholar] [CrossRef]
- Miyawaki, Y.; Suzuki, A.; Fujita, J.; Maki, A.; Okuyama, E.; Murata, M.; Takagi, A.; Murate, T.; Kunishima, S.; Sakai, M.; et al. Thrombosis from a prothrombin mutation conveying antithrombin resistance. N. Engl. J. Med. 2012, 366, 2390–2396. [Google Scholar] [CrossRef] [Green Version]
- Djordjevic, V.; Kovac, M.; Miljic, P.; Murata, M.; Takagi, A.; Pruner, I.; Francuski, D.; Kojima, T.; Radojkovic, D. A novel prothrombin mutation in two families with prominent thrombophilia—the first cases of antithrombin resistance in a Caucasian population. J. Thromb. Haemost. 2013, 11, 1936–1939. [Google Scholar] [CrossRef] [PubMed]
- Bulato, C.; Radu, C.M.; Campello, E.; Gavasso, S.; Spiezia, L.; Tormene, D.; Simioni, P. New prothrombin mutation (Arg596Trp, prothrombin Padua 2) associated with venous thromboembolism. Arter. Thromb. Vasc. Biol. 2016, 36, 1022–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.P.; Lee, C.K.; Kwong, Y.L.; Lam, C.K.; Liang, R. A novel mutation of Arg306 of factor V gene in Hong Kong Chinese. Blood 1998, 91, 1135–1139. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.; Brown, K.; Luddington, R.; Baglin, C.; Baglin, T. Factor V Cambridge: A new mutation (Arg306Thr) associated with resistance to activated protein C. Blood 1998, 91, 1140–1144. [Google Scholar] [CrossRef]
- Mumford, A.D.; McVey, J.; Morse, C.V.; Gomez, K.; Steen, M.; Norstrom, E.A.; Tuddenham, E.G.D.; Dahlback, B.; Bolton-Maggs, P.H.B. Factor V I359T: A novel mutation associated with thrombosis and resistance to activated protein C. Br. J. Haematol. 2003, 123, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Norstrøm, E.; Thorelli, E.; Dahlbäck, B. Functional characterization of recombinant FV Hong Kong and FV Cambridge. Blood 2002, 100, 524–530. [Google Scholar] [CrossRef]
- Nogami, K.; Shinozawa, K.; Ogiwara, K.; Matsumoto, T.; Amano, K.; Fukutake, K.; Shima, M. Novel FV mutation (W1920R, FVNara) associated with serious deep vein thrombosis and more potent APC resistance relative to FVLeiden. Blood 2014, 123, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, E.; Hézard, N.; Mourey, G.; Wichapong, K.; Poggi, M.; Ibrahim-Kosta, M.; Thomassen, M.C.L.G.D.; Fournel, A.; Hayward, C.P.M.; Alessi, M.; et al. Severe thrombophilia in a factor V-deficient patient homozygous for the Ala2086Asp mutation (FV Besançon). J. Thromb. Haemost. 2021, 19, 1186–1199. [Google Scholar] [CrossRef]
- Marty, S.; Barro, C.; Chatelain, B.; Fimbel, B.; Tribout, B.; Reynaud, J.; Schved, J.F.; Giansly-Blaizot, M. The paradoxical association between inherited factor VII deficiency and venous thrombosis. Haemophilia 2008, 14, 564–570. [Google Scholar] [CrossRef]
- Mariani, G.; Bernardi, F. Factor VII deficiency. Semin. Thromb. Hemost. 2009, 35, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Giansily-Blaizot, M.; Marty, S.; Chen, S.W.; Pellequer, J.L.; Schved, J.F. Is the coexistence of thromboembolic events and Factor VII deficiency fortuitous? Thromb. Res. 2012, 130 (Suppl. 1), S47–S49. [Google Scholar] [CrossRef]
- Girolami, A.; Candeo, N.; Bonamigo, E.; Fabris, F. Arg 304 Gln (FVII Padua) and Ala 294 Val mutations are equally present in patients with FVII deficiency and thrombosis. Eur. J. Haematol. 2011, 87, 92–94. [Google Scholar] [CrossRef]
- Girolami, A.; Berti de Marinis, G.; Vettore, S.; Girolami, B. Congenital FVII Deficiency and Pulmonary Embolism: A Critical Appraisal of All Reported Cases. Clin. Appl. Thromb. Hemost. 2012, 19, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Girolami, A.; Bertozzi, I.; Rigoni, I.; Muzzolon, R.; Vettore, S. Congenital FVII deficiency and thrombotic events after replacement therapy. J. Thromb. Thrombolysis 2011, 32, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Veneri, D.; Lippi, G. Inherited factor XI deficiency: A concise review. Hematology 2006, 11, 307–309. [Google Scholar] [CrossRef]
- Tiscia, G.L.; Favuzzi, G.; Lupone, M.R.; Cappucci, F.; Schiavulli, M.; Mirabelli, V.; D’Andrea, G.; Chinni, E.; Giuliani, N.; Caliandro, R.; et al. Factor XI gene variants in factor XI-deficient patients of Southern Italy: Identification of a novel mutation and genotype-phenotype relationship. Hum. Genome Var. 2017, 4, 17043. [Google Scholar] [CrossRef] [PubMed]
- Gidley, G.N.; Holle, L.A.; Burthem, J.; Bolton-Maggs, P.H.B.; Lin, F.C.; Wolberg, A.S. Abnormal plasma clot formation and fibrinolysis reveal bleeding tendency in patients with partial factor XI deficiency. Blood Adv. 2018, 2, 1076–1088. [Google Scholar] [CrossRef] [Green Version]
- Palla, R.; Peyvandi, F.; Shapiro, A.D. Rare bleeding disorders: Diagnosis and treatment. Blood 2015, 125, 2052–2061. [Google Scholar] [CrossRef] [PubMed]
- Salomon, O.; Steinberg, D.M.; Zucker, M.; Varon, D.; Zivelin, A.; Seligsohn, U. Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb. Haemost. 2011, 105, 269–273. [Google Scholar] [CrossRef]
- Suri, M.F.; Yamagishi, K.; Aleksic, N.; Hannan, P.J.; Folsom, A.R. Novel hemostatic factor levels and risk of ischemic stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Cerebrovasc. Dis. 2010, 29, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.T.; Flanders, M.M.; Kim, H.; Rodgers, G.M. Elevated factor XI activity levels are associated with an increased odds ratio for cerebrovascular events. Am. J. Clin. Pathol. 2006, 126, 411–415. [Google Scholar] [CrossRef]
- Salomon, O.; Steinberg, D.M.; Dardik, R.; Rosenberg, N.; Zivelin, A.; Tamarin, I.; Ravid, B.; Berliner, S.; Seligsohn, U. Inherited factor XI deficiency confers no protection against acute myocardial infarction. J. Thromb. Haemost. 2003, 1, 658–661. [Google Scholar] [CrossRef]
- Meijers, J.C.M.; Tekelenburg, W.L.; Bouma, B.N.; Bertina, R.M.; Rosendaal, F.R. High levels of coagulation factor XI as a risk factor for venous thrombosis. N. Engl. J. Med. 2000, 342, 696–701. [Google Scholar] [CrossRef]
- Rietveld, I.W.; Lijfering, W.M.; le Cessie, S.; Bos, M.H.A.; Rosendaal, F.R.; Reitsma, P.H.; Cannegieter, S.C. High levels of coagulation factors and venous thrombosis risk: Strongest association for factor VIII and von Willebrand factor. J. Thromb. Haemost. 2019, 17, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Libourel, E.J.; Bank, I.; Meinardi, J.R.; Balje-Volkers, C.P.; Hamulyak, K.; Middeldorp, S.; Koopman, M.M.W.; van Pampus, E.C.M.; Prins, M.H.; Buller, H.R.; et al. Co-segregation of thrombophilic disorders in factor V Leiden carriers; the contributions of factor VIII, factor XI, thrombin actvatable fibrinolysis inhibitor and lipoprotein(a) to the absolute risk of venous thromboembolism. Haematologica 2002, 87, 1068–1073. [Google Scholar] [PubMed]
- Grover, S.P.; Olson, T.M.; Cooley, B.C.; Mackman, N. Model-dependent contributions of FXII and FXI to venous thrombosis in mice. J. Thromb. Haemost. 2020, 18, 2899–2909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Löwenberg, E.C.; Crosby, J.R.; MacLeod, A.R.; Zhao, C.; Gao, D.; Black, C.; Revenko, A.S.; Meijers, J.C.; Stroes, E.S.; et al. Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: A novel antithrombotic strategy with lowered bleeding risk. Blood 2010, 116, 4684–4692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büller, H.R.; Bethune, C.; Bhanot, S.; Gailani, D.; Monia, B.P.; Raskob, G.E.; Segers, A.; Verhamme, P.; Weitz, J.I. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med. 2015, 372, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Verhamme, P.; Yi, B.A.; Segers, A.; Salter, J.; Bloomfield, D.; Büller, H.R.; Raskob, G.E.; Weitz, J.I. Abelacimab for Prevention of Venous Thromboembolism. N. Engl. J. Med. 2021, 385, 609–617. [Google Scholar] [CrossRef]
- Cimmino, G.; Ciccarelli, G.; Golino, P. Role of Tissue Factor in the Coagulation Network. Semin. Thromb. Hemost. 2015, 41, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, B.; Luther, T.; Müller, I. Intravascular tissue factor pathway--a model for rapid initiation of coagulation within the blood vessel. Thromb. Haemost. 2003, 89, 3–8. [Google Scholar] [PubMed]
- Toschi, V.; Gallo, R.; Lettino, M.; Fallon, J.T.; Gertz, S.D.; Fernandez-Ortiz, A.; Chesebro, J.H.; Badimon, L.; Nemerson, Y.; Fuster, V.; et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997, 95, 594–599. [Google Scholar] [CrossRef]
- López-Pedrera, C.; Barbarroja, N.; Dorado, G.; Siendones, E.; Velasco, F. Tissue factor as an effector of angiogenesis and tumor progression in hematological malignancies. Leukemia 2006, 20, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Grover, S.P.; Mackman, N. Tissue Factor. An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Fei, X.; Wang, H.; Yuan, W.; Wo, M.; Jiang, L. Tissue Factor Pathway Inhibitor-1 Is a Valuable Marker for the Prediction of Deep Venous Thrombosis and Tumor Metastasis in Patients with Lung Cancer. BioMed Res. Int. 2017, 2017, 8983763. [Google Scholar] [CrossRef]
- Kobayashi, M.; Wada, H.; Wakita, Y.; Shimura, M.; Nakase, T.; Hiyoyama, K.; Nagaya, S.; Minami, N.; Nakano, T.; Shiku, H. Decreased plasma tissue factor pathway inhibitor levels in patients with thrombotic thrombocytopenic purpura. Thromb. Haemost. 1995, 73, 10–14. [Google Scholar]
- Zakai, N.A.; Lutsey, P.L.; Folsom, A.R.; Heckbert, S.R.; Cushman, M. Total tissue factor pathway inhibitor and venous thrombosis. The Longitudinal Investigation of Thromboembolism Etiology. Thromb. Haemost. 2010, 104, 207–212. [Google Scholar] [CrossRef]
- Suzuki, K.; Kusumoto, H.; Deyashiki, Y.; Nishioka, J.; Maruyama, I.; Zushi, M.; Kawahara, S.; Honda, G.; Yamamoto, S.; Horiguchi, S. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 1987, 6, 1891–1897. [Google Scholar] [CrossRef]
- Suzuki, K.; Hayashi, T.; Nishioka, J.; Kosaka, Y.; Zushi, M.; Honda, G.; Yamamoto, S. A domain composed of epidermal growth factor-like structures of human thrombomodulin is essential for thrombin binding and for protein C activation. J. Biol. Chem. 1989, 264, 4872–4876. [Google Scholar] [CrossRef]
- Nesheim, M.; Wang, W.; Boffa, M.; Nagashima, M.; Morser, J.; Bajzar, L. Thrombin, thrombomodulin, and TAFI in the molecular link between coagulation and fibrinolysis. Thromb. Haemost. 1997, 78, 386–391. [Google Scholar] [CrossRef]
- Kumada, T.; Dittman, W.A.; Majerus, P.W. A role for thrombomodulin in the pathogenesis of thrombin-induced thromboembolism in mice. Blood 1988, 71, 728–733. [Google Scholar] [CrossRef]
- Vicente, C.P.; Weiler, H.; Di Cera, E.; Tollefsen, D.M. Thrombomodulin is required for the antithrombotic activity of thrombin mutant W215A/E217A in a mouse model of arterial thrombosis. Thromb. Res. 2012, 130, 646–648. [Google Scholar] [CrossRef] [Green Version]
- Weiler-Guettler, H.; Christie, P.D.; Beeler, D.L.; Healy, A.M.; Hancock, W.W.; Rayburn, H.; Edelberg, J.M.; Rosenberg, R.D. Targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J. Clin. Investig. 1998, 101, 1983–1991. [Google Scholar] [CrossRef] [Green Version]
- Qingyun, W.; Liang, T.; Bei, H.; Yu, H.; Han, L. Thrombomodulin Gene Mutations Associated with Thromboembolic Diseases. Blood 2015, 126, 3497. [Google Scholar]
- Ahmad, A.; Sundquist, K.; Zöller, B.; Svensson, P.J.; Sundquist, J.; Memon, A.A. Identification of Genetic Aberrations in Thrombomodulin Gene in Patients With Recurrent Venous Thromboembolism. Clin. Appl. Thromb. Hemost. 2017, 23, 319–328. [Google Scholar] [CrossRef]
- Burke, J.P.; Owen, W.; Petterson, T.M.; Heit, J.A. Thrombomodulin gene polymorphisms or haplotypes as potential risk factors for venous thromboembolism: A population-based case-control study. J. Thromb. Haemost. 2005, 3, 710–717. [Google Scholar]
- Sugiyama, S.; Hirota, H.; Kimura, R.; Kokubo, Y.; Kawasaki, T.; Suehisa, E.; Okayama, A.; Tomoike, H.; Hayashi, T.; Nishigami, K.; et al. Haplotype of thrombomodulin gene associated with plasma thrombomodulin level and deep vein thrombosis in the Japanese population. Thromb. Res. 2007, 119, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Dargaud, Y.; Scoazec, J.Y.; Wielders, S.J.H.; Trzeciak, C.; Hackeng, T.M.; Négrier, C.; Hemker, H.C.; Lindhout, T.; Castoldi, E. Characterization of an autosomal dominant bleeding disorder caused by a thrombomodulin mutation. Blood 2015, 125, 1497–1501. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Takeshita, K.; Saito, H. Plasminogen activator inhibitor-1 in aging. Semin. Thromb. Hemost. 2014, 40, 652–659. [Google Scholar] [PubMed]
- Mutch, N.J.; Thomas, L.; Moore, N.R.; Lisiak, K.M.; Booth, N.A. TAFIa, PAI-1 and alpha-antiplasmin: Complementary roles in regulating lysis of thrombi and plasma clots. J. Thromb. Haemost. 2007, 5, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Schuster, V.; Hügle, B.; Tefs, K. Plasminogen deficiency. J. Thromb. Haemost. 2007, 5, 2315–2322. [Google Scholar] [CrossRef]
- Asselbergs, F.W.; Pattin, K.; Snieder, H.; Hillege, H.L.; Van Gilst, W.H.; Moore, J.H. Genetic architecture of tissue-type plasminogen activator and plasminogen activator inhibitor-1. Semin. Thromb. Hemost. 2008, 34, 562–568. [Google Scholar] [CrossRef]
- Tefs, K.; Gueorguieva, M.; Klammt, J.; Allen, C.M.; Aktas, D.; Anlar, F.Y.; Aydogdu, S.D.; Brown, D.; Ciftci, E.; Contarini, P.; et al. Molecular and clinical spectrum of type I plasminogen deficiency: A series of 50 patients. Blood 2006, 108, 3021–3026. [Google Scholar] [CrossRef]
- Martin-Fernandez, L.P.; Corrales, I.; Pérez, R.; Ramírez, L.; López, S.; Vidal, F.; Soria, J.M. The Unravelling of the Genetic Architecture of Plasminogen Deficiency and its Relation to Thrombotic Disease. Sci. Rep. 2016, 6, 39255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, M.E.; Lisman, T.; de Groot, P.G.; Meijers, J.C.; le Cessie, S.; Doggen, C.J.M.; Rosendaal, F.R. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 2010, 116, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flevaris, P.; Vaughan, D. The Role of Plasminogen Activator Inhibitor Type-1 in Fibrosis. Semin. Thromb. Hemost. 2017, 43, 169–177. [Google Scholar] [CrossRef]
- Festa, A.; D’Agostino, R., Jr.; Rich, S.S.; Jenny, N.S.; Tracy, R.P.; Haffner, S.M. Promoter (4G/5G) Plasminogen Activator Inhibitor-1 Genotype and Plasminogen Activator Inhibitor-1 Levels in Blacks, Hispanics, and Non-Hispanic Whites. The Insulin Resistance Atherosclerosis Study. Circulation 2003, 107, 2422–2427. [Google Scholar] [CrossRef] [Green Version]
- Margaglione, M.; Cappucci, G.; Colaizzo, D.; Giuliani, N.; Vecchione, G.; Grandone, E.; Pennelli, O.; Di Minno, G. The PAI-1 gene locus 4G/5G polymorphism is associated with a family history of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morange. P.E.; Henry. M.; Tregouet, D.; Granel. B.; Aillaud, M.F.; Alessi, M.C.; Juhan-Vague, I. The A-844G polymorphism in the PAI-1 gene is associated with a higher risk of venous thrombosis in factor V Leiden carriers. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1387–1391. [Google Scholar] [CrossRef] [Green Version]
- Tsantes, A.E.; Nikolopoulos, G.K.; Bagos, P.G.; Rapti, E.; Mantzios, G.; Kapsimali, V.; Travlou, A. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and venous thrombosis. A meta-analysis. Thromb. Haemost. 2007, 97, 907–913. [Google Scholar] [CrossRef]
- Shenkman, B.; Budde, U.; Angerhaus, D.; Lubetsky, A.; Savion, N.; Seligsohn, U.; Varon, D. ADAMTS-13 regulates platelet adhesion under flow. A new method for differentiation between inherited and acquired thrombotic thrombocytopenic purpura. Thromb. Haemost. 2006, 96, 160–166. [Google Scholar]
- Levy, G.G.; Nichols, W.C.; Lian, E.C.; Foroud, T.; McClintick, J.N.; McGee, B.M.; Yang, A.Y.; Siemieniak, D.R.; Stark, K.R.; Gruppo, R.; et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001, 413, 488–494. [Google Scholar] [CrossRef] [Green Version]
- De Vries, P.S.; Van Herpt, T.T.W.; Ligthart, S.; Hofman, A.; Ikram, M.A.; Van Hoek, M.; Sijbrands, E.J.G.; Franco, O.H.; De Maat, M.P.M.; Leebeek, F.W.G.; et al. ADAMTS13 activity as a novel risk factor for incident type 2 diabetes mellitus: A population-based cohort study. Diabetologia 2017, 60, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Aref, S.; Goda, H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology 2013, 18, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Akyol, O.; Akyol, S.; Chen, C.H. Update on ADAMTS13 and VWF in cardiovascular and hematological disorders. Clin. Chim. Acta 2016, 463, 109–118. [Google Scholar] [CrossRef]
- South, K.; Denorme, F.; Salles-Crawley, I.I.; De Meyer, S.F.; Lane, D.A. Enhanced activity of an ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F) against platelet agglutination in vitro and in a murine model of acute ischemic stroke. Thromb. Haemost. 2018, 16, 2289–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koupenova, M.; Clancy, L.; Corkrey, H.A.; Freedman, J.E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 2018, 122, 337–351. [Google Scholar] [CrossRef]
- Koster, T.; Blann, A.D.; Briet, E.; Vandenbroucke, J.P.; Rosendaal, F.R. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep vein thrombosis. Lancet 1995, 345, 152–155. [Google Scholar] [CrossRef]
- Habe, K.; Wada, H.; Ito-Habe, N.; Hatada, T.; Matsumoto, T.; Ohishi, K.; Maruyama, K.; Imai, H.; Mizutani, H.; Nobori, T. Plasma ADAMTS13, von Willebrand factor (VWF) and VWF propeptide profiles in patients with DIC and related diseases. Thromb. Res. 2012, 129, 598–602. [Google Scholar] [CrossRef]
- Xin, C.; Shufan, Z.; Danhong, W. ADAMTS13: An Emerging Target in Stroke Therapy. Front. Neurol. 2019, 10, 772. [Google Scholar]
- Tiscia, G.L.; Ostuni, A.; Cascavilla, N.; Cappucci, F.; Scalzulli, P.; Battista, C.; Abrescia, A.; Aucella, F.; Buquicchio, C.; Brigante, M.; et al. Validation of PLASMIC score and follow-up data in a cohort of patients with suspected microangiopathies from Southern Italy. J. Thromb. Thrombolysis 2018, 46, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Bittar, L.F.; De Paula, E.V.; Mello, T.B.T.; Siqueira, L.H.; Orsi, F.L.A.; Annicchio-Bizzacchi, J.M. Polymorphisms and Mutations in vWF and ADAMTS13 Genes and Their Correlation With Plasma Levels of FVIII and vWF in Patients With Deep Venous Thrombosis. Clin. Appl. Thromb. Hemost. 2011, 17, 514–518. [Google Scholar] [CrossRef] [Green Version]
- Lotta, L.A.; Tuana, G.; Yu, J.; Martinelli, I.; Wang, M.; Yu, F.; Passamonti, S.M.; Pappalardo, E.; Valsecchi, C.; Scherer, S.E.; et al. Next-generation sequencing study finds an excess of rare, coding single-nucleotide variants of ADAMTS13 in patients with deep vein thrombosis. J. Thromb. Haemost. 2013, 11, 1228–1239. [Google Scholar] [CrossRef]
- Klarin, D.; Emdin, C.A.; Natarajan, P.; Conrad, M.F.; INVENT Consortium; Kathiresan, S. Genetic analysis of venous thromboembolism in UKBiobank identifies the ZFPM2 locus and implicates obesity as a causal risk factor. Circ. Cardiovasc. Genet. 2017, 10, e00164360. [Google Scholar] [CrossRef] [PubMed]
- Heit, J.A.; Phelps, M.A.; Ward, S.A.; Slusser, J.P.; Petterson, T.M.; De Andrade, M. Familial segregation of venous thromboembolism. J. Thromb. Haemost. 2004, 2, 731–736. [Google Scholar] [CrossRef] [PubMed]
Congenital Defects | Type of Thrombosis | References |
---|---|---|
Afibrinogenemia | Arterial and mainly venous | Korte W. et al., 2016 |
Dysfinogenemia | arterial and mainly venous | Korte, W. et al.; 2016 |
Phrotrombin | mainly venous | Djordjevic, V, 2013; Bulato, C. 2016 |
FV | mainly venous | Chan, WP 1998; Mumford, AD 2013 |
FVII | mild arterial risk, mainly venous | Marty, S. 2008. |
FXI deficiency | mild venous, mainly in association with replacement therapy | Palla, R. 2015; Puy, C. 2016. |
High FXI level | arterial (conflicting results) | Suri MF, 2010.Yang DT, 2006. Meijers JCM, 2000. I M Rietveld, 2019. |
TFPI | Athersclerotic plaque, intravascular thrombosis conflicting results, predictive value in tumor metastasis | Toschi, V. 1997; Engelman, B. 2003. |
Trombomodulin | Animals model, conflicting results in humans | Ahmad, A. et al. 2017; Burke, J.P. et al. 2005. |
PAI-1 deficiency | Mainly venous | Meltzer, M.E. et al. 2010. |
High plasminogen level | Arterial and venous | Flevaris, P. 2017; Margaglione, 1998. |
ADAMTS13 | TTP conflicting results for arterial and venous | Levy, G.G. 2001; Akyol, O. 2015; Xin, C. 2019; Bittar, L.F. 2010; L.A. Lotta, 2013. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Andrea, G.; Margaglione, M. Rare Defects: Looking at the Dark Face of the Thrombosis. Int. J. Environ. Res. Public Health 2021, 18, 9146. https://doi.org/10.3390/ijerph18179146
D’Andrea G, Margaglione M. Rare Defects: Looking at the Dark Face of the Thrombosis. International Journal of Environmental Research and Public Health. 2021; 18(17):9146. https://doi.org/10.3390/ijerph18179146
Chicago/Turabian StyleD’Andrea, Giovanna, and Maurizio Margaglione. 2021. "Rare Defects: Looking at the Dark Face of the Thrombosis" International Journal of Environmental Research and Public Health 18, no. 17: 9146. https://doi.org/10.3390/ijerph18179146
APA StyleD’Andrea, G., & Margaglione, M. (2021). Rare Defects: Looking at the Dark Face of the Thrombosis. International Journal of Environmental Research and Public Health, 18(17), 9146. https://doi.org/10.3390/ijerph18179146