Psychometric Properties of the Chinese-Language Attitude toward Physical Activity Scale: A Confirmatory Study on Chinese Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Questionnaire Translation
2.3. Data Collection
2.4. Instrument
2.5. Statistical Analysis
3. Results
Measurement Model APAS-C
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabo, A.; Kueh, Y.C.; Arifin, W.N.; Kim, Y.; Kuan, G. The validity and reliability of the Malay version of the social support for exercise and physical environment for physical activity scales. PLoS ONE 2020, 15, e0239725. [Google Scholar] [CrossRef] [PubMed]
- Kueh, Y.C.; Abdullah, N.; Kuan, G.; Morris, T.; Naing, N.N. Testing measurement and factor structure invariance of the physical activity and leisure motivation scale for youth across gender. Front. Psychol. 2018, 9, 1096. [Google Scholar] [CrossRef] [Green Version]
- Hajar, M.S.; Rizal, H.; Kuan, G. Effects of physical activity on sustained attention: A systematic review. Sci. Med. 2019, 29, e32864. [Google Scholar] [CrossRef] [Green Version]
- Basso, J.C.; Suzuki, W.A. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plast. 2017, 2, 127–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, C.H.; Erickson, K.I.; Hatfield, B.D. Run for your life! childhood physical activity effects on brain and cognition. Kinesiol. Rev. 2017, 6, 12–21. [Google Scholar] [CrossRef]
- Pogrmilovic, B.K.; O’Sullivan, G.; Milton, K.; Biddle, S.J.H.; Bauman, A.; Bull, F.; Kahlmeier, S.; Pratt, M.; Pedisic, Z. A global systematic scoping review of studies analysing indicators, development, and content of national-level physical activity and sedentary behaviour policies. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 1–17. [Google Scholar] [CrossRef]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Kahlmeier, S. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Bilgrami, Z.; Mclaughlin, L.; Milanaik, R.; Adesman, A. Health implications of new-age technologies: A systematic review. Minerva Pediatr. 2017, 69, 348–367. [Google Scholar] [CrossRef]
- Brindova, D.; Veselska, Z.D.; Klein, D.; Hamrik, Z.; Sigmundova, D.; Van Dijk, J.P.; Reijneveld, S.A.; Geckova, A.M. Is the association between screen-based behaviour and health complaints among adolescents moderated by physical activity? Int. J. Public Health 2015, 60, 139–145. [Google Scholar] [CrossRef]
- Pavelka, J.; Husarova, D.; Sevcikova, A.; Madarasova, G.A. Country, age, and gender differences in the prevalence of screen-based behaviour and family-related factors among school-aged children. Acta Gymnica 2016, 46, 143–151. [Google Scholar] [CrossRef]
- Popeska, B.; Jovanova-Mitkovska, S.; Chin, M.-K.; Edginton, C.R.; Mok, M.M.C.; Gontarev, S. Implementation of brain breaks® in the classroom and effects on attitudes toward physical activity in a Macedonian school setting. Int. J. Environ. Res. Public Health 2018, 15, 1127. [Google Scholar] [CrossRef] [Green Version]
- Bronfenbrenner, U. The Ecology of Human Development: Experiments by Nature and Design; Harvard University Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Bronfenbrenner, U.; Husen, T.; Postlethwaite, T. International encyclopedia of education. Ecol. Models Hum. Dev. 1994, 3, 37–43. [Google Scholar]
- Kim, Y.; Kosma, M. Psychosocial and environmental correlates of physical activity among Korean older adults. Res. Aging 2013, 35, 750–767. [Google Scholar] [CrossRef]
- Hills, A.P.; Dengel, D.R.; Lubans, D.R. Supporting public health priorities: Recommendations for physical education and physical activity promotion in schools. Prog. Cardiovasc. Dis. 2015, 57, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; He, S.; Zhou, Y.; Popeska, B.; Kuan, G.; Chen, L.; Chin, M.-K.; Mok, M.M.C.; Edginton, C.R.; Culpan, I.; et al. Implementation of brain breaks in the classroom and its effects on attitude towards physical activity in Chinese school setting. Int. J. Environ. Res. Public Health 2021, 18, 272. [Google Scholar] [CrossRef] [PubMed]
- Balasekaran, G.; Ibrahim, A.A.B.; Cheo, N.Y.; Wang, P.K.; Kuan, G.; Popeska, B.; Chin, M.-K.; Mok, M.M.C.; Edginton, C.R.; Culpan, I.; et al. Using Brain-Breaks as a technology tool to increase atttitude towards physical activity among students in Singapore. Brain Sci. 2021, 11, 784. [Google Scholar] [CrossRef] [PubMed]
- Glapa, A.; Grzesiak, J.; Laudanska-Krzeminska, I.; Chin, M.-K.; Edginton, C.R.; Mok, M.M.C.; Bronikowski, M. The impact of brain breaks classroom-based physical activities on attitudes toward physical activity in polish school children in third to fifth grade. Int. J. Environ. Res. Public Health 2018, 15, 368. [Google Scholar] [CrossRef] [Green Version]
- Robinson, L.E.; Stodden, D.F.; Barnett, L.M.; Lopes, V.P.; Logan, S.W.; Rodrigues, L.P.; D’Hondt, E. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015, 45, 1273–1284. [Google Scholar] [CrossRef]
- Eagly, A.H.; Chaiken, S. The Psychology of Attitudes; Harcourt Brace Jovanovich College Publishers: San Diego, CA, USA, 1993. [Google Scholar]
- Tran, Y.; Yamamoto, T.; Sato, H.; Miwa, T.; Morikawa, T. Attitude toward physical activity as a determinant of bus use intention: A case study in Asuke, Japan. IATSS Res. 2020, 44, 293–299. [Google Scholar] [CrossRef]
- Mok, M.M.C.; Chin, M.K.; Chen, S.; Emeljanovas, A.; Mieziene, B.; Bronikowski, M.; Laudanska-Krzeminska, I.; Milanovic, I.; Pasic, M.; Balasekaran, G.; et al. Psychometric properties of the attitudes toward physical activity scale: A rasch analysis based on data from five locations. J. Appl. Meas. 2015, 16, 379–400. [Google Scholar] [PubMed]
- Emeljanovas, A.; Mieziene, B.; MoChingMok, M.; Chin, M.-K.; Cesnaitiene, V.J.; Fatkulina, N.; Trinkuniene, L.; Sánchez, G.F.L.; Suárez, A.D. Efecto de un programa interactivo durante los descansos escolares en las actitudes hacia la actividad física de escolares de primaria. Ann. Psychol. 2018, 34, 580–586. [Google Scholar] [CrossRef]
- Uzunoz, F.S.; Chin, M.K.; Mok, M.M.C.; Edginton, C.R.; Podnar, H. The effects of technology supported brain-breaks on physical activity in school children. Passionately inclusive. In Towards Participation and Friendship in Sport: Festschrift für Gudrun Doll-Tepper; Dumon, D., Hofmann, A.R., Diketmüller, R., Koenen, K., Bailey, R., Zinkler, C., Eds.; Waxmann Verlag GMBH: Munster, Germany, 2017; pp. 87–104. [Google Scholar]
- Hajar, M.S.; Rizal, H.; Muhamad, A.S.; Kuan, G. The effects of brain-breaks on short-term memory among primary school children in Malaysia. In Enhancing Health and Sports Performance by Design, 1st ed.; Hassan, M.H.A., Che Muhamed, A.M., Mohd Ali, N.F.B., Lian, D.K.C., Yee, K.L., Safii, N.S., Yusof, S.M., Fauzi, N.F.M., Eds.; Springer: Singapore, 2020; pp. 1–12. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus: The Comprehensive Modeling Program for Applied Researchers: User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: London, UK, 2013. [Google Scholar]
- Wang, J.; Wang, X. Structural Equation Modeling: Applications Using Mplus; John Wiley & Sons Ltd.: Chichester, UK, 2012. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2014. [Google Scholar]
- Raykov, T.; Marcoulides, G.A. Scale reliability evaluation under multiple assumption violations. Struct. Equ. Model. A Multidiscip. J. 2016, 23, 302–313. [Google Scholar] [CrossRef]
- Tseng, W.-T.; Dörnyei, Z.; Schmitt, N. A new approach to assessing strategic learning: The case of self-regulation in vocabulary acquisition. Appl. Linguist. 2006, 27, 78–102. [Google Scholar] [CrossRef]
- Brown, T. Confirmatory Factor Analysis for Applied Research; The Guilford Press: New York, NY, USA, 2006. [Google Scholar]
- Bartholomew, J.B.; Jowers, E.M. Physically active academic lessons in elementary children. Prev. Med. 2011, 52, S51–S54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, L.L.; Venturanza, J.A.; Walsh, R.J.; Nonas, C.A. An observational evaluation of move-to-improve, a classroom-based physical activity program, New York City schools, 2010. Prev. Chronic Dis. 2012, 9, E146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kibbe, D.L.; Hackett, J.; Hurley, M.; McFarland, A.; Schubert, K.G.; Schultz, A.; Harris, S. Integrating physical activity with academic concepts in elementary school classrooms. Prev. Med. 2011, 52, S43–S50. [Google Scholar] [CrossRef] [PubMed]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Kline, B.R. Principles and Practice of Structural Equation Modeling, 3rd ed; Guilford: New York, NY, USA, 2011. [Google Scholar]
- Jöreskog, K.G.; Sörbom, D. LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language; Scientific Software International: Chapel Hill, NC, USA, 1993. [Google Scholar]
- Enders, C.K.; Tofighi, D. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychol Methods. 2007, 12, 121. [Google Scholar] [CrossRef]
Path Models | RMSEA (90% CI) | RMSEA p-Value | CFI | TLI | SRMR |
---|---|---|---|---|---|
Model 1 | 0.043 (0.041, 0.045) | 1.000 | 0.669 | 0.652 | 0.059 |
Model 2 a | 0.034 (0.030, 0.037) | 1.000 | 0.875 | 0.862 | 0.043 |
Model 3 b | 0.029 (0.025, 0.032) | 1.000 | 0.912 | 0.901 | 0.041 |
Factors and Items | Factor Loadings | Cronbach’s Alpha | Composite Reliability | ||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 3/ Final Model | |||
Benefits | 0.65 | 0.66 | |||
v1a | 0.38 | - | - | ||
v1b | 0.50 | 0.51 | 0.51 | ||
v1c | 0.37 | ||||
v1d | 0.54 | 0.64 | 0.64 | ||
v1e | 0.44 | 0.52 | 0.52 | ||
v1f | 0.35 | - | - | ||
v1g | 0.28 | - | - | ||
v1h | 0.24 | - | - | ||
v1i | 0.34 | - | - | ||
v1j | 0.48 | 0.58 | 0.59 | ||
Importance | 0.50 | 0.50 | |||
v2a | 0.30 | - | - | ||
v2b | 0.36 | 0.38 | 0.40 | ||
v2c | 0.46 | 0.48 | 0.49 | ||
v2d | 0.45 | 0.46 | 0.47 | ||
v2e | 0.44 | 0.44 | 0.43 | ||
Learning | 0.76 | 0.75 | |||
v3a | 0.39 | - | - | ||
v3b | 0.49 | 0.48 | 0.50 | ||
v3c | 0.58 | 0.54 | 0.54 | ||
v3d | 0.54 | 0.58 | 0.61 | ||
v3e | 0.58 | 0.61 | 0.60 | ||
v3f | 0.47 | 0.52 | 0.48 | ||
v3g | 0.54 | 0.60 | 0.53 | ||
V3h | 0.22 | - | - | ||
v3i | 0.39 | - | - | ||
v3j | 0.53 | 0.48 | 0.46 | ||
v3k | 0.48 | 0.56 | 0.44 | ||
Self-efficacy | 0.66 | 0.70 | |||
v4a | 0.62 | 0.63 | 0.60 | ||
v4b | 0.61 | 0.60 | 0.66 | ||
v4c | 0.51 | 0.50 | 0.50 | ||
v4d | 0.55 | 0.56 | 0.64 | ||
Fun | 0.64 | 0.67 | |||
v5a | 0.53 | 0.68 | 0.72 | ||
v5b | 0.50 | 0.59 | 0.62 | ||
v5c | 0.47 | 0.54 | 0.56 | ||
v5d | 0.40 | 0.37 | - | ||
v5e | 0.25 | - | - | ||
v5f | 0.45 | 0.44 | 0.38 | ||
v5g | 0.45 | 0.39 | - | ||
v5h | 0.39 | - | - | ||
v5i | 0.28 | - | - | ||
v5j | 0.20 | - | - | ||
v5k | 0.48 | 0.39 | - | ||
v5l | 0.39 | - | - | ||
v5m | 0.38 | - | - | ||
v5n | 0.36 | - | - | ||
Fitness | 0.70 | 0.70 | |||
v6a | 0.52 | 0.54 | 0.57 | ||
v6b | 0.54 | 0.54 | 0.55 | ||
v6c | 0.61 | 0.61 | 0.60 | ||
v6d | 0.51 | 0.50 | 0.50 | ||
v6e | 0.25 | - | - | ||
v6f | 0.46 | 0.44 | 0.41 | ||
v6g | 0.47 | 0.46 | 0.47 | ||
v6h | 0.42 | 0.41 | 0.41 | ||
Personal best | 0.50 | 0.50 | |||
v7a | 0.43 | 0.42 | 0.42 | ||
v7b | 0.36 | 0.35 | 0.34 | ||
v7c | 0.37 | - | - | ||
v7 | 0.44 | 0.44 | 0.45 | ||
v7e | 0.50 | 0.51 | 0.52 |
Variables | Benefit | Importance | Learning | Self-Efficacy | Fun | Fitness | Personal Best |
---|---|---|---|---|---|---|---|
1. Benefit | 1 | 0.01 | 0.40 | 0.08 | 0.07 | 0.15 | 0.09 |
2. Importance | 1 | 0.18 | 0.43 | 0.56 | 0.54 | 0.66 | |
3. Learning | 1 | 0.05 | 0.06 | 0.18 | 0.22 | ||
4. Self-efficacy | 1 | 0.59 | 0.43 | 0.57 | |||
5. Fun | 1 | 0.54 | 0.72 | ||||
6. Fitness | 1 | 0.77 | |||||
7. Personal best | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; He, S.; Zhou, K.; Kuan, G.; Chin, M.-K.; Kueh, Y.C.; Sabo, A.; Popeska, B.; Durstine, J.L. Psychometric Properties of the Chinese-Language Attitude toward Physical Activity Scale: A Confirmatory Study on Chinese Children. Int. J. Environ. Res. Public Health 2021, 18, 9253. https://doi.org/10.3390/ijerph18179253
Zhou Y, He S, Zhou K, Kuan G, Chin M-K, Kueh YC, Sabo A, Popeska B, Durstine JL. Psychometric Properties of the Chinese-Language Attitude toward Physical Activity Scale: A Confirmatory Study on Chinese Children. International Journal of Environmental Research and Public Health. 2021; 18(17):9253. https://doi.org/10.3390/ijerph18179253
Chicago/Turabian StyleZhou, Yanli, Sensen He, Ke Zhou, Garry Kuan, Ming-Kai Chin, Yee Cheng Kueh, Abdulwali Sabo, Biljana Popeska, and J. Larry Durstine. 2021. "Psychometric Properties of the Chinese-Language Attitude toward Physical Activity Scale: A Confirmatory Study on Chinese Children" International Journal of Environmental Research and Public Health 18, no. 17: 9253. https://doi.org/10.3390/ijerph18179253
APA StyleZhou, Y., He, S., Zhou, K., Kuan, G., Chin, M. -K., Kueh, Y. C., Sabo, A., Popeska, B., & Durstine, J. L. (2021). Psychometric Properties of the Chinese-Language Attitude toward Physical Activity Scale: A Confirmatory Study on Chinese Children. International Journal of Environmental Research and Public Health, 18(17), 9253. https://doi.org/10.3390/ijerph18179253