Effects of an Eight-Week Concurrent Training Program with Different Effort Character over Physical Fitness, Health-Related Quality of Life, and Lipid Profile among Hospital Workers: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Muscle Strength Tests
2.4. Cardiorespiratory Test
2.5. Functional Mobility Tests
2.6. Quality of Life
2.7. Lipid Profile
2.8. Statistical Analysis
3. Results
3.1. Adherence to Training Interventions
3.2. Muscle Strength
3.3. Cardiorespiratory Fitness
3.4. Functional Mobility
3.5. Health-Related Quality of Life
3.6. Lipid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaspin, L.C.; Gorman, K.M.; Miller, R.M. Systematic Review of Employer-Sponsored Wellness Strategies and their Economic and Health-Related Outcomes. Popul. Health Manag. 2013, 16, 14–21. [Google Scholar] [CrossRef]
- Wang, C.-H.; Lee, P.H.; Jeng, C.; Kao, C.C.; Yang, C.Y.; Tsai, J.-C. A study of fatigue/stamina, healthy lifestyle and health-related quality of life among nurses. New Taipei J. Nurs. 2006, 8, 7–16. [Google Scholar]
- Yuan, S.C.; Chou, M.C.; Hwu, L.J.; Chang, Y.O.; Hsu, W.H.; Kuo, H.W. An intervention program to promote health-related physical fitness in nurses. J. Clin. Nurs. 2009, 18, 1404–1411. [Google Scholar] [CrossRef]
- Christensen, J.R.; Overgaard, K.; Carneiro, I.G.; Holtermann, A.; Sogaard, K. Weight loss among female health care workers--a 1-year workplace based randomized controlled trial in the FINALE-health study. BMC Public Health 2012, 12, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tveito, T.H.; Eriksen, H.R. Integrated health programme: A workplace randomized controlled trial. J. Adv. Nurs. 2009, 65, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Medina, L.; Gonzalez-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Cronin, J.; Storey, A.; Zourdos, M.C. Application of the Repetitions in Reserve-Based Rating of Perceived Exertion Scale for Resistance Training. Strength Cond. J. 2016, 38, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahtiainen, J.P.; Pakarinen, A.; Kraemer, W.J.; Hakkinen, K. Acute hormonal and neuromuscular responses and recovery to forced vs. maximum repetitions multiple resistance exercises. Int. J. Sports Med. 2003, 24, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, E.J.; Lawton, T.W.; Lindsell, R.P.; Pyne, D.B.; Hunt, P.H.; McKenna, M.J. Training leading to repetition failure enhances bench press strength gains in elite junior athletes. J. Strength Cond. Res. 2005, 19, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Rooney, K.J.; Herbert, R.D.; Balnave, R.J. Fatigue contributes to the strength training stimulus. Med. Sci. Sports Exerc. 1994, 26, 1160–1164. [Google Scholar]
- Folland, J.P.; Irish, C.S.; Roberts, J.C.; Tarr, J.E.; Jones, D.A. Fatigue is not a necessary stimulus for strength gains during resistance training. Br. J. Sports Med. 2002, 36, 370–373; discussion 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Ribas, J.; Lopez-Lopez, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Pareja-Blanco, F. Short-term Recovery Following Resistance Exercise Leading or not to Failure. Int. J. Sports Med. 2016, 37, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo-Gabarren, M.; Gonzalez De Txabarri Exposito, R.; Garcia-pallares, J.; Sanchez-medina, L.; De Villarreal, E.S.; Izquierdo, M. Concurrent endurance and strength training not to failure optimizes performance gains. Med. Sci Sports Exerc. 2010, 42, 1191–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, M.; Ibanez, J.; Gonzalez-Badillo, J.J.; Hakkinen, K.; Ratamess, N.A.; Kraemer, W.J.; French, D.N.; Eslava, J.; Altadill, A.; Asiain, X.; et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J. Appl. Physiol. 2006, 100, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Morales-Alamo, D.; Perez-Suarez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef] [Green Version]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Ribas-Serna, J.; Lopez-Lopez, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Gorostiaga Ayestarán, E. Fundamentos del Entrenamiento de la Fuerza: Aplicación al alto Rendimiento Deportivo; INDE: Barcelona, Spain, 2002. [Google Scholar]
- The American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Nes, B.M.; Janszky, I.; Wisloff, U.; Stoylen, A.; Karlsen, T. Age-predicted maximal heart rate in healthy subjects: The HUNT fitness study. Scand. J. Med. Sci. Sports 2013, 23, 697–704. [Google Scholar] [CrossRef]
- Haff, G.; Triplett, N.T.; National Strength & Conditioning Association (U.S.). Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2016; p. xvi. 735p. [Google Scholar]
- Brzycki, M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. Dance 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Manttari, A.; Suni, J.; Sievanen, H.; Husu, P.; Vaha-Ypya, H.; Valkeinen, H.; Tokola, K.; Vasankari, T. Six-minute walk test: A tool for predicting maximal aerobic power (VO2max) in healthy adults. Clin. Physiol. Funct. Imaging 2018, 38, 1038–1045. [Google Scholar] [CrossRef]
- Hong, S.H.; Yang, H.I.; Kim, D.I.; Gonzales, T.I.; Brage, S.; Jeon, J.Y. Validation of Submaximal Step Tests and the 6-Min Walk Test for Predicting Maximal Oxygen Consumption in Young and Healthy Participants. Int. J. Environ. Res. Public Health 2019, 16, 4858. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gomez, J.; Adsuar, J.C.; Garcia-Gordillo, M.A.; Munoz, P.; Romo, L.; Maynar, M.; Gusi, N.; Redondo, P.C. Twelve Weeks of Whole Body Vibration Training Improve Regucalcin, Body Composition and Physical Fitness in Postmenopausal Women: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 3940. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Bubela, D.J.; Magasi, S.R.; Wang, Y.-C.; Gershon, R.C. Sit-to-stand test: Performance and determinants across the age-span. Isokinet Exerc. Sci. 2010, 18, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Moberg, L.; Svantesson, U.; Sundbom, A.; Johansson, H.; Emtner, M. Measuring walking speed in COPD: Test-retest reliability of the 30-metre walk test and comparison with the 6-minute walk test. Prim. Care Respir. J. 2011, 20, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Ware, J.E.; QualityMetric Incorporated; New England Medical Center Hospital; Health Assessment Lab. How to Score Version 2 of the SF-12 Health Survey (with a Supplement Documenting Version 1); Lincoln, R.I., Ed.; QualityMetric Inc.: Boston, MA, USA, 2005. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; p. xxi. 567p. [Google Scholar]
- Brox, J.I.; Froystein, O. Health-related quality of life and sickness absence in community nursing home employees: Randomized controlled trial of physical exercise. Occup. Med. 2005, 55, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Varela-Sanz, A.; Tuimil, J.L.; Abreu, L.; Boullosa, D.A. Does Concurrent Training Intensity Distribution Matter? J. Strength Cond. Res. 2017, 31, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, J.J.; Bartlett, J.D.; Hanson, E.D.; Stepto, N.K.; Bishop, D.J. Endurance Training Intensity Does Not Mediate Interference to Maximal Lower-Body Strength Gain during Short-Term Concurrent Training. Front. Physiol. 2016, 7, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, L.X.N.; Teodoro, J.L.; Menger, E.; Lopez, P.; Grazioli, R.; Farinha, J.; Moraes, K.; Bottaro, M.; Pinto, R.S.; Izquierdo, M.; et al. Repetitions to failure versus not to failure during concurrent training in healthy elderly men: A randomized clinical trial. Exp. Gerontol. 2018, 108, 18–27. [Google Scholar] [CrossRef]
- Karatrantou, K.; Gerodimos, V.; Manouras, N.; Vasilopoulou, T.; Melissopoulou, A.; Mesiakaris, A.F.; Theodorakis, Y. Health-Promoting Effects of a Concurrent Workplace Training Program in Inactive Office Workers (HealPWorkers): A Randomized Controlled Study. Am. J. Health Promot. 2020, 34, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.D.N.; Vieira, C.A.; Bottaro, M.; Nunes, V.A.; Ramirez-Campillo, R.; Steele, J.; Fisher, J.P.; Gentil, P. Resistance Training Performed to Failure or Not to Failure Results in Similar Total Volume, but With Different Fatigue and Discomfort Levels. J. Strength Cond. Res. 2021, 35, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Willardson, J.M. The application of training to failure in periodized multiple-set resistance exercise programs. J. Strength Cond. Res. 2007, 21, 628–631. [Google Scholar] [CrossRef]
- Minton, J.; Dimairo, M.; Everson-Hock, E.; Scott, E.; Goyder, E. Exploring the relationship between baseline physical activity levels and mortality reduction associated with increases in physical activity: A modelling study. BMJ Open 2013, 3, e003509. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.R.; Faber, A.; Ekner, D.; Overgaard, K.; Holtermann, A.; Sogaard, K. Diet, physical exercise and cognitive behavioral training as a combined workplace based intervention to reduce body weight and increase physical capacity in health care workers—a randomized controlled trial. BMC Public Health 2011, 11, 671. [Google Scholar] [CrossRef] [Green Version]
- Korshoj, M.; Lidegaard, M.; Skotte, J.H.; Krustrup, P.; Krause, N.; Sogaard, K.; Holtermann, A. Does aerobic exercise improve or impair cardiorespiratory fitness and health among cleaners? A cluster randomized controlled trial. Scand. J. Work Environ. Health 2015, 41, 140–152. [Google Scholar] [CrossRef] [Green Version]
- Gurses, H.N.; Zeren, M.; Denizoglu Kulli, H.; Durgut, E. The relationship of sit-to-stand tests with 6-minute walk test in healthy young adults. Medicine 2018, 97, e9489. [Google Scholar] [CrossRef]
- Sunnerhagen, K.S.; Hedberg, M.; Henning, G.B.; Cider, A.; Svantesson, U. Muscle performance in an urban population sample of 40- to 79-year-old men and women. Scand. J. Rehabil. Med. 2000, 32, 159–167. [Google Scholar]
- Nguyen, T.M.; Nguyen, V.H.; Kim, J.H. Physical Exercise and Health-Related Quality of Life in Office Workers: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3791. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tambalis, K.; Panagiotakos, D.B.; Kavouras, S.A.; Sidossis, L.S. Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: A systematic review of current evidence. Angiology 2009, 60, 614–632. [Google Scholar] [CrossRef] [PubMed]
- Shaw, I.; Shaw, B.S.; Krasilshchikov, O. Comparison of aerobic and combined aerobic and resistance training on low-density lipoprotein cholesterol concentrations in men. Cardiovasc. J. Afr. 2009, 20, 290–295. [Google Scholar] [PubMed]
- LeMura, L.M.; von Duvillard, S.P.; Andreacci, J.; Klebez, J.M.; Chelland, S.A.; Russo, J. Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and combination training in young women. Eur. J. Appl. Physiol. 2000, 82, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Chronic Inflammation as an Immunological Abnormality and Effectiveness of Exercise. Biomolecules 2019, 9, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Week | Duration (min) | Intensity (%EI) | CR-10 |
---|---|---|---|
1 | 10 | 60 | 5 |
2 | 20 | 60 | 5 |
3 | 20 | 65–70 | 5–6 |
4 | 25 | 65–70 | 5–6 |
5 | 25 | 70 | 6 |
6 | 30 | 70 | 6 |
7–8 | 30 | 75 | 7 |
Training Group | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 |
---|---|---|---|---|---|---|---|---|
EC 50% Group | ||||||||
Sets × repetitions | 2 × 10 | 2 × 8 | 2 × 6 | 2 × 6 | 2 × 5 | 3 × 4–5 | 3 × 4 | 3 × 4 |
Rest (s) | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
No. of exercises | 3 | 3 | 4 | 5 | 6 | 6 | 6 | 6 |
% 1 RM | 50 | 60 | 70 | 70 | 75 | 75–80 | 80 | 80 |
EC 100% Group | ||||||||
Sets × repetitions | 2 × 15–20 | 2 × 15 | 2 × 12 | 2 × 12 | 2 × 10 | 3 × 8–10 | 3 × 8 | 3 × 8 |
Rest (min) | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
No. of exercises | 3 | 3 | 4 | 5 | 6 | 6 | 6 | 6 |
% 1 RM | 50 | 60 | 70 | 70 | 75 | 75–80 | 80 | 80 |
Variables | EC 50% (n = 7) | EC 100% (n = 7) | p-Value |
---|---|---|---|
Age (years) | 41.44 ± 9.80 | 40.80 ± 12.59 | 0.917 |
Female/male (n) | 5/2 | 5/2 | N/A |
Body mass (kg) | 61.66 ± 9.14 | 64.36 ± 12.79 | 0.658 |
Height (m) | 1.62 ± 0.03 | 1.69 ± 0.08 | 0.046 * |
BMI (kg·m−2) | 23.50 ± 3.08 | 22.58 ± 3.87 | 0.630 |
Variables | Group | PRE | POST | EC 50% vs. EC 100% (p) * | Intra-Group ES (d) |
---|---|---|---|---|---|
FRSTST (s) | EC 50% | 8.20 ± 0.44 | 7.35 a ± 0.98 | 0.507 | 1.20 |
EC 100% | 8.52 ± 0.61 | 7.13 a ± 0.97 | 1.76 | ||
30 WT (m·s−1) | EC 50% | 2.80 ± 0.26 | 3.01 a ± 0.29 | 0.802 | 0.68 |
EC 100% | 2.72 ± 0.20 | 2.90 ± 0.35 | 0.90 | ||
VO2peak (mL·kg−1·min−1) | EC 50% | 42.46 ± 3.22 | 45.14 a ± 5.21 | 0.355 | 0.64 |
EC 100% | 42.13 ± 6.72 | 42.65 ± 8.14 | 0.07 | ||
1 RM LPM (kg) | EC 50% | 78.72 ± 41.93 | 115.57 a ± 57.90 | 0.211 | 0.74 |
EC 100% | 78.87 ± 36.21 | 105.83 a ± 52.58 | 0.61 | ||
1 RM LPM/BM | EC 50% | 1.23 ± 0.52 | 1.80 a ± 0.68 | 0.182 | 0.95 |
EC 100% | 1.19 ± 0.41 | 1.57 a ± 0.65 | 0.72 | ||
1 RM VBP (kg) | EC 50% | 44.58 ± 20.35 | 53.17 a ± 24.98 | 0.516 | 0.38 |
EC 100% | 40.08 ± 27.33 | 51.50 a ± 32.47 | 0.38 | ||
1 RM VBP/BM | EC 50% | 0.70 ± 0.24 | 0.83 a ± 0.28 | 0.666 | 0.50 |
EC 100% | 0.60 ± 0.33 | 0.75 a ± 0.36 | 0.44 | ||
1 RM LPD (kg) | EC 50% | 47.27 ± 18.11 | 55.53 a ± 18.42 | 0.173 | 0.45 |
EC 100% | 45.61 ± 13.55 | 49.96 ± 14.69 | 0.31 | ||
1 RM LPD/BM | EC 50% | 0.75 ± 0.19 | 0.88 a ± 0.17 | 0.100 | 0.72 |
EC 100% | 0.71 ± 0.12 | 0.76 a ± 0.13 | 0.40 |
Variables | Group | PRE | POST | EC 50% vs. EC 100% (p) * | Intra-Group ES (d) |
---|---|---|---|---|---|
Physical Score | EC 50% | 53.63 ± 6.17 | 55.65 ± 3.83 | 0.676 | 0.40 |
EC 100% | 52.05 ± 6.95 | 54.65 ± 2.41 | 0.56 | ||
Mental Score | EC 50% | 51.40 ± 4.35 | 46.54 ± 11.50 | 0.219 | 0.61 |
EC 100% | 54.00 ± 3.89 | 55.33 ± 2.03 | 0.45 |
Variables | Group | PRE | POST | EC 50% vs. EC 100% (p) * | Intra-Group ES (d) |
---|---|---|---|---|---|
TC (mg∙dL−1) | EC 50% | 175.86 ± 14.65 | 169.43 ± 11.18 | 0.218 | 0.50 |
EC 100% | 189.29 ± 29.80 | 188.86 ± 29.08 | 0.02 | ||
LDL-C (mg∙dL−1) | EC 50% | 99.14 ± 17.57 | 91.14 a ± 15.93 | 0.668 | 0.48 |
EC 100% | 108.71 ± 22.31 | 101.57 ± 22.19 | 0.32 | ||
HDL-C (mg∙dL−1) | EC 50% | 59.43 ± 10.41 | 61.00 ± 10.60 | 0.327 | 0.15 |
EC 100% | 68.29 ± 19.53 | 73.29 a ± 22.33 | 0.24 | ||
TG (mg∙dL−1) | EC 50% | 86.29 ± 37.53 | 83.00 ± 26.89 | 0.729 | 0.10 |
EC 100% | 61.43 ± 13.44 | 71.29 ± 15.30 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Bilbao, T.; García-González, D.; Martos-Bermúdez, Á.; Nieto, S.; del Campo, T.; Pérez-Ruiz, M.; San Juan, A.F. Effects of an Eight-Week Concurrent Training Program with Different Effort Character over Physical Fitness, Health-Related Quality of Life, and Lipid Profile among Hospital Workers: Preliminary Results. Int. J. Environ. Res. Public Health 2021, 18, 9328. https://doi.org/10.3390/ijerph18179328
Pérez-Bilbao T, García-González D, Martos-Bermúdez Á, Nieto S, del Campo T, Pérez-Ruiz M, San Juan AF. Effects of an Eight-Week Concurrent Training Program with Different Effort Character over Physical Fitness, Health-Related Quality of Life, and Lipid Profile among Hospital Workers: Preliminary Results. International Journal of Environmental Research and Public Health. 2021; 18(17):9328. https://doi.org/10.3390/ijerph18179328
Chicago/Turabian StylePérez-Bilbao, Txomin, David García-González, Álvaro Martos-Bermúdez, Sandra Nieto, Teresa del Campo, Margarita Pérez-Ruiz, and Alejandro F. San Juan. 2021. "Effects of an Eight-Week Concurrent Training Program with Different Effort Character over Physical Fitness, Health-Related Quality of Life, and Lipid Profile among Hospital Workers: Preliminary Results" International Journal of Environmental Research and Public Health 18, no. 17: 9328. https://doi.org/10.3390/ijerph18179328
APA StylePérez-Bilbao, T., García-González, D., Martos-Bermúdez, Á., Nieto, S., del Campo, T., Pérez-Ruiz, M., & San Juan, A. F. (2021). Effects of an Eight-Week Concurrent Training Program with Different Effort Character over Physical Fitness, Health-Related Quality of Life, and Lipid Profile among Hospital Workers: Preliminary Results. International Journal of Environmental Research and Public Health, 18(17), 9328. https://doi.org/10.3390/ijerph18179328