Effects of Dietary Red Raspberry Consumption on Pre-Diabetes and Type 2 Diabetes Mellitus Parameters
Abstract
:1. Introduction
2. Red Raspberries: An Overview
2.1. Bioactive Compounds
2.2. Proposed Health Benefits
3. Research Studies Investigating Dietary Red Raspberries as Intervention for Metabolic Conditions
3.1. Effects of RR Supplementation on Glucose Handling and Insulin Signaling
3.2. Effects of RR Supplementation on Adiposity
3.3. Effects of RR Supplementation on Lipid Profiles
3.4. Effects of RR Supplementation on Hepatic Steatosis
3.5. Effects of RR Supplementation on Inflammation
3.6. Effects of RR Supplementation on Oxidative Stress and Cardiovascular Health
4. Strengths, Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association Classification and Diagnosis of Diabetes. Diabetes Care 2016, 40 (Suppl. 1), S11–S24. [CrossRef] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; Karuranga, S., Malanda, B., Saeedi, P., Eds.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Babey, S.H.; Wolstein, J.; Diamant, A.L.; Goldstein, H. Prediabetes in California: Nearly Half of California Adults on Path to Diabetes. Policy Brief (UCLA Cent. Health Policy Res.) 2016, PB20161, 1–8. [Google Scholar]
- American Diabetes Association (ADA). The Burden of Diabetes in California. Available online: http://main.diabetes.org/dorg/docs/state-fact-sheets/ADV_2020_State_Fact_sheets_CA.pdf (accessed on 14 June 2020).
- Harris, M.F. The Metabolic Syndrome Background. Aust. Fam. Physician 2013, 42, 524–527. [Google Scholar]
- American Diabetes Association Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes. Diabetes Care 2019, 42 (Suppl. 1), S90–S102. [CrossRef] [Green Version]
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, K.; Banach, M.; Edmonds, M.; Papanas, N.; Papazoglou, D. Complications of Diabetes. J. Diabetes Res. 2015, 2015, 189525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Fact Sheet: Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 9 November 2020).
- United States Department of Health and Human Services (DHHS). National Diabetes Statistics Report, 2020; DHHS: Washington DC, USA, 2020. [Google Scholar]
- Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E.W.; Unwin, N.; Wild, S.H.; Williams, R. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pr. 2020, 162, 108086. [Google Scholar] [CrossRef] [Green Version]
- Calvano, A.; Izuora, K.; Oh, E.C.; Ebersole, J.L.; Lyons, T.J.; Basu, A. Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials. Food Funct. 2019, 10, 6227–6243. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv. Nutr. 2016, 7, 44–65. [Google Scholar] [CrossRef] [Green Version]
- FAO. Food Land AgricUlturse Organization of the United Nations (FAO). FAOSTAT 2019. Available online: http://www.fao.org/faostat/en/#data/RL (accessed on 10 March 2020).
- Goodhue, R.E.; Martin, P.L. Chapter California Berries. In California Agriculture: Dimensions and Issues; The Regents of the University of California: Davis, CA, USA, 2018; pp. 1–16. [Google Scholar]
- United States Department of Agriculture (USDA). Milk, FoodData Clentral. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/781084/nutrients (accessed on 5 May 2020).
- Neveu, V.; Pérez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Barrio, R.; Edwards, C.A.; Crozier, A. Colonic Catabolism of Ellagitannins, Ellagic Acid, and Raspberry Anthocyanins: In Vivo and In Vitro Studies. Drug Metab. Dispos. 2011, 39, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hur, K.Y.; Lee, M.-S. Gut Microbiota and Metabolic Disorders. Diabetes Metab. J. 2015, 39, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Fuentes, C.; Golubeva, A.V.; Zhdanov, A.V.; Wallace, S.; Arboleya, S.; Papkovsky, D.B.; El Aidy, S.; Ross, P.; Roy, B.L.; Stanton, C.; et al. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J. 2019, 33, 13546–13559. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Burton-Freeman, B. The Seventh Biennial Berry Health Benefits Symposium. Food Funct. 2018, 9, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Vara, A.L.; Pinela, J.; Dias, M.I.; Petrović, J.; Nogueira, A.; Soković, M.; Ferreira, I.C.F.R.; Barros, L. Compositional Features of the “Kweli” Red Raspberry and Its Antioxidant and Antimicrobial Activities. Foods 2020, 9, 1522. [Google Scholar] [CrossRef]
- Basu, A. Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients 2019, 11, 1983. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Ling, W.; Du, Z.; Chen, Y.; Liping, Y.; Deng, S.; Liu, Z.; Yang, L. Effects of Anthocyanins on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2017, 8, 684–693. [Google Scholar] [CrossRef]
- Weiskirchen, R.; Weiskirchen, S.; Tacke, F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol. Asp. Med. 2019, 65, 2–15. [Google Scholar] [CrossRef]
- Moruzzi, M.; Klöting, N.; Blüher, M.; Martinelli, I.; Tayebati, S.; Gabrielli, M.; Roy, P.; Di Bonaventura, M.M.; Cifani, C.; Lupidi, G.; et al. Tart Cherry Juice and Seeds Affect Pro-Inflammatory Markers in Visceral Adipose Tissue of High-Fat Diet Obese Rats. Molecules 2021, 26, 1403. [Google Scholar] [CrossRef]
- Lee, W.-J.; Ou, H.-C.; Hsu, W.-C.; Chou, M.-M.; Tseng, J.-J.; Hsu, S.-L.; Tsai, K.-L.; Sheu, W.H.-H. Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J. Vasc. Surg. 2010, 52, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
- Schell, J.; Betts, N.M.; Lyons, T.J.; Basu, A. Raspberries Improve Postprandial Glucose and Acute and Chronic Inflammation in Adults with Type 2 Diabetes. Ann. Nutr. Metab. 2019, 74, 165–174. [Google Scholar] [CrossRef]
- Xiao, D.; Zhu, L.; Edirisinghe, I.; Fareed, J.; Brailovsky, Y.; Burton-Freeman, B. Attenuation of Postmeal Metabolic Indices with Red Raspberries in Individuals at Risk for Diabetes: A Randomized Controlled Trial. Obesity 2019, 27, 542–550. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Seymour, E.M.; Kondoleon, N.; Gutierrez, E.; Wolforth, J.; Bolling, S. The intake of red raspberry fruit is inversely related to cardiac risk factors associated with metabolic syndrome. J. Funct. Foods 2018, 41, 83–89. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, T.; Gomez, N.A.; Wang, B.; Zhu, M.-J.; Du, M. Raspberry alleviates obesity-induced inflammation and insulin resistance in skeletal muscle through activation of AMP-activated protein kinase (AMPK) α. Nutr. Diabetes 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Zou, T.; Wang, B.; Yang, Q.; de Avila, J.M.; Zhu, M.-J.; You, J.; Chen, D.; Du, M. Raspberry promotes brown and beige adipocyte development in mice fed high-fat diet through activation of AMP-activated protein kinase (AMPK) α. J. Nutr. Biochem. 2018, 55, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.-J.; Kang, Y.; Xue, Y.; Liang, X.; García, M.P.G.; Rodgers, D.; Kagel, D.R.; Du, M. Red raspberries suppress NLRP3 inflammasome and attenuate metabolic abnormalities in diet-induced obese mice. J. Nutr. Biochem. 2018, 53, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Kang, Y.; Xu, X.; Wang, B.; Du, M.; Zhu, M.-J. Raspberry Supplementation Improves Insulin Signaling and Promotes Brown-Like Adipocyte Development in White Adipose Tissue of Obese Mice. Mol. Nutr. Food Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Miranda-Garcia, O.; Sasaki, G.; Shay, N.F. Consumption of a single serving of red raspberries per day reduces metabolic syndrome parameters in high-fat fed mice. Food Funct. 2017, 8, 4081–4088. [Google Scholar] [CrossRef] [PubMed]
- Noratto, G.D.; Chew, B.P.; Atienza, L.M. Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chem. 2017, 227, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Noratto, G.; Chew, B.P.; Ivanov, I. Red raspberry decreases heart biomarkers of cardiac remodeling associated with oxidative and inflammatory stress in obese diabetic db/db mice. Food Funct. 2016, 7, 4944–4955. [Google Scholar] [CrossRef] [PubMed]
- Attia, R.T.; Abdel-Mottaleb, Y.; Abdallah, D.M.; El-Abhar, H.S.; El-Maraghy, N.N. Raspberry ketone and Garcinia Cambogia rebalanced disrupted insulin resistance and leptin signaling in rats fed high fat fructose diet. Biomed. Pharmacother. 2019, 110, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, E.; Barakat, B.; ElSayed, M.H.; Tawfik, M.K. An optimized dose of raspberry ketones controls hyperlipidemia and insulin resistance in male obese rats: Effect on adipose tissue expression of adipocytokines and Aquaporin. Eur. J. Pharmacol. 2018, 832, 81–89. [Google Scholar] [CrossRef]
- Kang, I.; Espín, J.C.; Carr, T.P.; Tomás-Barberán, F.A.; Chung, S. Raspberry seed flour attenuates high-sucrose diet-mediated hepatic stress and adipose tissue inflammation. J. Nutr. Biochem. 2016, 32, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grussu, D.; Stewart, D.; McDougall, G.J. Berry Polyphenols Inhibit α-Amylase in Vitro: Identifying Active Components in Rowanberry and Raspberry. J. Agric. Food Chem. 2011, 59, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.-L.; Yue, L.-M.; Lim, G.T.; Yang, J.-M.; Lee, J.; Park, Y.-D. Inhibitory effect of raspberry ketone on α-glucosidase: Docking simulation integrating inhibition kinetics. Int. J. Biol. Macromol. 2018, 113, 212–218. [Google Scholar] [CrossRef]
- Tu, L.; Sun, H.; Tang, M.; Zhao, J.; Zhang, Z.; Sun, X.; He, S. Red raspberry extract (Rubus idaeus L. shrub) intake ameliorates hyperlipidemia in HFD-induced mice through PPAR signaling pathway. Food Chem. Toxicol. 2019, 133, 110796. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Seppänen-Laakso, T.; Kankainen, M.; Maukonen, J.; Törrönen, R.; Kolehmainen, M.; Leppänen, T.; Moilanen, E.; Nohynek, L.; Aura, A.-M.; et al. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol. Nutr. Food Res. 2013, 57, 2258–2263. [Google Scholar] [CrossRef]
- VandenAkker, N.E.; Vendrame, S.; Tsakiroglou, P.; McGilvrey, M.; Klimis-Zacas, D. Whole Red Raspberry (Rubus idaeus)-Enriched Diet Is Hepatoprotective in the Obese Zucker Rat, a Model of the Metabolic Syndrome. J. Med. Food 2021, 24, 817–824. [Google Scholar] [CrossRef]
- Wang, L.; Meng, X.; Zhang, F. Raspberry Ketone Protects Rats Fed High-Fat Diets against Nonalcoholic Steatohepatitis. J. Med. Food 2012, 15, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, H.; Liu, J.W.; Ufur, H.; He, G.S.; Liqian, H.; Chen, P. The antihypertensive effect of ethyl acetate extract from red raspberry fruit in hypertensive rats. Pharmacogn. Mag. 2011, 7, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Kristo, A.; Klimis-Zacas, D.; Sikalidis, A. Protective Role of Dietary Berries in Cancer. Antioxidants 2016, 5, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchal, S.K.; Brown, L. Rodent Models for Metabolic Syndrome Research. J. Biomed. Biotechnol. 2010, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jennings, A.; Welch, A.A.; Spector, T.; MacGregor, A.; Cassidy, A. Intakes of Anthocyanins and Flavones Are Associated with Biomarkers of Insulin Resistance and Inflammation in Women. J. Nutr. 2013, 144, 202–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Törrönen, R.; Kolehmainen, M.; Sarkkinen, E.; Poutanen, K.; Mykkänen, H.; Niskanen, L. Berries reduce postprandial insulin re-sponses to wheat and rye breads in healthy women. J. Nutr. 2013, 143, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Cheang, K.I.; Nguyen, T.T.; Karjane, N.W.; Salley, K.E.S. Raspberry Leaf and Hypoglycemia in Gestational Diabetes Mellitus. Obstet. Gynecol. 2016, 128, 1421–1424. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Panagiotakos, D.; Pitsavos, C.; Chrysochoou, C.; Detopoulou, P.; Skoumas, J.; Stefanadis, C. Dietary antioxidant capacity is inversely associated with diabetes biomarkers: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 561–567. [Google Scholar] [CrossRef]
- Kshatriya, D.; Li, X.; Giunta, G.M.; Yuan, B.; Zhao, D.; Simon, J.E.; Wu, Q.; Bello, N.T. Phenolic-enriched raspberry fruit extract (Rubus idaeus) resulted in lower weight gain, increased ambulatory activity, and elevated hepatic lipoprotein lipase and heme oxygenase-1 expression in male mice fed a high-fat diet. Nutr. Res. 2019, 68, 19–33. [Google Scholar] [CrossRef]
- Koss-Mikołajczyk, I.; Kusznierewicz, B.; Bartoszek, A. The Relationship between Phytochemical Composition and Biological Activities of Differently Pigmented Varieties of Berry Fruits; Comparison between Embedded in Food Matrix and Isolated Anthocyanins. Foods 2019, 8, 646. [Google Scholar] [CrossRef] [Green Version]
- Madić, V.; Petrović, A.; Jušković, M.; Jugović, D.; Djordjević, L.; Stojanović, G.; Vasiljević, P. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. J. Ethnopharmacol. 2021, 265, 113210. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, R.; Shenoy, R.P.; Hadapad, B.S.; Nayak, A.V. Effectiveness of polyherbal formulations for the treatment of type 2 Diabetes mellitus–A systematic review and meta-analysis. J. Ayurveda Integr. Med. 2021, 12, 213–222. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; USDA: Washington, DC, USA, December 2020. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 21 June 2021).
Reference (Year) | Participants | Study Design | Treatment | Duration | Significant Findings (p < 0.05) |
---|---|---|---|---|---|
Schell et al. (2019) | Adults with T2DM: Phase 1 (n = 25) Phase 2 (n = 22) | RCT, crossover | Frozen RR: Phase 1—250 g RR (RR-250) or 85 g banana (control) with a HF challenge breakfast meal Phase 2—250 g RR (RR-250) per day or control as afternoon snack | Phase 1 (acute): 4 h (×2 d plus 1-wk washout) Phase 2 (long-term): 4 wks (×2 plus 2-wk washout) | Phase 1 (RR-250 vs. control): ↓ SG and ↓ SG AUC at 2- and 4 h post-meal; ↓ serum TG at 4 h post-meal (p < 0.1); ↓ IL-6 and ↓ hs-TNF-α at 4 h post-meal Phase 2 (RR-250 vs. control): ↓ IL-6; ↓ hs-TNF-α; ↓ SBP (p < 0.1) |
Xiao et al. (2019) | Adults with Pre-DM and overweight or obesity with IR (n = 21) and Healthy adults (reference group, n = 11) | RCT, crossover | Frozen RR: 0 g RR (control), 125 g RR (RR-125), or 250 g RR (RR-250) with a HF challenge breakfast meal | Acute: 24 h (×3 d and at least 3 d apart) | Pre-DM Group RR-125 vs. control: ↓ PG 30 min peak post-meal; ↓ PIns 2 h AUC; Peak PIns shifted to 1 h vs. 30 min RR-250 vs. control: ↓ PG 30 min peak and at 1 h post-meal, ↓ PG and PIns 2 h AUC, ↓ PIns over 24-h, ↓ PIns at 30 min post-meal; Peak PIns shifted to 1 h vs. 30 min RR-250 vs. RR-125 and control: ↑ plasma TG at 2–6 h post-meal Reference Group RR-125 and 250 vs. control: ↑ PG at 2 h post-meal (averting dip below baseline seen in control) |
Puupponen-Pimiä et al. (2013) | Adults with MetSy (n = 32) | RCT | SRC Group (n = 20): 300 g SRC per d (100 g fresh strawberry puree + 100 g frozen RR + 100 g frozen cloudberries) Control Group (n = 12): Restricted berry consumption | Lead-In (SRC and control): 4 wk restricted berry consumption (maximum: 1 dL/d) Intervention: 8 wks Recovery: 4 wk restricted berry consumption | SRC vs. control: ↑ leptin over time SRC: 15 participants produced urolithins (5 non-producers) with concurrent alteration of gut microflora Control: 0 participants produced urolithins |
Reference (Year) | Animal Model (Health Condition; Sex) | Dietary Treatments | Duration | Significant Findings (p < 0.05) |
---|---|---|---|---|
Kirakosyan et al. (2018) | Zucker Fatty rats (obesity & MetSy; male) | 10% below ad libitum intake HFD (n = 12): Base high-fat diet (17% kcal Pro, 45% kcal CHO, 38% kcal fat) HFD-RR (n = 12): Base diet + 2% freeze-dried RR powder [Hypercaloric] | 12 wks | HFD-RR vs. HFD: ↓ FSG; ↓ serum TC and TG; ↑ cardiac gene expression of Adipor1 and ApoE; ↓ cardiac gene expression LPL; ↓ plasma IL-6, TNF-α, and 8-isoprostane; ↓ cardiac gene expression of various key genes involved in lipid and glucose dynamics, insulin signaling, T2DM, inflammation, immunity, and apoptosis; ↓ LVH and IVSth at 8 wks; ↓ HR |
Zhao et al. (2018) | AMPKα1 knockout mice (AMPKα1−/−; male) AMPKα1fl/fl mice (WT; male) | Ad libitum WT (n = 6): High-fat diet (60% kcal fat) WT-RR (n = 6): HFD + 5% freeze-dried RR powder per dry feed weight AKO (n = 6): HFD AKO-RR (n = 6): HFD + 5% freeze-dried RR powder per dry feed weight [Hypercaloric] | 10 wks | WT-RR vs. WT: ↓ excess body weight gain WT-RR vs. WT (in Gas): ↑ p-AMPKα and ↑ p-/t-AMPKα; ↑ Glut4 protein and Glut4 gene expression; ↓ p-PKCθ; ↑ p-AKT and p-/t-AKT; ↓ TG; ↓ TNF-α, IL-1β, IL-6, and IL-18 gene expression; ↓ p-p65 and p-/t-p65; ↓ p-JNK; ↑ CytC; ↑ PGC1α, NRF1, and CPT1 gene expression WT-RR vs. WT (in TibA): ↓ fat area (↔ in AKO or AKO-RR for any parameter) |
Zou et al. (2018) | AMPKα1 knockout C57BL/6 mice (AMPKα1−/−; male) C57BL/6 AMPKα1flox/flox mice (WT; male) | Ad libitum WT (n = 6): High-fat diet (60% kcal fat) WT-RR (n = 6): HFD + 5% freeze-dried RR powder per dry feed weight AKO (n = 6): HFD AKO-RR (n = 6): HFD + 5% freeze-dried RR powder per dry feed weight [Hypercaloric] | 10 wks | WT-RR vs. WT/AKO/AKO-RR: ↓ body weight; ↑ BAT mass; ↓ IngWAT and EpiWAT mass; ↓ glucose AUC; ↓ SIns; ↓ serum TG; ↓ serum FFAs; ↓ serum TC; ↑ VO2; ↓ RER; ↑ heat production; ↑ O2 consumption in IngWAT; ↑ thermogenic gene expression in BAT (UCP1, PRDM16, PGC1α, Cidea, and Cox7a1); ↑ thermogenic proteins in BAT (UCP1, PRDM16, and CtyC); ↑ p-AMPKα and p-/t-AMPKα in BAT; ↓ diameter and number of adipocytes in IngWAT and EpiWAT; ↑ beige adipocytes and UCP1-positive areas in IngWAT; ↑ thermogenic gene expression in IngWAT (UCP1, PRDM16, PGC1α, Elovl3, and Cox7a1); ↑ gene expression of beige adipocyte markers in IngWAT (CD137, Tbx1, and Tmem26); ↑ thermogenic proteins in IngWAT (UCP1 and PRDM16); ↑ p-AMPKα, t-AMPKa, and p-/t-AMPKα in IngWAT WT-RR vs. WT: ↑ VCO2 (p < 0.1); ↑ thermogenic protein CytC in IngWAT (↔ in AKO or AKO-RR for any parameter) |
Xing et al. (2018) | C57BL/6J mice (WT; male) | Ad libitum Control (n = 8): Standard chow (10% kcal fat) RR (n = 8): Standard chow + 5% freeze-dried RR powder per dry feed weight HFD (n = 8): High-fat diet (60% kcal fat) HFD-RR (n = 8): HFD + 5% freeze-dried RR powder per dry feed weight [Hypercaloric] | 12 wks | HFD vs. control/RR/HFD-RR: ↑ IngWAT and EpiWAT/body weight; ↑ diameter and ↓ number of adipocytes; ↑ macrophages; ↑ gene expression of MCP1, CD14, and CD68; ↑ p-p65; ↓ IĸBα; ↑ IL-1β, IL-6, and IL-18; ↓ p-AKT and p-/t-AKT; ↓ Glut4; ↑ p-IRS1 and p-/t-IRS1; ↑ p-PKCθ and p-/t-PKCθ; ↓ PGC1α, FNDC5, p-p38, p-/t-p38, p-ERK, and p-/t-pERK; ↓ thermogenic gene expression (UCP1, CytC, Cidea, and Elovl3); ↓ thermogenic proteins (UCP1, UCP2, and CytC); ↓ p-AMPK and p-/t-AMPK; ↓ Sirt1 HFD-RR vs. HFD: ↓ IngWAT/body weight; diameter and ↑ number of adipocytes; ↓ macrophages; ↓ gene expression of MCP1, CD14, and CD68; ↑ IĸBα; ↓ IL-1β, IL-6, and IL-18; ↑ p-AKT and p-/t-AKT; ↑ Glut4; ↓ p-IRS1 and p-/t-IRS1; ↓ p-PKCθ and p-/t-PKCθ; ↑ PGC1α, FNDC5, p-p38, p-/t-p38, p-ERK, and p-/t-pERK; ↑ thermogenic gene expression (UCP1, Cidea, and Elovl3); ↑ thermogenic proteins (UCP1 and CytC); ↑ p-AMPK and p-/t-AMPK; ↑ Sirt1 HFD vs. control: ↑ p-/t-p65 |
Zhu et al. (2018) | C57BL/6 mice (WT; male) | Ad libitum Control (n = 10): Standard chow (10% kcal fat) RR (n = 10): Standard chow + 5% freeze-dried RR powder per dry feed weight HFD (n = 10): High-fat diet (60% kcal fat) HFD-RR (n = 10): HFD + 5% freeze-dried RR powder per dry feed weight [Hypercaloric] | 12 wks | RR vs. control: ↑ p-IRS-1 & p-/t-IRS-1; ↑ p-AKT (p < 0.1); ↑ p-/t-AKT; ↓ hepatic IL-1β & IL-18 HFD/HFD-RR vs. control/RR: ↑ BMI; ↑ adiposity; ↓ RER; ↑ t-AKT; ↑ liver TG HFD vs. control/RR: ↓ VO2; ↓ VCO2; ↑ FSG; ↑ glucose AUC; ↓ insulin sensitivity; ↑ hepatic lipid droplets; ↑ serum TG; ↑ hepatic CASP1; ↑ hepatic IL-1β & IL-18; ↑ hepatic gene expression of NLRP3, CASP1, IL-1β, IL-18, PGC1a, NRF1, CytB, Cox4i1, & Cs HFD-RR vs. HFD: ↓ excess body weight gain; ↑ VO2 (p < 0.1); ↑ VCO2; ↓ FSG; ↓ glucose AUC; ↑ insulin sensitivity; ↑ p-IRS-1 & p-/t-IRS-1; ↑ p-/t-AKT; ↓ hepatic lipid droplets; ↓ serum TG (p < 0.1); ↓ hepatic CASP1; ↓ hepatic IL-1β & IL-18; ↓ hepatic gene expression of NLRP3, CASP1, IL-1β, IL-18, PGC1α, NRF1, CytB, Cox4i1, & Cs |
Luo et al. (2017) | C57BL/6J mice (WT; male) | Ad libitum LFD (n = 8): Low-fat diet (10% kcal fat, 70% kcal CHO) HFD (n = 8): High-fat diet (45% kcal fat, 20% kcal sucrose, 1% cholesterol) HFD-RPC (n = 8): HFD + RPC (2.5% kcal) HFD-RJC (n = 8): HFD + RJC (2.5% kcal) [Hypercaloric] | 10 wks | HFD/HFD-RPC/HFD-RJC vs. LFD: ↑ energy intake; ↑ liver weight; ↑ IngWAT weight HFD vs. LFD: ↑ body weight; ↑ liver lipid percentage; ↑ FSG; ↑ Sins; ↔ hepatic gene expression of Hmox1 or Lipe HFD-RPC/HFD-RJC vs. HFD: ↓ body weight; ↓ liver lipid percentage HFD-RJC vs. HFD: ↓ SIns HFD-RJC vs. LFD/HFD/HFD-RPC: ↑ hepatic gene expression of Hmox1 & Lipe |
Noratto et al. (2017) | Db/Db mice (obesity & T2DM; male and female) | Ad libitum Control (n = 15): Standard chow (20.5% kcal Pro, 63.6% kcal CHO, 15.9 % kcal fat) RR (n = 15): Standard chow + freeze-dried RR (20.5% kcal Pro, 53.7% kcal CHO, 15.9% kcal fat, 9.8% kcal RR) [Isocaloric] | 8 wks | RR vs. control: ↑ plasma TC & LDL-c with ↔ in atherogenic index; ↑ plasma resistin; ↓ ROS, ↑ GPx, & ↑ GPx/SOD ratio in blood erythrocytes; ↑ GPx & ↑ GPx/SOD ratio activity in liver |
Reference (Year) | Animal Model (Health Condition; Sex) | Dietary Treatments | RR Constituent | Duration | Significant Findings (p < 0.05) |
---|---|---|---|---|---|
Attia et al. (2019) | Wistar rats (WT, male) | LFD (n = 10): Standard chow (26% kcal Pro, 60% kcal CHO, 8% kcal fibers, 5% kcal fat) HFFD (n = 10): High-fat, high- fructose diet (21% kcal Pro, 60% kcal CHO, 3% kcal fibers, 15% kcal fat HFFD-RK * (n = 10): HFFD + 55 mg/kg RK HFFD-GC *# (n = 10): HFFD + 600 mg/kg GC HFFD-RKGC * (n = 10): HFFD + 55 mg/kg RK +600 mg/kg GC powders [Hypercaloric] * RK and GC Tx were administered via oral gavage # Significant results not discussed in current review | Raspberry ketone (RK) | 8 wks | HFFD/HFFD-RK/HFFD-RKGC vs. LFD: ↑ body weight; ↑ fasting SIns; ↑ HOMA-IR; ↓ gene expression of NRF2 in EpiWAT; ↓ p-AKT in VAT and EpiWAT; ↓ p-IRS1 in EpiWAT; ↑ number of adipocytes HFFD/HFFD-RK vs. LFD: ↑ FSG; ↑ serum TG, TC, LDL-c, and FFAs; ↓ serum HDL-c; ↑ SREBP1c gene expression in VAT and EpiWAT; ↓ gene expression of NRF2 in VAT; ↓ GSH in VAT; ↓ p-IRS1 in VAT; ↓ Glut4 in EpiWAT; ↑ serum STAT3 in VAT and EpiWAT HFFD vs. LFD: ↑ MDA in VAT and EpiWAT; ↓ Glut4 in VAT; ↑ serum leptin HFFD-RK/HFFD-RKGC vs. HFFD: ↓ body weight; ↓ FSG; ↓ fasting SIns; ↓ HOMA-IR; ↓ serum TG, TC, LDL-c, and FFAs; ↑ serum HDL-c; ↓ SREBP1c gene expression in VAT and EpiWAT; ↑ gene expression of NRF2 in VAT and EpiWAT; ↓ MDA in VAT and EpiWAT; ↑ p-AKT in VAT and EpiWAT; ↑ p-IRS1 in VAT and EpiWAT; ↑ Glut4 in VAT; ↓ serum STAT3 in VAT and EpiWAT; ↓ number of adipocytes HFFD-RKGC vs. HFFD: ↓ serum leptin HFFD-RKGC vs. HFFD/HFFD-RK: ↑ GSH in VAT; ↑ Glut4 in EpiWAT HFFD-RKGC vs. LFD/HFFD/HFFD-RK: ↑ GSH in EpiWAT HFFD-RK vs. LFD/HFFD/HFFD-RKGC: ↓ serum leptin; ↓ adipocyte area |
Tu et al. (2019) | C57BL/6J mice (WT, male) | Ad libitum Control (n = 8): Standard chow (315 kcal/100 g feed) HFD (n = 8): High-fat diet (409 kcal/100 g feed) HFD-RL * (n = 8): HFD +100 mg/kg freeze-dried RRE HFD-RM * (n = 8): HFD +200 mg/kg freeze-dried RRE HFD-RH * (n = 8): HFD +300 mg/kg freeze-dried RRE [Hypercaloric] * RRE Tx administered via gastric gavage. | Red raspberry extract (RRE) | 8 wks | HFD vs. control: ↑ total body weight; ↑ body weight gain; ↓ serum CAT; ↓ serum & hepatic SOD; ↑ serum and hepatic MDA; ↓ hepatic GPx; ↑ serum and hepatic TC & TG; ↑ hepatic total bile acids HFD/HFD-RL/HFD-RM/HFD-RH vs. control: ↑ body weight gain; ↑ EpiWAT and PeriAT weight; ↑ EpiWAT and PeriAT fat index HFD/HFD-RL vs. control: ↑ EpiWAT cell size; ↑ hepatic MDA; ↑ serum AST HFD-RL/HFD-RM/HFD-RH vs. HFD/control: ↑ serum and hepatic CAT; ↑ hepatic SOD HFD-RL/HFD-RM/HFD-RH vs. HFD: ↓ body weight gain; ↓ EpiWAT and PeriAT weight; ↓ serum MDA; ↑ hepatic GPx; ↓ hepatic TC and TG; ↑ hepatic gene expression of Pparα and Pnpla2; ↓ hepatic gene expression of Mups, Hmox1, Gapdh, HMGCR, Ldlr, and Acsl3 HFD-RM/HFD-RH vs. HFD/control: ↑ serum GPx HFD-RM/HFD-RH vs. HFD: ↓ EpiWAT cell size; ↑ serum SOD; ↓ hepatic MDA; ↓ serum TC& TG HFD-RM vs. HFD: ↓ PeriAT fat index HFD-RH vs. HFD: ↓ total body weight; ↓ EpiWAT fat index; ↓ hepatic total bile acids |
Mehanna et al. (2018) | Wister albino rats (WT, male) | Control (n = 8): Standard chow HFD (n = 8): High-fat diet (87.7% kcal standard chow, 10% kcal pork fat, 2% kcal cholesterol, 3% kcal bile salts) HFD-RKL* (n = 8): HFD + 250 mg/kg RK HFD-RKH * (n=8): HFD + 500 mg/kg RK [Isocaloric] * RK Tx administered via gastric gavage from wk 9 to wk 12 (4 wks). | Raspberry ketone (RK) | 12 wks (RK Tx for 4 wks) | HFD vs. control: ↑ liver index; ↑ serum TC; ↑ serum LDL-c; ↓ serum HDL-c; ↑ serum leptin; ↑ WAT gene expression of leptin; ↓ WAT gene expression of AQP-7 HFD/HFD-RKH vs. control: ↑ serum apelin & visfatin; ↓ serum adiponectin; ↑ WAT gene expression of apelin, apelin receptor, & visfatin; ↓ WAT gene expression of adiponectin; ↑ adipocyte diameter HFD/HFD-RKL/HFD-RKH vs. control: ↑ body weight gain; ↑ adipose tissue index; ↑ serum ALT; ↑ serum AST; ↑ FSG; ↑ fasting Sins; ↑ HOMA-IR, ↓ QUICKI; ↑ serum TG; ↓ serum GSH; ↑ serum MDA; ↑ hepatic steatosis HFD-RKL/HFD-RKH vs. HFD: ↓ body weight gain; ↓ adipose tissue index; ↓ liver index; ↓ serum ALT; ↓ serum AST; ↓ FSG; ↓ fasting Sins; ↓ HOMA-IR, ↑ QUICKI; ↓ serum TG, TC, & LDL-c; ↑ serum HDL-c; ↑ serum GSH; ↓ serum MDA; ↓ serum leptin; ↓ WAT gene expression of leptin; ↑ WAT gene expression of AQP-7; ↓ adipocyte diameter HFD-RKL vs. HFD: ↓ hepatic steatosis HFD-RKL vs. HFD/HFD-RKH: ↓ serum apelin & visfatin; ↑ serum adiponectin; ↓ WAT gene expression of apelin, apelin receptor, & visfatin; ↑ WAT gene expression of adiponectin HFD-RKL vs. HFD-RKH: ↓ serum ALT; ↓ serum AST; ↓ FSG; ↓ fasting Sins; ↓ HOMA-IR, ↑ QUICKI |
Kang et al. (2016) | C57BL/6 mice (WT, male) | Ad libitum HFD (n = 6): High-fat diet (41% kcal fat) HFSD (n = 6): High-fat, high-sucrose diet (37% kcal sucrose) HFSD-R (n = 6): HFSD + 3% RSF (equivalent to 0.03% ellagic acid) [Isocaloric] | Raspberry seed flour (RSF) | 12 wks | HFSD vs. HFD: ↑ body weight; ↑ liver weight; ↑ EpiWAT weight; ↑ VAT weight; ↑ plasma TC & LDL-c; ↓ plasma HDL-c; ↑ fasting PIns; ↑ HOMA-IR; ↑ glucose & insulin AUCs; ↑ hepatic gene expression of SCD-1, LPL, DGAT2, & G6Pase; ↑ hepatic H2O2 (p < 0.01); ↑ macrophage infiltration in EpiWAT; ↑ adipocyte diameter in EpiWAT (p < 0.01) HFSD/HFSD-R vs. HFD: ↑ liver TG; ↑ hepatic gene expression of ChREBP, SREBP1c, & PEPCK HFSD-R vs. HFSD: ↓ plasma TG (p < 0.1), TC, & LDL-c; ↑ plasma HDL-c; ↓ FPG & fasting PIns (p < 0.01); ↓ HOMA-IR; ↓ insulin AUC (p < 0.01); ↓ hepatic gene expression of SCD-1, LPL, DGAT2, & G6Pase; ↓ hepatic p-JNK, p-p38, & p-eIF2α; ↓ hepatic H2O2 (p < 0.01); ↓ macrophage infiltration in EpiWAT; ↓ adipocyte diameter in EpiWAT (p < 0.01); ↑ plasma adiponectin (p < 0.01); ↑ EpiWAT gene expression of adiponectin; ↓ EpiWAT gene expression of IL-6 (p < 0.001) & IL-8, F4/80, TNF-α, & MCP1 (p < 0.01) |
Jia et al. (2011) | SHR rats (Hypertension, male) WKY rats (WT, male) | Ad libitum Control * (n = 8): Standard chow SHR ** (n = 8): Standard chow EERL **# (n = 8): Standard chow + 100 mg/kg/d EER EERH **# (n = 8): Standard chow + 200 mg/kg/d EER [Isocaloric] * WKY rats ** SHR rats # EER Tx administered via gastric gavage | Ethyl acetate extract of RR (EER) | 5 wks | SHR: ↑ SBP at wk 4; ↑ SBP at wk 5 (p < 0.01) SHR vs. control: ↑ serum ET, ↓ serum SOD (p < 0.01); ↓ serum MDA (p < 0.01) EERL: ↓ SBP at wks 2-3; ↓ SBP at wks 4-5 (p < 0.01) EERL vs. control: ↑ serum NO; ↑ serum SOD (p < 0.01); ↓ serum MDA (p < 0.01) EERL vs. SHR: ↓ SBP at wks 2-5 (p < 0.01); ↑ serum NO (p < 0.01); ↑ serum SOD (p < 0.01) EERH: ↓ SBP at wks 2-5 (p < 0.01) EERH vs. control: ↑ serum SOD (p < 0.01); ↓ serum MDA (p < 0.01) EERH vs. SHR: ↓ SBP at wks 2-5 (p < 0.01); ↓ serum ET; ↑ serum SOD (p < 0.01); ↓ serum MDA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derrick, S.A.; Kristo, A.S.; Reaves, S.K.; Sikalidis, A.K. Effects of Dietary Red Raspberry Consumption on Pre-Diabetes and Type 2 Diabetes Mellitus Parameters. Int. J. Environ. Res. Public Health 2021, 18, 9364. https://doi.org/10.3390/ijerph18179364
Derrick SA, Kristo AS, Reaves SK, Sikalidis AK. Effects of Dietary Red Raspberry Consumption on Pre-Diabetes and Type 2 Diabetes Mellitus Parameters. International Journal of Environmental Research and Public Health. 2021; 18(17):9364. https://doi.org/10.3390/ijerph18179364
Chicago/Turabian StyleDerrick, Stefani A., Aleksandra S. Kristo, Scott K. Reaves, and Angelos K. Sikalidis. 2021. "Effects of Dietary Red Raspberry Consumption on Pre-Diabetes and Type 2 Diabetes Mellitus Parameters" International Journal of Environmental Research and Public Health 18, no. 17: 9364. https://doi.org/10.3390/ijerph18179364
APA StyleDerrick, S. A., Kristo, A. S., Reaves, S. K., & Sikalidis, A. K. (2021). Effects of Dietary Red Raspberry Consumption on Pre-Diabetes and Type 2 Diabetes Mellitus Parameters. International Journal of Environmental Research and Public Health, 18(17), 9364. https://doi.org/10.3390/ijerph18179364