New Technologies in the Workplace: Can Personal and Organizational Variables Affect the Employees’ Intention to Use a Work-Stress Management App?
Abstract
:1. Introduction
1.1. Well-Being Promotion and Stress Management Interventions
1.2. Technology Acceptance Model
1.3. Different Ways to Perceive: The Influence of Individual and Contextual Resources
1.3.1. Individual Differences
1.3.2. Organizational Variables
1.4. Study Hypotheses
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.3. Data Analysis
3. Results
3.1. Descriptive Statistics
3.2. SEM Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Apolinário-Hagen, J.; Hennemann, S.; Kück, C.; Wodner, A.; Geibel, D.; Riebschläger, M.; Zeißler, M.; Breil, B. Exploring User-Related Drivers of the Early Acceptance of Certified Digital Stress Prevention Programs in Germany. Health Serv. Insights 2020, 13. [Google Scholar] [CrossRef]
- Holman, D.; Johnson, S.; O’Connor, E. Stress Management Interventions: Improving Subjective Psychological Well-Being in the Workplace. In Handbook Well-Being; DEF Publishers: Salt Lake City, UT, USA, 2018; pp. 1–13. [Google Scholar]
- De Neve, J.; Diener, E.; Tay, L.; Xuereb, C. The Objective Benefits of Subjective Well-Being; CEP Discussion Paper No 1236; UN Sustainable Development Solutions Network: New York, NY, USA, 2013. [Google Scholar]
- Hassard, J.; Cox, T.; Murawski, S.; De Meyer, S.; Muylaert, K. Mental Health Promotion in the Workplace—A Good Practice Report; Working Environment Information Working Paper; Publications Office of the European Union: Luxembourg, 2011; ISBN 9789291914890. [Google Scholar]
- Bakhuys Roozeboom, M.; Schelvis, R.; Houtman, I.; Wiezer, N.; Bongers, P. Decreasing employees’ work stress by a participatory, organizational level work stress prevention approach: A multiple-case study in primary education. BMC Public Health 2020, 20. [Google Scholar] [CrossRef]
- Ryan, C.; Bergin, M.; Chalder, T.; Wells, J.S.G. Web-based interventions for the management of stress in the workplace: Focus, form, and efficacy. J. Occup. Health 2017, 59, 215–236. [Google Scholar] [CrossRef]
- De Korte, E.M.; Wiezer, N.; Janssen, J.H.; Vink, P.; Kraaij, W. Evaluating an mHealth app for health and well-being at work: Mixed-method qualitative study. J. Med. Internet Res. 2018, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bregenzer, A.; Wagner-Hartl, V.; Jiménez, P. Who uses apps in health promotion? A target group analysis of leaders. Health Inform. J. 2017. [Google Scholar] [CrossRef] [PubMed]
- Carissoli, C.; Villani, D.; Riva, G. Does a meditation protocol supported by a mobile application help people reduce stress? suggestions from a controlled pragmatic trial. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Jayawardana, M.W.; Muir, S.D.; Ho, D.Y.T.; Sackett, O. Promoting Psychological Well-Being at Work by Reducing Stress and Improving Sleep: Mixed-Methods Analysis. J. Med. Internet Res. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deady, M.; Johnston, D.; Milne, D.; Glozier, N.; Peters, D.; Calvo, R.; Harvey, S. Preliminary effectiveness of a smartphone app to reduce depressive symptoms in the workplace: Feasibility and acceptability study. JMIR mHealth uHealth 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. Manag. Inf. Syst. 1989, 13, 319–339. [Google Scholar] [CrossRef] [Green Version]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- Taherdoost, H. A review of technology acceptance and adoption models and theories. Procedia Manuf. 2019, 22, 960–967. [Google Scholar] [CrossRef]
- Hassard, J.; Teoh, K.R.H.; Visockaite, G.; Dewe, P.; Cox, T. The cost of work-related stress to society: A systematic review. J. Occup. Health Psychol. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howarth, A.; Quesada, J.; Silva, J.; Judycki, S.; Mills, P.R. The impact of digital health interventions on health-related outcomes in the workplace: A systematic review. Digit. Health 2018, 4, 205520761877086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, D.A.J.; Harvey, S.B.; Lavender, I.; Glozier, N.; Christensen, H.; Deady, M. A pilot evaluation of a smartphone application for workplace depression. Int. J. Environ. Res. Public Health 2020, 17, 6753. [Google Scholar] [CrossRef]
- Melzner, J.; Heinze, J.; Fritsch, T. Mobile Health Applications in Workplace Health Promotion: An Integrated Conceptual Adoption Framework. Procedia Technol. 2014, 16, 1374–1382. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Kim, K.I.; Soh, J.Y.; Hyun, Y.H.; Jang, S.K.; Lee, S.; Hwang, G.Y.; Kim, H.S. Factors influencing acceptance of personal health record apps for workplace health promotion: Cross-sectional questionnaire study. JMIR mHealth uHealth 2020, 8, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Dunkl, A.; Jiménez, P. Using smartphone-based applications (apps) in workplace health promotion: The opinion of German and Austrian leaders. Health Inform. J. 2017. [Google Scholar] [CrossRef]
- Colbert, A.; Yee, N.; George, G. The digital workforce and the workplace of the future. Acad. Manag. J. 2016, 59, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Reyt, J.-N.; Wiesenfeld, B.M. Seeing the Forest for the Trees: Exploratory Learning, Mobile Technology, and Knowledge Workers’ Role Integration Behaviors. Acad. Manag. J. 2015, 58, 739–762. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, M.; Giusino, D.; Nielsen, K.; Aboagye, E.; Christensen, M.; Innstrand, S.T.; Mazzetti, G.; van den Heuvel, M.; Sijbom, R.B.L.; Pelzer, V.; et al. H-work project: Multilevel interventions to promote mental health in smes and public workplaces. Int. J. Environ. Res. Public Health 2020, 17, 8035. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization mHealth: New horizons for health through mobile technologies. Observatory 2011. [CrossRef]
- Mehrotraa, S.; Tripathib, R. Recent developments in the use of smartphone interventions for mental health. Curr. Opin. Psychiatry 2018, 31, 379–388. [Google Scholar] [CrossRef]
- Ahtinen, A.; Mattila, E.; Välkkynen, P.; Kaipainen, K.; Vanhala, T.; Ermes, M.; Sairanen, E.; Myllymäki, T.; Lappalainen, R. Mobile mental wellness training for stress management: Feasibility and design implications based on a one-month field study. J. Med. Internet Res. 2013, 15. [Google Scholar] [CrossRef]
- Balk-Møller, N.C.; Poulsen, S.K.; Larsen, T.M. Effect of a nine-month web- and app-based workplace intervention to promote healthy lifestyle and weight loss for employees in the social welfare and health care sector: A randomized controlled trial. J. Med. Internet Res. 2017, 19. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Spring, B.J.; Riper, H.; Morrison, L.G.; Crane, D.H.; Curtis, K.; Merchant, G.C.; Naughton, F.; Blandford, A. Understanding and Promoting Effective Engagement With Digital Behavior Change Interventions. Am. J. Prev. Med. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidargaddi, N.; Almirall, D.; Murphy, S.; Nahum-Shani, I.; Kovalcik, M.; Pituch, T.; Maaieh, H.; Strecher, V. To prompt or not to prompt? A microrandomized trial of time-varying push notifications to increase proximal engagement with a mobile health app. JMIR mHealth uHealth 2018, 6, e10123. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, M.; Ajzen, I. Chapter 1. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Fishbein, M. Attitude and the prediction of behaviour. In Readings Attitude Theory Measurement; Wiley: New York, NY, USA, 1967. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Mode. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Prieto, J.C.; Olmos-Migueláñez, S.; García-Peñalvo, F.J. Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers. Comput. Hum. Behav. 2016, 55, 519–528. [Google Scholar] [CrossRef]
- Gupta, S.; Sahu, G.P. An Extended Tam Model to Explain the Adoption of Payment Banks in India. In Proceedings of the IFIP Advances in Information and Communication Technology; Springer Nature: Cham, Switzerland, 2020; Volume 618, pp. 91–102. [Google Scholar]
- Venkatesh, V. Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Inf. Syst. Res. 2000, 11, 342–365. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.Y. User Acceptance of Mobile Library Applications in Academic Libraries: An Application of the Technology Acceptance Model. J. Acad. Librariansh. 2016, 42, 687–693. [Google Scholar] [CrossRef]
- Ariff, M.S.M.; Yeow, S.M.; Zakuan, N.; Jusoh, A.; Bahari, A.Z. The Effects of Computer Self-Efficacy and Technology Acceptance Model on Behavioral Intention in Internet Banking Systems. Procedia Soc. Behav. Sci. 2012, 57, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Park, N.; Heo, W. Factors Influencing Intranet Acceptance in Restaurant Industry: Use of Technology Acceptance Model. Int. Bus. Res. 2018, 11, 1. [Google Scholar] [CrossRef]
- Mlekus, L.; Bentler, D.; Paruzel, A.; Kato-Beiderwieden, A.L.; Maier, G.W. How to raise technology acceptance: User experience characteristics as technology-inherent determinants. Grup. Interaktion. Organ. Z. Angew. Organ. 2020, 51, 273–283. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Bala, H. Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. Manag. Inf. Syst. 2003, 27. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. Manag. Inf. Syst. 2012, 36. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, G.B.; Johnsen, J.A.K.; Almås-Sørensen, L.; Vittersø, J. Personality and technology acceptance: The influence of personality factors on the core constructs of the Technology Acceptance Model. Behav. Inf. Technol. 2013, 32, 323–334. [Google Scholar] [CrossRef]
- Park, S.; O’Brien, M.A.; Caine, K.E.; Rogers, W.A.; Fisk, A.D.; Van Ittersum, K.; Capar, M.; Parsons, L.J. Acceptance of computer technology: Understanding the user and the organizational characteristics. Proc. Hum. Factors Ergon. Soc. 2006, 1478–1482. [Google Scholar] [CrossRef]
- Stylianou, A.C.; Jackson, P.J. A comparative examination of individual differences and beliefs on technology usage: Gauging the role of it. J. Comput. Inf. Syst. 2007, 47. [Google Scholar] [CrossRef]
- Agarwal, R.; Prasad, J. A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Inf. Syst. Res. 1998, 9. [Google Scholar] [CrossRef]
- Nunes, A.; Limpo, T.; Castro, S.L. Acceptance of Mobile Health Applications: Examining Key Determinants and Moderators. Front. Psychol. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Social Foundations of Thought and Action. In The Health Psychology Reader; SAGE Publications Ltd.: New York, NY, USA, 2012. [Google Scholar]
- Compeau, D.R.; Higgins, C.A. Computer self-efficacy: Development of a measure and initial test. MIS Q. Manag. Inf. Syst. 1995, 19. [Google Scholar] [CrossRef] [Green Version]
- Jeon, E.; Park, H.A. Factors affecting acceptance of smartphone application for management of obesity. Healthc. Inform. Res. 2015, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, B.C.; Chang, H. Technology acceptance and adoption of innovative smartphone uses among hospital employees. Healthc. Inform. Res. 2014, 20, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Park, N.; Rhoads, M.; Hou, J.; Lee, K.M. Understanding the acceptance of teleconferencing systems among employees: An extension of the technology acceptance model. Comput. Human Behav. 2014, 39, 118–127. [Google Scholar] [CrossRef]
- Zhang, X.; Han, X.; Dang, Y.; Meng, F.; Guo, X.; Lin, J. User acceptance of mobile health services from users’ perspectives: The role of self-efficacy and response-efficacy in technology acceptance. Inform. Health Soc. Care 2017, 42, 194–206. [Google Scholar] [CrossRef]
- Revythi, A.; Tselios, N. Extension of Technology Acceptance Model by using System Usability Scale to assess behavioral intention to use e-learning. arXiv 2017, arXiv:1704.06127. [Google Scholar] [CrossRef] [Green Version]
- Zainab, B.; Awais Bhatti, M.; Alshagawi, M. Factors affecting e-training adoption: An examination of perceived cost, computer self-efficacy and the technology acceptance model. Behav. Inf. Technol. 2017, 36, 1261–1273. [Google Scholar] [CrossRef]
- Padilla-Meléndez, A.; Garrido-Moreno, A.; Del Aguila-Obra, A.R. Factors affecting e-collaboration technology use among management students. Comput. Educ. 2008, 51. [Google Scholar] [CrossRef]
- Purnomo, S.H.; Lee, Y.H. E-learning adoption in the banking workplace in Indonesia: An empirical study. Inf. Dev. 2013, 29, 138–153. [Google Scholar] [CrossRef]
- Flynn, L.R.; Goldsmith, R.E. A validation of the goldsmith and hofacker innovativeness scale. Educ. Psychol. Meas. 1993, 53. [Google Scholar] [CrossRef]
- Alhassany, H.; Faisal, F. Factors influencing the internet banking adoption decision in North Cyprus: An evidence from the partial least square approach of the structural equation modeling. Financ. Innov. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Mosbeh, R.; Soliman, K.S. An exploratory analysis of factors affecting users’ adoption of corporate intranet: A Tunisian study. Manag. Res. News 2008, 31. [Google Scholar] [CrossRef]
- Simarmata, M.T.A.; Hia, I.J. the Role of Personal Innovativeness on Behavioral Intention of Information Technology. J. Econ. Andbus. 2020, 1, 18–29. [Google Scholar]
- Rosen, P.A.; Wilson, R.L. The Effect of Personal Innovativeness on Technology Acceptance and Use. In Time; Oklahoma State University: Stillwater, OK, USA, 2005; Volume 93. [Google Scholar]
- Talukder, M. Factors affecting the adoption of technological innovation by individual employees: An Australian study. Procedia Soc. Behav. Sci. 2012, 40, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Abdekhoda, M.; Ahmadi, M.; Gohari, M.; Noruzi, A. The effects of organizational contextual factors on physicians’ attitude toward adoption of Electronic Medical Records. J. Biomed. Inform. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, E.; Kwon, S.J.; Han, J. Antecedents of the adoption of building information modeling technology in Korea. Eng. Constr. Archit. Manag. 2019, 26. [Google Scholar] [CrossRef]
- Igbaria, M.; Guimaraes, T.; Davis, G.B. Testing the Determinants of Microcomputer Usage via a Structural Equation Model. J. Manag. Inf. Syst. 1995, 11. [Google Scholar] [CrossRef]
- Kawakami, T.; Durmuşoǧlu, S.S.; Barczak, G. Factors influencing information technology usage for new product development: The case of Japanese companies. J. Prod. Innov. Manag. 2011, 28. [Google Scholar] [CrossRef]
- Luu, T.T.; Venkatesh, S. Organizational culture and technological innovation adoption in private hospitals. Int. Bus. Res. 2010, 3. [Google Scholar] [CrossRef] [Green Version]
- West, M.A. The social psychology of innovation in groups. In Innovation and Creativity at Work: Psychological and Organizational Strategies; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Chung, Y.; Jiang, Y.; Blasi, J.R.; Kruse, D.L. Effects of Leader Networking Behaviors and Vertical Faultlines on Support for Innovation. Small Gr. Res. 2020, 51. [Google Scholar] [CrossRef]
- Bhattacherjee, A.; Hikmet, N. Reconceptualizing organizational support and its effect on information technology usage: Evidence from the health care sector. J. Comput. Inf. Syst. 2008, 48. [Google Scholar] [CrossRef]
- Tanduklangi, A. Determinants of User Intention in Using e-Learning Technology in Indonesian Context: An Empirical Study. Mediterr. J. Soc. Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Naujokaitiene, J.; Tereseviciene, M.; Zydziunaite, V. Organizational support for employee engagement in technology-enhanced learning. SAGE Open 2015, 5. [Google Scholar] [CrossRef]
- Apolinário-Hagen, J.; Hennemann, S.; Fritsche, L.; Drüge, M.; Breil, B. Determinant Factors of Public Acceptance of Stress Management Apps: Survey Study. JMIR Ment. Health 2019, 6, e15373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, W.; Agarwal, R.; Sambamurthy, V. Sources of influence on beliefs about information technology use: An empirical study of knowledge workers. MIS Q. Manag. Inf. Syst. 2003, 27, 657–678. [Google Scholar] [CrossRef] [Green Version]
- Brislin, R.W. Back-translation for cross-cultural research. J. Cross. Cult. Psychol. 1970, 1. [Google Scholar] [CrossRef]
- West, M.A.; Anderson, N.R. Innovation in top management teams. J. Appl. Psychol. 1996, 81, 680–693. [Google Scholar] [CrossRef]
- Ragazzoni, P.; Baiardi, P.; Zotti, A.M.; Anderson, N.; West, M. Research note:Italian validation of the team climate inventory: A measure of team climate for innovation. J. Manag. Psychol. 2002, 17. [Google Scholar] [CrossRef]
- Hoque, M.R. An empirical study of mHealth adoption in a developing country: The moderating effect of gender concern. BMC Med. Inform. Decis. Mak. 2016, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szajna, B. Empirical evaluation of the revised technology acceptance model. Manag. Sci. 1996, 42. [Google Scholar] [CrossRef]
- Nunes, A.; Limpo, T.; Castro, S.L. Individual Factors that Influence the Acceptance of Mobile Health Apps: The Role of Age, Gender, and Personality Traits. Commun. Comput. Inf. Sci. 2019, 982, 167–179. [Google Scholar] [CrossRef]
- Burton-Jones, A.; Hubona, G.S. The mediation of external variables in the technology acceptance model. Inf. Manag. 2006, 43. [Google Scholar] [CrossRef]
- Assaker, G. Age and gender differences in online travel reviews and user-generated-content (UGC) adoption: Extending the technology acceptance model (TAM) with credibility theory. J. Hosp. Mark. Manag. 2020, 29. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Henson, R.K. Understanding internal consistency reliability estimates: A conceptual primer on coefficient alpha. Meas. Eval. Couns. Dev. 2001, 34. [Google Scholar] [CrossRef]
- Manis, K.T.; Choi, D. The virtual reality hardware acceptance model (VR-HAM): Extending and individuating the technology acceptance model (TAM) for virtual reality hardware. J. Bus. Res. 2019, 100. [Google Scholar] [CrossRef]
- Forgays, D.K.; Hyman, I.; Schreiber, J. Texting everywhere for everything: Gender and age differences in cell phone etiquette and use. Comput. Hum. Behav. 2014, 31. [Google Scholar] [CrossRef]
- Natarajan, T.; Balasubramanian, S.A.; Kasilingam, D.L. The moderating role of device type and age of users on the intention to use mobile shopping applications. Technol. Soc. 2018, 53. [Google Scholar] [CrossRef]
- Lo Presti, A.; De Rosa, A.; Viceconte, E. I want to learn more! Integrating technology acceptance and task–technology fit models for predicting behavioural and future learning intentions. J. Work. Learn. 2021. [Google Scholar] [CrossRef]
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
---|---|---|---|---|---|---|---|---|
1. Perceived Usefulness | (0.91) | |||||||
2. Perceived Ease Of Use | 0.46 ** | (0.92) | ||||||
3. Intention to use | 0.72 ** | 0.50 ** | (0.86) | |||||
4. Specific Self-Efficacy | 0.16 * | 0.40 ** | 0.16 * | (0.94) | ||||
5. Organizational Support for Innovation | 0.30 ** | 0.36 ** | 0.32 ** | 0.19 ** | (0.93) | |||
6. Personal Innovativeness with Technology | 0.1 * | 0.26 ** | 0.22 ** | 0.25 ** | 0.21 ** | (0.83) | ||
7. Gender | −0.05 | 0.02 | 0.07 | −0.08 | 0.004 | −0.19 ** | -- | |
8. Age | 0.09 | −0.13 * | −0.14 * | 0.05 | 0.01 | −0.11 | −0.16 * | -- |
M | 2.81 | 3.61 | 2.96 | 51.17 | 2.19 | 4.98 | 0.61 | 39.90 |
DS | 0.73 | 0.69 | 0.81 | 16.60 | 0.77 | 1.27 | 0.49 | 9.45 |
Models | χ2 | df | CFI | TLI | RMSEA | SRMR | AIC | Comparison | Δχ2 |
---|---|---|---|---|---|---|---|---|---|
M1 | 819.66 *** | 417 | 0.93 | 0.92 | 0.06 (0.06, 0.07) | 0.06 | 18,882.91 | ||
M2 | 717.63 *** | 412 | 0.95 | 0.94 | 0.05 (0.05 0.06) | 0.05 | 18,788.87 | M1 − M2 | 102.03 *** |
Indirect Effects Org Support → Intention | Est. | SE | p | CI 95% |
ORG SUP → PU → INT | 0.12 | 0.04 | 0.005 | (0.04, 0.20) |
ORG SUP → PEOU → INT | 0.03 | 0.02 | 0.074 | (−0.03, 0.07) |
ORG SUP → PEOU → PU → INT | 0.04 | 0.02 | 0.009 | (0.01, 0.07) |
Indirect Effects Smartphone Self-Efficacy → Intention | Est. | SE | p | CI 95% |
SSE → PEOU → INT | 0.05 | 0.03 | 0.043 | (0.02, 0.10) |
SSE → PEOU → PU → INT | 0.07 | 0.02 | 0.001 | (0.03, 0.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paganin, G.; Simbula, S. New Technologies in the Workplace: Can Personal and Organizational Variables Affect the Employees’ Intention to Use a Work-Stress Management App? Int. J. Environ. Res. Public Health 2021, 18, 9366. https://doi.org/10.3390/ijerph18179366
Paganin G, Simbula S. New Technologies in the Workplace: Can Personal and Organizational Variables Affect the Employees’ Intention to Use a Work-Stress Management App? International Journal of Environmental Research and Public Health. 2021; 18(17):9366. https://doi.org/10.3390/ijerph18179366
Chicago/Turabian StylePaganin, Giulia, and Silvia Simbula. 2021. "New Technologies in the Workplace: Can Personal and Organizational Variables Affect the Employees’ Intention to Use a Work-Stress Management App?" International Journal of Environmental Research and Public Health 18, no. 17: 9366. https://doi.org/10.3390/ijerph18179366
APA StylePaganin, G., & Simbula, S. (2021). New Technologies in the Workplace: Can Personal and Organizational Variables Affect the Employees’ Intention to Use a Work-Stress Management App? International Journal of Environmental Research and Public Health, 18(17), 9366. https://doi.org/10.3390/ijerph18179366