Worldwide Research Trends on Solar-Driven Water Disinfection
Abstract
:1. Introduction
- RQ1: What are the global trends of scientific publications on the topic of solar-driven water disinfection?
- RQ2: Which are the institutions and their collaboration networks that work more intensely on this issue?
- RQ3: Which peer-reviewed journals publish the most on this topic?
- RQ4: How has the field evolved over time and what are its main, future research directions?
2. Materials and Methods
3. Results
3.1. Evolution of the Scientific Production
3.2. Distribution of Publications by Origin
3.3. Journals of Greater Impact
3.4. Analysis of the Keywords
3.4.1. Green Cluster
3.4.2. Dark Blue Cluster
3.4.3. Light Blue Cluster
3.4.4. Yellow Cluster
3.4.5. Purple Cluster
3.4.6. Red Cluster
3.4.7. Keywords’ Trends and Progress
4. Conclusions
4.1. General Remarks
- The studies of disinfection mediated by sunlight focus mainly on water for human consumption and water for reuse (e.g., in crop irrigation), which may come from WWTPs.
- The research done shows that the organic matter present in the water has a great influence on the level of disinfection achieved.
- Recent pilot-scale research has shown the great potential of solar technologies for commercial scale-up.
- The evolution of the keywords in the last decade indicates that solar photocatalysis with new materials that accelerate oxidative reactions is the area most studied in recent years.
4.2. Prospects and Future Research
- Better and deeper assessment of whether the level of disinfection is acceptable for drinking or for the selected restricted reuse (e.g., irrigation, environmental, aquifers’ recharge, etc.).
- Further analysis of the impact on public health when a drinking water intervention is undertaken and demonstrating impact in terms of risk reduction in food production when treated WW is reused for this purpose. In this sense, it is very advisable to appropriately assess bacterial/viral regrowth and evaluate microorganisms’ post-treatment recovery capacity to guarantee the positive impacts in health, food security and environment of the disinfection treatment in the overall process.
- More testing of solar treatments for natural waters or with consortia of microorganisms naturally present in the waters to evaluate the potential of the real-world application of the technology.
- Focusing not only on the assessment of regulated microorganisms’ indicators, but also of new emerging pathogens (e.g., ARB) to corroborate that the technology reaches the minimum requirements of water quality or, otherwise, which post-treatments are required to achieve water quality standards.
- Considering the large-scale application, the investment and maintenance of the solar hardware, and the life span of the materials to give realistic figures about economic sustainability of the technology and to identity limitations or new research needs. Furthermore, field trials are needed to identify local limitations and to optimize the technology for the different areas.
- Solving the great limitation of solar photocatalysis with new materials for realistic drinking water or WW disinfection applications.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drinking-Water. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 9 July 2021).
- United Nations. Resolution adopted by the General Assembly A/RES/70/1. Transforming our world: The 2030 Agenda for Sustainable Development 2015. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 9 July 2021).
- World Health Organization. Results of Round II of the WHO International Scheme to Evaluate Household Water Treatment Technologies; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- UNESCO ODS6. 2015. Available online: https://www.un.org/sustainabledevelopment/es/water-and-sanitation/ (accessed on 9 July 2021).
- Richardson, S.; Plewa, M.; Wagner, E.; Schoeny, R.; Demarini, D. Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection by-Products in Drinking Water: A Review and Roadmap for Research. Mutat. Res. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Lei, Y.; Zhang, X.; Yang, X. Treating Disinfection Byproducts with UV or Solar Irradiation and in UV Advanced Oxidation Processes: A Review. J. Hazard. Mater. 2021, 408, 124435. [Google Scholar] [CrossRef]
- Wang, M.; Ateia, M.; Awfa, D.; Yoshimura, C. Regrowth of Bacteria after Light-Based Disinfection—What We Know and Where We Go from Here. Chemosphere 2021, 268, 128850. [Google Scholar] [CrossRef] [PubMed]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.A.; Fernandez-Ibañez, P.A.; Dunlop, P.S.M.; Alrousan, D.M.A.; Hamilton, J.W.J. Photocatalytic Enhancement for Solar Disinfection of Water: A Review. Int. J. Photoenergy 2011, 2011, 1–12. [Google Scholar] [CrossRef]
- McGuigan, K.G.; Conroy, R.M.; Mosler, H.-J.; du Preez, M.; Ubomba-Jaswa, E.; Fernandez-Ibañez, P. Solar Water Disinfection (SODIS): A Review from Bench-Top to Roof-Top. J. Hazard. Mater. 2012, 235–236, 29–46. [Google Scholar] [CrossRef]
- Polo-López, M.I.; Martínez-García, A.; Abeledo-Lameiro, M.J.; Gómez-Couso, H.H.; Ares-Mazás, E.E.; Reboredo-Fernández, A.; Morse, T.D.; Buck, L.; Lungu, K.; McGuigan, K.G.; et al. Microbiological Evaluation of 5 L- and 20 L-Transparent Polypropylene Buckets for Solar Water Disinfection (SODIS). Molecules 2019, 24, 2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sansaniwal, S.K. Advances and Challenges in Solar-Powered Wastewater Treatment Technologies for Sustainable Development: A Comprehensive Review. Int. J. Ambient Energy 2019, 1–34. [Google Scholar] [CrossRef]
- Sobsey, M.D.; World Health Organization. Water, Sanitation and Health Team. Managing Water in the Home: Accelerated Health Gains from Improved Water Supply/Prepared by Mark D. Sobsey; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Danwittayakul, S.; Songngam, S.; Fhulua, T.; Muangkasem, P.; Sukkasi, S. Safety and Durability of Low-Density Polyethylene Bags in Solar Water Disinfection Applications. Environ. Technol. 2017, 38, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
- Ubomba-Jaswa, E.; Fernández-Ibáñez, P.; McGuigan, K.G. A Preliminary Ames Fluctuation Assay Assessment of the Genotoxicity of Drinking Water That Has Been Solar Disinfected in Polyethylene Terephthalate (PET) Bottles. J. Water Health 2010, 8, 712–719. [Google Scholar] [CrossRef]
- Martínez-García, A.; Vincent, M.; Rubiolo, V.; Domingos, M.; Canela, M.C.; Oller, I.; Fernández-Ibáñez, P.; Polo-López, M.I. Assessment of a Pilot Solar V-Trough Reactor for Solar Water Disinfection. Chem. Eng. J. 2020, 399, 125719. [Google Scholar] [CrossRef]
- Reyneke, B.; Ndlovu, T.; Vincent, M.B.; Martínez-García, A.; Polo-López, M.I.; Fernández-Ibáñez, P.; Ferrero, G.; Khan, S.; McGuigan, K.G.; Khan, W. Validation of Large-Volume Batch Solar Reactors for the Treatment of Rainwater in Field Trials in Sub-Saharan Africa. Sci. Total Environ. 2020, 717, 137223. [Google Scholar] [CrossRef]
- Polo-López, M.I.; Fernández-Ibáñez, P.; Ubomba-Jaswa, E.; Navntoft, C.; García-Fernández, I.; Dunlop, P.S.M.; Schmid, M.; Byrne, J.A.; McGuigan, K.G. Elimination of Water Pathogens with Solar Radiation Using an Automated Sequential Batch CPC Reactor. J. Hazard. Mater. 2011, 196, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Dalrymple, O.K.; Stefanakos, E.; Trotz, M.A.; Goswami, D.Y. A Review of the Mechanisms and Modeling of Photocatalytic Disinfection. Appl. Catal. B Environ. 2010, 98, 27–38. [Google Scholar] [CrossRef]
- Giannakis, S.; Polo López, M.I.; Spuhler, D.; Sánchez Pérez, J.A.; Fernández Ibáñez, P.; Pulgarin, C. Solar Disinfection Is an Augmentable, in Situ-Generated Photo-Fenton Reaction—Part 1: A Review of the Mechanisms and the Fundamental Aspects of the Process. Appl. Catal. B Environ. 2016, 199, 199–223. [Google Scholar] [CrossRef]
- Polo-López, M.I.; Oller, I.; Fernández-Ibáñez, P. Benefits of Photo-Fenton at Low Concentrations for Solar Disinfection of Distilled Water. A Case Study: Phytophthora Capsici. Catal. Today 2013, 209, 181–187. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Polo-López, M.I.; Mosteo, R.; Ormad, M.P.; Fernández-Ibáñez, P. Disinfection of Real and Simulated Urban Wastewater Effluents Using a Mild Solar Photo-Fenton. Appl. Catal. B Environ. 2014, 150–151, 619–629. [Google Scholar] [CrossRef]
- Ortega-Gómez, E.; Ballesteros Martín, M.M.; Carratalà, A.; Fernández Ibañez, P.; Sánchez Pérez, J.A.; Pulgarín, C. Principal Parameters Affecting Virus Inactivation by the Solar Photo-Fenton Process at Neutral PH and ΜM Concentrations of H2O2 and Fe2+/3+. Appl. Catal. B Environ. 2015, 174–175, 395–402. [Google Scholar] [CrossRef]
- Ruiz-Aguirre, A.; Polo-López, M.I.; Fernández-Ibáñez, P.; Zaragoza, G. Integration of Membrane Distillation with Solar Photo-Fenton for Purification of Water Contaminated with Bacillus sp. and Clostridium sp. Spores. Sci. Total Environ. 2017, 595, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.F.F.; Narciso-da-Rocha, C.; Polo-López, M.I.; Pastrana-Martínez, L.M.; Faria, J.L.; Manaia, C.M.; Fernández-Ibáñez, P.; Nunes, O.C.; Silva, A.M.T. Solar Treatment (H2O2, TiO2-P25 and GO-TiO2 Photocatalysis, Photo-Fenton) of Organic Micropollutants, Human Pathogen Indicators, Antibiotic Resistant Bacteria and Related Genes in Urban Wastewater. Water Res. 2018, 135, 195–206. [Google Scholar] [CrossRef]
- Giannakis, S.; López, M.I.P.; Spuhler, D.; Pérez, J.A.S.; Ibáñez, P.F.; Pulgarin, C. Solar Disinfection Is an Augmentable, in Situ-Generated Photo-Fenton Reaction—Part 2: A Review of the Applications for Drinking Water and Wastewater Disinfection. Appl. Catal. B Environ. 2016, 198, 431–446. [Google Scholar] [CrossRef]
- De la Obra Jiménez, I.; Esteban García, B.; Rivas Ibáñez, G.; Casas López, J.L.; Sánchez Pérez, J.A. Continuous Flow Disinfection of WWTP Secondary Effluents by Solar Photo-Fenton at Neutral PH in Raceway Pond Reactors at Pilot Plant Scale. Appl. Catal. B Environ. 2019, 247, 115–123. [Google Scholar] [CrossRef]
- De la Obra Jiménez, I.; Giannakis, S.; Grandjean, D.; Breider, F.; Grunauer, G.; Casas López, J.L.; Sánchez Pérez, J.A.; Pulgarin, C. Unfolding the Action Mode of Light and Homogeneous vs. Heterogeneous Photo-Fenton in Bacteria Disinfection and Concurrent Elimination of Micropollutants in Urban Wastewater, Mediated by Iron Oxides in Raceway Pond Reactors. Appl. Catal. B Environ. 2020, 263, 118158. [Google Scholar] [CrossRef]
- Acra, A.; Karahagopian, Y.; Raffoul, Z.; Dajani, R. Disinfection of Oral Rehydration Solutions by Sunlight. Lancet 1980, 2, 1257–1258. [Google Scholar] [CrossRef]
- Sommer, B.; Marino, A.; Solarte, Y.; Salas, M.L.; Dierolf, C.; Valiente, C.; Mora, D.; Rechsteiner, R.; Setter, P.; Wirojanagud, W.; et al. SODIS—An Emerging Water Treatment Process. J. Water Supply Res. Technol. AQUA 1997, 46, 127–137. [Google Scholar]
- Borde, P.; Elmusharaf, K.; McGuigan, K.G.; Keogh, M.B. Community Challenges When Using Large Plastic Bottles for Solar Energy Disinfection of Water (SODIS). BMC Public Health 2016, 16, 931. [Google Scholar] [CrossRef] [Green Version]
- Chaúque, B.J.M.; Rott, M.B. Solar Disinfection (SODIS) Technologies as Alternative for Large-Scale Public Drinking Water Supply: Advances and Challenges. Chemosphere 2021, 281, 130754. [Google Scholar] [CrossRef] [PubMed]
- García-Gil, Á.; García-Muñoz, R.A.; McGuigan, K.G.; Marugán, J. Solar Water Disinfection to Produce Safe Drinking Water. A Review of Parameters, Enhancements, and Modelling Approaches to Make SODIS Faster and Safer. Molecules 2021, 26, 3431. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H. Photoelectrochemical Sterilization of Microbial Cells by Semi-Conductor Powders. FEMS Microbiol. Lett. 1985, 29, 211–214. [Google Scholar] [CrossRef]
- Butterfield, I.M.; Christensen, P.A.; Curtis, T.P.; Gunlazuardi, J. Water Disinfection Using an Immobilised Titanium Dioxide Film in a Photochemical Reactor with Electric Field Enhancement. Water Res. 1997, 31, 675–677. [Google Scholar] [CrossRef]
- Rincón, A.G.; Pulgarin, C. Comparative Evaluation of Fe3+ and TiO2 Photoassisted Processes in Solar Photocatalytic Disinfection of Water. Appl. Catal. B Environ. 2006, 63, 222–231. [Google Scholar] [CrossRef]
- Keane, D.A.; McGuigan, K.G.; Ibáñez, P.F.; Polo-Lopez, M.I.; Byrne, J.A.; Dunlop, P.S.M.; O’Shea, K.; Dionysiou, D.D.; Pillai, S.C. Solar Photocatalysis for Water Disinfection: Materials and Reactor Design. Catal. Sci. Technol. 2014, 4, 1211–1226. [Google Scholar] [CrossRef] [Green Version]
- Mongeon, P.; Paul-Hus, A. The Journal Coverage of Web of Science and Scopus: A Comparative Analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, G.; Polo-López, M.I.; Martínez-Piernas, A.B.; Fernández-Ibáñez, P.; Agüera, A.; Rizzo, L. Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2. Environ. Sci. Technol. 2015, 49, 11096–11104. [Google Scholar] [CrossRef] [PubMed]
- Aguas, Y.; Hincapie, M.; Martínez-Piernas, A.B.; Agüera, A.; Fernández-Ibáñez, P.; Nahim-Granados, S.; Polo-López, M.I. Reclamation of Real Urban Wastewater Using Solar Advanced Oxidation Processes: An Assessment of Microbial Pathogens and 74 Organic Microcontaminants Uptake in Lettuce and Radish. Environ. Sci. Technol. 2019, 53, 9705–9714. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater Reuse in Irrigation: A Microbiological Perspective on Implications in Soil Fertility and Human and Environmental Health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rincón, A.; Pulgarín, C. Effect of PH, Inorganic Ions, Organic Matter and H2O2 on E. coli K12 Photocatalytic Inactivation by TiO2Implications in Solar Water Disinfection. Appl. Catal. B Environ. 2004, 51, 283–302. [Google Scholar] [CrossRef]
- Ortega-Gómez, E.; Ballesteros Martín, M.M.; Esteban García, B.; Sánchez Pérez, J.A.; Fernández Ibáñez, P. Solar Photo-Fenton for Water Disinfection: An Investigation of the Competitive Role of Model Organic Matter for Oxidative Species. Appl. Catal. B Environ. 2014, 148–149, 484–489. [Google Scholar] [CrossRef]
- Rommozzi, E.; Giannakis, S.; Giovannetti, R.; Vione, D.; Pulgarin, C. Detrimental vs. Beneficial Influence of Ions during Solar (SODIS) and Photo-Fenton Disinfection of E. Coli in Water: (Bi)Carbonate, Chloride, Nitrate and Nitrite Effects. Appl. Catal. B Environ. 2020, 270, 118877. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Wang, D. Progress and Challenges in Photocatalytic Disinfection of Waterborne Viruses: A Review to Fill Current Knowledge Gaps. Chem. Eng. J. 2019, 355, 399–415. [Google Scholar] [CrossRef]
- Roshith, M.; Pathak, A.; Nanda Kumar, A.K.; Anantharaj, G.; Saranyan, V.; Ramasubramanian, S.; Satheesh Babu, T.G.; Ravi Kumar, D.V. Continuous Flow Solar Photocatalytic Disinfection of E. coli Using Red Phosphorus Immobilized Capillaries as Optofluidic Reactors. Appl. Surf. Sci. 2021, 540, 148398. [Google Scholar] [CrossRef]
- Chaúque, B.J.M.; Benetti, A.D.; Corção, G.; Silva, C.E.; Gonçalves, R.F.; Rott, M.B. A New Continuous-Flow Solar Water Disinfection System Inactivating Cysts of Acanthamoeba Castellanii, and Bacteria. Photochem. Photobiol. Sci. 2021, 20, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Clasen, T.; Haller, L.; Walker, D.; Bartram, J.; Cairncross, S. Cost-Effectiveness of Water Quality Interventions for Preventing Diarrhoeal Disease in Developing Countries. J. Water Health 2007, 5, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Nahim-Granados, S.; Rivas-Ibáñez, G.; Antonio Sánchez Pérez, J.; Oller, I.; Malato, S.; Polo-López, M.I. Fresh-Cut Wastewater Reclamation: Techno-Economical Assessment of Solar Driven Processes at Pilot Plant Scale. Appl. Catal. B Environ. 2020, 278, 119334. [Google Scholar] [CrossRef]
- Burgess, T. WaterAid. 2016. Water at What Cost? The State of the World’s Water 2016. Briefing Report. Available online: https://washmatters.wateraid.org/sites/g/files/jkxoof256/files/Water%20%20At%20What%20Cost%20%20The%20State%20of%20the%20Worlds%20Water%202016.pdf (accessed on 16 July 2021).
- Morse, T.; Luwe, K.; Lungu, K.; Chiwaula, L.; Mulwafu, W.; Buck, L.; Harlow, R.; Fagan, G.H.; McGuigan, K. A Transdisciplinary Methodology for Introducing Solar Water Disinfection to Rural Communities in Malawi—Formative Research Findings. Integr. Environ. Assess. Manag. 2020, 16, 871–884. [Google Scholar] [CrossRef] [Green Version]
- Krafft, M.P.; Riess, J.G. Per- and Polyfluorinated Substances (PFASs): Environmental Challenges. Curr. Opin. Colloid Interface Sci. 2015, 20, 192–212. [Google Scholar] [CrossRef]
- Méndez-Hermida, F.; Ares-Mazás, E.; McGuigan, K.G.; Boyle, M.; Sichel, C.; Fernández-Ibáñez, P. Disinfection of Drinking Water Contaminated with Cryptosporidium Parvum Oocysts under Natural Sunlight and Using the Photocatalyst TiO2. J. Photochem. Photobiol. B 2007, 88, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Abeledo-Lameiro, M.J.; Polo-López, M.I.; Ares-Mazás, E.; Gómez-Couso, H. Inactivation of the Waterborne Pathogen Cryptosporidium Parvum by Photo-Fenton Process under Natural Solar Conditions. Appl. Catal. B Environ. 2019, 253, 341–347. [Google Scholar] [CrossRef]
- Castro-Alférez, M.; Polo-López, M.I.; Marugán, J.; Fernández-Ibáñez, P. Mechanistic Modeling of UV and Mild-Heat Synergistic Effect on Solar Water Disinfection. Chem. Eng. J. 2017, 316, 111–120. [Google Scholar] [CrossRef]
- Endo-Kimura, M.; Kowalska, E. Plasmonic Photocatalysts for Microbiological Applications. Catalysts 2020, 10, 824. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, C.; Yang, Y.; Zeng, G.; Zhang, C.; Zhou, Y.; Yang, J.; Huang, D.; Wang, H.; Xiong, W.; et al. Carbon Nitride Based Photocatalysts for Solar Photocatalytic Disinfection, Can We Go Further? Chem. Eng. J. 2021, 404, 126540. [Google Scholar] [CrossRef]
- Gopinath, K.P.; Madhav, N.V.; Krishnan, A.; Malolan, R.; Rangarajan, G. Present Applications of Titanium Dioxide for the Photocatalytic Removal of Pollutants from Water: A Review. J. Environ. Manag. 2020, 270, 110906. [Google Scholar] [CrossRef]
- Anthony, E.T.; Ojemaye, M.O.; Okoh, O.O.; Okoh, A.I. A Critical Review on the Occurrence of Resistomes in the Environment and Their Removal from Wastewater Using Apposite Treatment Technologies: Limitations, Successes and Future Improvement. Environ. Pollut. 2020, 263, 113791. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.G.; Michael-Kordatou, I.; Beretsou, V.G.; Jäger, T.; Michael, C.; Schwartz, T.; Fatta-Kassinos, D. Solar Photo-Fenton Oxidation Followed by Adsorption on Activated Carbon for the Minimisation of Antibiotic Resistance Determinants and Toxicity Present in Urban Wastewater. Appl. Catal. B Environ. 2019, 244, 871–880. [Google Scholar] [CrossRef]
SODIS | |
1980s | A. Acra et al., noted that sunlight destroyed bacteria in contaminated water, including pathogens, and they investigated the applicability of this method to the disinfection of oral rehydration solutions prepared with the contaminated water [31]. |
1990s | Several research groups started analyzing SODIS efficiency in batch and continuous reactors, at different temperatures, radiation intensities, UV-A doses, etc. [32]. |
2000–2020 | Emergency water treatment following natural disasters and during humanitarian crises was recognized by the WHO and UNICEF as of 2005 [10]. Larger water containers were successfully tested [10,16,33]. New emerging and resistant pathogens were inactivated showing that SODIS was effective against almost all waterborne microbial species of pathogenic interest [10,34]. Water turbidity was overcome [34]. Chemical additives were used as possible enhancers [10]. Models and mechanisms of solar radiation induced cell death in water were studied [35]. Studies were carried out on possible leach of unsafe chemicals from the plastic bottles [34]. Enhancement technologies (flow reactors, continuous reactors, solar mirrors, etc.) [10,34]. |
Water disinfection by solar photocatalysis | |
1980s | The work of Matsunaga and coworkers (1985) was the first report of photocatalytic disinfection (TiO2) [36]. |
1990s | Butterfield and coworkers showed the first study on immobilization of the catalyst [37]. |
2000–2020 | Different types of structures of TiO2 and TiO2-doped nanomaterials for visible light activity [20]. First trials at circumneutral pH with photo-Fenton [38]. Development of new visible light-active catalysts [8]. New reactor design [39]. |
Center/University | Country | Nc | Author/s | Na | H |
---|---|---|---|---|---|
CIEMAT-Plataforma Solar de Almería | Spain | 152 | Polo-López, M. I. Malato, S. | 42 22 | 31 81 |
Eawag - Swiss Federal Institute of Aquatic Science and Technology | Switzerland | 36 | Mosler, H. J. | 14 | 23 |
Ecole Polytechnique Fédérale de Lausanne | Switzerland | 79 | Pulgarín, C. Giannakis, S. * | 64 35 | 65 25 |
Royal College of Surgeons in Ireland RCSI | Ireland | 45 | McGuigan, K. Conroy, R. M. | 43 12 | 31 54 |
Ministry of Education China | China | 28 | Li, Y. | 3 | 24 |
Ulster University | United Kingdom | 31 | Fernández Ibáñez, P. ** Byrne, J. P. | 77 13 | 52 33 |
Universidad de Almeria | Spain | 34 | Sánchez Pérez J. A. | 11 | 45 |
Universidad Rey Juan Carlos | Spain | 17 | Marugán, J. | 14 | 29 |
University of California, Berkeley | United States | 18 | Nelson, K. L. | 7 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballesteros, M.; Brindley, C.; Sánchez-Pérez, J.A.; Fernández-Ibañez, P. Worldwide Research Trends on Solar-Driven Water Disinfection. Int. J. Environ. Res. Public Health 2021, 18, 9396. https://doi.org/10.3390/ijerph18179396
Ballesteros M, Brindley C, Sánchez-Pérez JA, Fernández-Ibañez P. Worldwide Research Trends on Solar-Driven Water Disinfection. International Journal of Environmental Research and Public Health. 2021; 18(17):9396. https://doi.org/10.3390/ijerph18179396
Chicago/Turabian StyleBallesteros, Menta, Celeste Brindley, José Antonio Sánchez-Pérez, and Pilar Fernández-Ibañez. 2021. "Worldwide Research Trends on Solar-Driven Water Disinfection" International Journal of Environmental Research and Public Health 18, no. 17: 9396. https://doi.org/10.3390/ijerph18179396
APA StyleBallesteros, M., Brindley, C., Sánchez-Pérez, J. A., & Fernández-Ibañez, P. (2021). Worldwide Research Trends on Solar-Driven Water Disinfection. International Journal of Environmental Research and Public Health, 18(17), 9396. https://doi.org/10.3390/ijerph18179396