From Oncological Paradigms to Non-Communicable Disease Pandemic. The Need of Recovery Human Biology Evolution
Abstract
:1. Introduction
2. The Somatic Mutation Theory (SMT) in Cancer
3. Cancer Dormancy Leads to a New Paradigm
4. Physical Exercise and Cancer Dormancy
5. Human Evolution and Chronic Diseases
6. Sustainability Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khun, T. The Structure of Scientific Revolutions; University of Chicago Press: Chicago, IL, USA, 1962. [Google Scholar]
- Boveri, T. Zur Frage Der Entstehung Maligner Tumoren; Verlag von Gustav Fischer: Jena, Germany, 1914. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D. Rethinking the war on cancer. Lancet 2014, 383, 558–563. [Google Scholar] [CrossRef]
- Akavia, U.D.; Litvin, O.; Kim, J.; Sanchez-Garcia, F.; Kotliar, D.; Causton, H.C.; Pochanard, P.; Mozes, E.; Garraway, L.A.; Pe’er, D. An Integrated Approach to Uncover Drivers of Cancer. Cell 2010, 143, 1005–1017. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, F.; Bryson, G. Carcinogenesis through solid state surfaces. Prog. Exp. Tumor Res. 1964, 5, 85–133. [Google Scholar]
- Stevens, L.C. The development of transplantable teratocarcinomas from intratesticular grafts of pre-and postimplantation mouse embryos. Dev. Biol. 1970, 21, 364–382. [Google Scholar] [CrossRef]
- Maffini, M.V.; Soto, A.M.; Calabro, J.M.; Ucci, A.A.; Sonnenschein, C. The stroma as a crucial target in rat mammary gland carcinogenesis. J. Cell Sci. 2004, 117, 1495–1502. [Google Scholar] [CrossRef] [Green Version]
- Barcellos-Hoff, M.H.; Ravani, S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000, 60, 1254–1260. [Google Scholar] [PubMed]
- Brodeur, G.M. Spontaneous regression of neuroblastoma. Cell Tissue Res. 2018, 372, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Mintz, B.; Ilmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 1975, 72, 3585–3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussard, K.M.; Boulanger, C.A.; Booth, B.W.; Bruno, R.D.; Smith, G.H. Reprogramming human cancer cells in the mouse mammary gland. Cancer Res. 2010, 70, 6336–6343. [Google Scholar] [CrossRef] [Green Version]
- Maffini, M.V.; Calabro, J.M.; Soto, A.M.; Sonnenschein, C. Stromal regulation of neoplastic development: Age-dependent normalization of neoplastic mammary cells by mammary stroma. Am. J. Pathol. 2005, 67, 1405–1410. [Google Scholar] [CrossRef]
- McCullough, A.R.; Coleman, W.B.; Smith, G.J.; Grisham, J.W. Age-dependent induction of hepatic tumor regression by the tissue microenvironment after transplantation of neoplastically transformed rat liver epithelial cells into the liver. Cancer Res. 1997, 57, 1807–1873. [Google Scholar]
- Meng, S.; Tripathy, D.; Frenkel, E.P.; Shete, S.; Naftalis, E.Z.; Huth, J.F.; Beitsch, P.D.; Leitch, M.; Hoover, S.; Euhus, D.; et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 2004, 10, 8152–8162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemminki, K.; Ji, J.; Försti, A.; Sundquist, J.; Lenner, P. Survival in breast cancer is familial. Breast Cancer Res. Treat. 2008, 110, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Waddington, C.H. Principles of Embryology; Allen and Unwin Ltd.: London, UK, 1997. [Google Scholar]
- Smithers, D.W. An attack on cytologism. Lancet 1962, 1, 493–499. [Google Scholar] [CrossRef]
- Sonnenschein, C.; Soto, A.M. Somatic mutation theory of carcinogenesis: Why it should be dropped and replaced. Mol. Carcinog. 2000, 29, 205–211. [Google Scholar] [CrossRef]
- Tarin, D. Cell and tissue interactions in carcinogenesis and metastasis and their clinical significate. Semin. Cancer Biol. 2011, 21, 72–82. [Google Scholar] [CrossRef]
- Demicheli, R.; Quiton, D.F.; Fornili, M.; Hrushesky, W.J. Cancer as a changed tissue’s way of life (when to treat, when to watch and when to think). Future Oncol. 2016, 12, 647–657. [Google Scholar] [CrossRef]
- Demicheli, R.; Tereziani, M.; Valagussa, P.; Moliterni, A.; Zambetti, M.; Bonadonna, G. Local Recurrences Following Mastectomy: Support for the Concept of Tumor Dormancy. JNCI J. Natl. Cancer Inst. 1994, 86, 45–48. [Google Scholar] [CrossRef]
- Demicheli, R.; Retsky, M.W.; Hrushesky, W.J.; Baum, M. Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: Learning from failures. Nat. Clin. Pract. Oncol. 2007, 4, 699–710. [Google Scholar] [CrossRef]
- Fisher, B.; Fisher, E.R. Experimental evidence in support of the dormant tumor cell. Science 1959, 130, 918–919. [Google Scholar] [CrossRef] [PubMed]
- Demicheli, R.; Retsky, M.W.; Swartzendruber, D.E.; Bonadonna, G. Proposal for a new model of breast cancer metastatic development. Ann. Oncol. 1997, 8, 1075–1080. [Google Scholar] [CrossRef]
- Retsky, M.W.; Demicheli, R.; Swartzendruber, D.E.; Bame, P.D.; Wardwell, R.H.; Bonadonna, G.; Speer, J.F.; Valagussa, P. Computer simulation of a breast cancer metastasis model. Breast Cancer Res. Treat. 1997, 45, 193–202. [Google Scholar] [CrossRef]
- Demicheli, R.; Desmedt, C.; Retsky, M.; Sotiriou, C.; Piccart, M.; Biganzoli, E. Late effects of adjuvant chemotherapy adumbrate dormancy complexity in breast cancer. Breast 2020, 52, 64–70. [Google Scholar] [CrossRef]
- Rezaei-Lotfi, S.; Farahani, R.M. Coupled cycling and regulation of metazoan morphogenesis. Cell Div. 2020, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Yates, E.F.; Garfinkle, A.; Walter, D.O.; Yate, G.B. Self-Organizing Systems: The Emergence of Order; Plenum Press: New York, NY, USA, 1987. [Google Scholar]
- Sasai, Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 2013, 493, 318–326. [Google Scholar] [CrossRef]
- Wedlich-Soldner, R.; Betz, T. Self-organization: The fundament of cell biology. Philos. Trans. R. Soc. Lond Ser. B Biol. Sci. 2018, 373, 20170103. [Google Scholar] [CrossRef]
- Hayes, S.C.; Steele, M.L.; Spence, R.R.; Gordon, L.; Battistutta, D.; Bashford, J.; Pyke, C.; Saunders, C.; Eakin, E. Exercise following breast cancer: Exploratory survival analyses of two randomised, controlled trials. Breast Cancer Res. Treat. 2018, 167, 505–514. [Google Scholar] [CrossRef]
- Courneya, K.S.; Segal, R.J.; McKenzie, D.C.; Dong, H.; Gelmon, K.; Friedenreich, C.M.; Yasui, Y.; Reid, R.D.; Crawford, J.J.; Mackey, J.R. Effects of exercise during adjuvant chemotherapy on breast cancer outcomes. Med. Sci. Sports Exerc. 2014, 46, 1744–1751. [Google Scholar] [CrossRef] [Green Version]
- Biganzoli, E.; Desmedt, C.; Demicheli, R. Does Physical Activity Have an Impact on Recurrence Dynamics in Early Breast Cancer Patients? J. Clin. Med. 2021, 10, 831. [Google Scholar] [CrossRef]
- Duggal, N.A.; Niemiro, G.; Harridge, S.D.R.; Simpson, R.J.; Lord, J.M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 2019, 19, 563–572. [Google Scholar] [CrossRef]
- Irwin, M.L.; Varma, K.; Alvarez-Reeves, M.; Cadmus, L.; Wiley, A.; Chung, G.G.; Dipietro, L.; Mayne, S.T.; Yu, H. Randomized con-trolled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: The Yale Exercise and Survivorship study. Cancer Epidemiol. Biomark. Prev. 2009, 18, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Frodermann, V.; Rohde, D.; Courties, G.; Severe, N.; Schloss, M.J.; Amatullah, H.; Nahrendorf, M. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 2019, 25, 1761–1771. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, T.B.L. Why and how are we living longer? Exp. Physiol. 2017, 102, 1067–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oeppen, J.; Vaupel, J.W. Demography. Broken limits to life expectancy. Science 2002, 296, 1029–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuipers, R.S.; Joordens, J.C.; Muskiet, F.A. A multidisciplinary reconstruction of Palaeolithic nutrition that holds promise for the prevention and treatment of diseases of civilisation. Nutr Res. Rev. 2012, 25, 96–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, S.B.; Cordain, L. Evolutionary Aspects of Diet: Old Genes, New Fuels. In Nutrition and Fitness: Evolutionary Aspects, Children’s Health, Programs, and Policies, Proceedings of the 3rd International Conference on Nutrition and Fitness, Athens, Greece, 24–27 May 1996; Simopoulos, A.P., Ed.; Karger: Basel, Switzerland, 1997; Volume 81, pp. 26–37. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Bentov, I.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Ultra-processed food is associated with features of metabolic syndrome and non-alcoholic fatty liver disease. Liver Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- Biss, K.; Ho, K.J.; Mikkelson, B.; Lewis, L.; Taylor, C.B. Some unique biologic characteristics of the Masai of East Africa. N. Engl. J. Med. 1971, 284, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.V.; Spoerry, A.; Gray, M.; Jarashow, D. Atherosclerosis in the Masai. Am. J. Epidemiol. 1972, 95, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.V.; Shaffer, R.D.; Rich, A. Physical fitness and immunity to heart disease in Masai. Lancet 1965, 2, 1308–1310. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biganzoli, E.; Demicheli, R. From Oncological Paradigms to Non-Communicable Disease Pandemic. The Need of Recovery Human Biology Evolution. Int. J. Environ. Res. Public Health 2021, 18, 10087. https://doi.org/10.3390/ijerph181910087
Biganzoli E, Demicheli R. From Oncological Paradigms to Non-Communicable Disease Pandemic. The Need of Recovery Human Biology Evolution. International Journal of Environmental Research and Public Health. 2021; 18(19):10087. https://doi.org/10.3390/ijerph181910087
Chicago/Turabian StyleBiganzoli, Elia, and Romano Demicheli. 2021. "From Oncological Paradigms to Non-Communicable Disease Pandemic. The Need of Recovery Human Biology Evolution" International Journal of Environmental Research and Public Health 18, no. 19: 10087. https://doi.org/10.3390/ijerph181910087
APA StyleBiganzoli, E., & Demicheli, R. (2021). From Oncological Paradigms to Non-Communicable Disease Pandemic. The Need of Recovery Human Biology Evolution. International Journal of Environmental Research and Public Health, 18(19), 10087. https://doi.org/10.3390/ijerph181910087