Assessment of Personal Relaxation in Indoor-Air Environments: Study in Real Full-Scale Laboratory Houses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Test Location
2.2. Indoor-Air Sampling and Analysis
2.3. Evaluation Test
2.4. Questionnaire Survey on Air Quality
2.5. Task Test
2.6. Definition of EEG Frequency Bands
3. Statistical Analysis
3.1. Subjective Evaluation
3.2. Objective Evaluation
3.3. Multivariate Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Tham, K.W. Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Suzuki, N.; Nakaoka, H.; Nakayama, Y.; Tsumura, K.; Takaguchi, K.; Takaya, K.; Eguchi, A.; Hanazato, M.; Todaka, E.; Mori, C. Association between sum of volatile organic compounds and occurrence of building-related symptoms in humans: A study in real full-scale laboratory houses. Sci. Total. Environ. 2021, 750, 141635. [Google Scholar] [CrossRef] [PubMed]
- Nakaoka, H.; Todaka, E.; Seto, H.; Saito, I.; Hanazato, M.; Watanabe, M.; Mori, C. Correlating the symptoms of sick-building syndrome to indoor VOCs concentration levels and odour. Indoor Built Environ. 2013, 23, 804–813. [Google Scholar] [CrossRef]
- Nakayama, Y.; Nakaoka, H.; Suzuki, N.; Tsumura, K.; Hanazato, M.; Todaka, E.; Mori, C. Prevalence and risk factors of pre-sick building syndrome: Characteristics of indoor environmental and individual factors. Environ. Health Prev. Med. 2019, 24, 1–10. [Google Scholar] [CrossRef]
- Azuma, K.; Uchiyama, I.; Katoh, T.; Ogata, H.; Arashidani, K.; Kunugita, N. Prevalence and Characteristics of Chemical Intolerance: A Japanese Population-Based Study. Arch. Environ. Occup. Health 2015, 70, 341–353. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef]
- Lu, C.; Deng, Q.; Li, Y.; Sundell, J.; Norbäck, D. Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China. Sci. Total. Environ. 2016, 560, 186–196. [Google Scholar] [CrossRef]
- Ketema, R.M.; Araki, A.; Bamai, Y.A.; Saito, T.; Kishi, R. Lifestyle behaviors and home and school environment in association with sick building syndrome among elementary school children: A cross-sectional study. Environ. Health Prev. Med. 2020, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, T.; Ahmad, D.; Serey, N.; Jouhara, H. Review of ventilation strategies to reduce the risk of disease transmission in high occupancy buildings. Int. J. Thermofluids 2020, 7, 100045. [Google Scholar] [CrossRef]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef] [PubMed]
- Sakellaris, I.A.; Saraga, D.E.; Mandin, C.; Roda, C.; Fossati, S.; De Kluizenaar, Y.; Carrer, P.; Dimitroulopoulou, S.; Mihucz, V.G.; Szigeti, T.; et al. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study. Int. J. Environ. Res. Public Health 2016, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Wargocki, P. Productivity and health effects of high indoor air quality. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2011; pp. 688–693. [Google Scholar]
- Wargocki, P.; Wyon, D.P.; Fanger, P.O. The performance and subjective responses of call-center operators with new and used supply air filters at two outdoor air supply rates. Indoor Air 2004, 14, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Fisk, W.J.; Black, D.; Brunner, G. Benefits and costs of improved IEQ in U.S. offices. Indoor Air 2011, 21, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Graudenz, G.S.; Latorre, M.R.D.O.; Tribess, A.; Oliveira, C.H.; Kalil, J. Persistent allergic rhinitis and indoor air quality perception—An experimental approach. Indoor Air 2006, 16, 313–319. [Google Scholar] [CrossRef]
- Lan, L.; Lian, Z.; Pan, L. The effects of air temperature on office workers’ well-being, workload and productivity-evaluated with subjective ratings. Appl. Ergon. 2010, 42, 29–36. [Google Scholar] [CrossRef]
- Carrer, P.; Wolkoff, P. Assessment of Indoor Air Quality Problems in Office-Like Environments: Role of Occupational Health Services. Int. J. Environ. Res. Public Health 2018, 15, 741. [Google Scholar] [CrossRef] [PubMed]
- A Basic Direction for Comprehensive Implementation of National Health Promotion. Available online: https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/0000047330.pdf (accessed on 16 August 2021).
- Kotradyova, V.; Vavrinsky, E.; Kalinakova, B.; Petro, D.; Jansakova, K.; Boles, M.; Svobodova, H. Wood and Its Impact on Humans and Environment Quality in Health Care Facilities. Int. J. Environ. Res. Public Health 2019, 16, 3496. [Google Scholar] [CrossRef]
- Chamine, I.; Oken, B.S. Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation. J. Altern. Complement. Med. 2016, 22, 713–721. [Google Scholar] [CrossRef]
- Matsunaga, K.; Hirano, T.; Kawayama, T.; Tsuburai, T.; Nagase, H.; Aizawa, H.; Akiyama, K.; Ohta, K.; Ichinose, M. Reference Ranges for Exhaled Nitric Oxide Fraction in Healthy Japanese Adult Population. Allergol. Int. 2010, 59, 363–367. [Google Scholar] [CrossRef]
- Au, J.; Sheehan, E.; Tsai, N.; Duncan, G.J.; Buschkuehl, M.; Jaeggi, S.M. Improving fluid intelligence with training on working memory: A meta-analysis. Psychon. Bull. Rev. 2014, 22, 366–377. [Google Scholar] [CrossRef]
- Mikicin, M.; Orzechowski, G.; Jurewicz, K.; Paluch, K.; Kowalczyk, M.; Wróbel, A. Brain-training for physical performance: A study of EEG-neurofeedback and alpha relaxation training in athletes. Acta Neurobiol. Exp. 2015, 75, 434–445. [Google Scholar]
- Pitchford, B.; Arnell, K.M. Resting EEG in alpha and beta bands predicts individual differences in attentional breadth. Conscious. Cogn. 2019, 75, 102803. [Google Scholar] [CrossRef]
- Tenke, C.E.; Kayser, J.; Abraham, K.; Alvarenga, J.E.; Bruder, G.E. Posterior EEG alpha at rest and during task performance: Comparison of current source density and field potential measures. Int. J. Psychophysiol. 2015, 97, 299–309. [Google Scholar] [CrossRef]
- Wolkoff, P.; Nielsen, G.D. Effects by inhalation of abundant fragrances in indoor air—An overview. Environ. Int. 2017, 101, 96–107. [Google Scholar] [CrossRef]
- Nováková, L.M.; Plotěná, D.; Roberts, C.; Havlíček, J. Positive relationship between odor identification and affective responses of negatively valenced odors. Front. Psychol. 2015, 6, 607. [Google Scholar] [CrossRef]
- Matsubara, E.; Tsunetsugu, Y.; Ohira, T.; Sugiyama, M. Essential Oil of Japanese Cedar (Cryptomeria japonica) Wood Increases Salivary Dehydroepiandrosterone Sulfate Levels after Monotonous Work. Int. J. Environ. Res. Public Health 2017, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, E.; Kawai, S. Gender differences in the psychophysiological effects induced by VOCs emitted from Japanese cedar (Cryptomeria japonica). Environ. Health Prev. Med. 2018, 23, 10. [Google Scholar] [CrossRef] [PubMed]
- Pitarma, R.; Marques, G.; Ferreira, B. Monitoring Indoor Air Quality for Enhanced Occupational Health. J. Med. Syst. 2017, 41, 23. [Google Scholar] [CrossRef] [PubMed]
- Klaschka, U. Between attraction and avoidance: From perfume application to fragrance-free policies. Environ. Sci. Eur. 2020, 32, 1–14. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor air chemistry: Terpene reaction products and airway effects. Int. J. Hyg. Environ. Health 2020, 225, 113439. [Google Scholar] [CrossRef] [PubMed]
- Dalton, P.; Claeson, A.-S.; Horenziak, S. The Impact of Indoor Malodor: Historical Perspective, Modern Challenges, Negative Effects, and Approaches for Mitigation. Atmosphere 2020, 11, 126. [Google Scholar] [CrossRef]
- Hasuo, H.; Kanbara, K.; Sakuma, H.; Fukunaga, M. Awareness of comfort immediately after a relaxation therapy session affects future quality of life and autonomic function: A prospective cohort study on the expectations of therapy. Biopsychosoc. Med. 2018, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.W.; Crunelli, V. Thalamic Mechanisms of EEG Alpha Rhythms and Their Pathological Implications. Neuroscientist 2005, 11, 357–372. [Google Scholar] [CrossRef]
- Son, Y.J.; Chun, C. Research on electroencephalogram to measure thermal pleasure in thermal alliesthesia in temperature step-change environment. Indoor Air 2018, 28, 916–923. [Google Scholar] [CrossRef]
- Wu, M.; Li, H.; Qi, H. Using electroencephalogram to continuously discriminate feelings of personal thermal comfort between uncomfortably hot and comfortable environments. Indoor Air 2020, 30, 534–543. [Google Scholar] [CrossRef] [PubMed]
LH-A (n = 70) | LH-B (n = 71) | ||||
---|---|---|---|---|---|
n | % | n | % | ||
Salivary amylase | |||||
Normal | 61 | 87.1 | 60 | 84.5 | |
High | 9 | 12.9 | 11 | 15.5 | |
FeNO concentrations | |||||
Normal | 52 | 74.3 | 53 | 74.6 | |
High | 18 | 25.7 | 18 | 25.4 |
LH-A (n = 70) | LH-B (n = 71) | |||||
---|---|---|---|---|---|---|
n | % | n | % | |||
Odor when entering the room | ||||||
Smell | 50 | 71.4 | 21 | 29.6 | * | |
no smell | 19 | 27.1 | 48 | 67.6 | * | |
(missing) | 1 | 1.4 | 2 | 2.8 | ||
Odor in the staying room | ||||||
Smell | 35 | 50.0 | 9 | 12.7 | * | |
no smell | 35 | 50.0 | 61 | 85.9 | * | |
(missing) | 1 | 1.4 | ||||
Appeal of odor | ||||||
low/neutral | 47 | 67.1 | 45 | 63.4 | n.s. | |
High | 22 | 31.4 | 24 | 33.8 | n.s. | |
(missing) | 1 | 1.4 | 2 | 2.8 | ||
Air quality | ||||||
low/neutral | 32 | 45.7 | 18 | 25.4 | * | |
High | 38 | 54.3 | 52 | 73.2 | * | |
(missing) | 1 | 1.4 | ||||
Relaxation (comfort) | ||||||
low/neutral | 25 | 35.6 | 16 | 22.5 | * | |
High | 32 | 45.7 | 28 | 39.4 | * | |
very high | 13 | 18.5 | 26 | 36.6 | * | |
(missing) | 1 | 1.4 |
Brightness | Heat | Humidity | Size | Noisiness | Openness | Nature |
---|---|---|---|---|---|---|
0.391 | 0.190 | 0.271 | 0.213 | 0.277 | 0.325 | 0.731 |
Factors | Subjective | ||||||
---|---|---|---|---|---|---|---|
Odor | Preference Odor | Air Quality | Relax (Comfort) | ||||
Entering Room | Staying Room | ||||||
Odds Ratio (95% CI) | Odds Ratio (95% CI) | Odds Ratio (95% CI) | Odds Ratio (95% CI) | Odds Ratio (95% CI) | |||
Gender | |||||||
male | Ref. | ||||||
female | 1.19 (0.49–2.90) | 3.17 (1.06–9.51) * | 0.96 (0.39–2.36) | 1.70 (0.68–4.24) | 0.83 (0.33–2.07) | ||
Age | |||||||
20–29 | Ref. | ||||||
30–39 | 1.12 (0.40–3.13) | 0.43 (0.12–1.54) | 0.45 (0.16–1.25) | 0.62 (0.22–1.77) | 0.86 (0.31–2.39) | ||
40–49 | 0.68 (0.21–2.21) | 0.19 (0.05–0.72) | 0.00 (0.00-.) ** | 0.30 (0.10–0.91) * | 0.50 (0.14–1.80) | ||
≥50 | 0.63 (0.17–2.39) | 0.40 (0.08–2.01) | 0.61 (0.18–2.14) | 0.24 (0.07–0.85) * | 0.38 (0.08–1.67) | ||
Sensitivity to chemicals (QEESI) | |||||||
Low | Ref. | ||||||
High | 1.04 (0.46–2.35) | 0.72 (0.27–1.87) | 1.68 (0.73–3.89) | 1.06 (0.48–2.38) | 0.98 (0.42–2.27) | ||
Physical condition | |||||||
good | Ref. | ||||||
not good | 0.32 (0.07–1.44) | 0.33 (0.05–2.17) | 0.63 (0.15–2.75) | 1.16 (0.30–4.41) | 0.72 (0.18–2.84) | ||
Medical history of allergy | |||||||
no | Ref. | ||||||
yes | 0.72 (0.31–1.64) | 0.39 (0.15–1.04) | 0.86 (0.38–1.94) | 0.89 (0.39–2.07) | 1.00 (0.42–2.35) | ||
Current smoking status | |||||||
no | Ref. | ||||||
yes | 0.60 (0.21–1.74) | 1.64 (0.47–5.73) | 0.74 (0.25–2.21) | 0.91 (0.33–2.55) | 0.42 (0.13–1.32) | ||
Occurrence of BRSs | |||||||
no | Ref. | ||||||
yes | 0.45 (0.10–2.01) | 0.06 (0.01–0.37) * | 0.15 (0.02–1.28) | 0.38 (0.10–1.43) | 0.25 (0.03–2.10) | ||
FeNO concentrations | |||||||
normal | Ref. | ||||||
high | 0.74 (0.30–1.84) | 0.70 (0.25–1.98) | 1.03 (0.41–2.60) | 0.38 (0.16–0.92) * | 0.78 (0.30–2.04) | ||
Salivary amylase assay | |||||||
normal | Ref. | ||||||
high | 1.63 (0.52–5.11) | 1.41 (0.33–6.01) | 1.75 (0.57–5.33) | 1.87 (0.56–6.23) | 2.53 (0.86–7.38) | ||
Laboratory House | |||||||
LH-A | Ref. | ||||||
LH-B | 6.59 (2.95–14.74) * | 8.45 (3.05–23.41) * | 1.05 (0.47–2.36) | 2.57 (1.15–5.73) * | 2.86 (1.24–6.61) * |
Factors | Objective | ||
---|---|---|---|
(α/β) Wave Rate of Change | |||
Odds Ratio (95% CI) | |||
Gender | |||
Male | Ref. | ||
Female | 0.54 (0.20–1.48) | ||
Age | |||
20–29 | Ref. | ||
30–39 | 0.94 (0.31–2.89) | ||
40–49 | 0.39 (0.09–1.60) | ||
≥50 | 1.09 (0.29–4.11) | ||
Sensitivity to chemicals (QEESI) | |||
Low | Ref. | ||
High | 0.71 (0.29–1.73) | ||
Physical condition | |||
good | Ref. | ||
not good | 5.59 (0.60–51.85) | ||
Medical history of allergy | |||
no | Ref. | ||
yes | 1.74 (0.70–4.32) | ||
Current smoking status | |||
no | Ref. | ||
yes | 1.46 (0.50–4.33) | ||
Occurrence of BRSs | |||
no | Ref. | ||
yes | 0.78 (0.15–4.16) | ||
FeNO concentrations | |||
normal | Ref. | ||
high | 1.15 (0.43–3.06) | ||
Salivary amylase assay | |||
normal | Ref. | ||
high | 0.59 (0.17–2.13) | ||
Laboratory house | |||
LH-A | Ref. | ||
LH-B | 3.03 (1.23–7.50) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakayama, Y.; Suzuki, N.; Nakaoka, H.; Tsumura, K.; Takaguchi, K.; Takaya, K.; Hanazato, M.; Todaka, E.; Mori, C. Assessment of Personal Relaxation in Indoor-Air Environments: Study in Real Full-Scale Laboratory Houses. Int. J. Environ. Res. Public Health 2021, 18, 10246. https://doi.org/10.3390/ijerph181910246
Nakayama Y, Suzuki N, Nakaoka H, Tsumura K, Takaguchi K, Takaya K, Hanazato M, Todaka E, Mori C. Assessment of Personal Relaxation in Indoor-Air Environments: Study in Real Full-Scale Laboratory Houses. International Journal of Environmental Research and Public Health. 2021; 18(19):10246. https://doi.org/10.3390/ijerph181910246
Chicago/Turabian StyleNakayama, Yoshitake, Norimichi Suzuki, Hiroko Nakaoka, Kayo Tsumura, Kohki Takaguchi, Kazunari Takaya, Masamichi Hanazato, Emiko Todaka, and Chisato Mori. 2021. "Assessment of Personal Relaxation in Indoor-Air Environments: Study in Real Full-Scale Laboratory Houses" International Journal of Environmental Research and Public Health 18, no. 19: 10246. https://doi.org/10.3390/ijerph181910246
APA StyleNakayama, Y., Suzuki, N., Nakaoka, H., Tsumura, K., Takaguchi, K., Takaya, K., Hanazato, M., Todaka, E., & Mori, C. (2021). Assessment of Personal Relaxation in Indoor-Air Environments: Study in Real Full-Scale Laboratory Houses. International Journal of Environmental Research and Public Health, 18(19), 10246. https://doi.org/10.3390/ijerph181910246