Analysis of Roadkill on the Korean Expressways from 2004 to 2019
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Roadkill Statistics from 2004 to 2019
3.1.1. Temporal Variation in Roadkill
3.1.2. Spatial Variation in Roadkill
3.1.3. Interspecific Variation in Roadkill
3.1.4. Monthly Variation in Roadkill
3.2. Analysis of Temporal Variation in Roadkill over 15 Years
3.2.1. Patterns of Roadkill by Region
3.2.2. Patterns of Roadkill by Species
3.2.3. Monthly Roadkill Patterns
3.2.4. Quarterly Roadkill Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hobday, A.J.; Minstrell, M.L. Distribution and abundance of roadkill on Tasmania highways: Human management options. Wildlife Res. 2004, 35, 712–726. [Google Scholar] [CrossRef]
- Seo, C.; Thorne, J.H.; Choi, T.; Kwon, H.; Park, C.H. Disentangling roadkill: The influence of landscape and season on cumulative vertebrate mortality in South Korea. Landsc. Ecol. Eng. 2015, 11, 87–99. [Google Scholar] [CrossRef]
- Kim, W.; Ahn, H.; Song, J.; Lee, J. Damage to vehicle collisions of wild animals due to habitat fragmentation. Jinju Ind. Univ. Agric. Technol. Res. 2001, 14, 97–110. [Google Scholar]
- Lee, S.D.; Cho, H.S.; Kim, J.G. A study of wildlife roadkill in Joongang Highway. J. Environ. Impact Assess. 2004, 13, 21–31. [Google Scholar]
- Coffin, A.W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Jackson, N.D.; Fahrig, L. Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol. Conserv. 2011, 144, 3143–3148. [Google Scholar] [CrossRef]
- Song, J.; Lee, K.; Ki, K.; Jun, I. The Efficiency and Improvement of the Highway Wild-Life Fences for Decrease of Mammals Road-kill -In Case of Manjong~Hongchun Section on Jungang Highway. Korean J. Environ. Ecol. 2011, 25, 649–657. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–249. [Google Scholar] [CrossRef]
- Dietz, E.J.; Killeen, T.J. A nonparametric multivariate test for monotone trend with pharmaceutical applications. J. Am. Stat. Assoc. 1981, 76, 169–174. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S. Application of Habitat Evaluation Procedure with Quantifying the Eco-Corridor in the Process of Environmental Impact Assessment. Int. J. Environ. Res. Public Health 2019, 16, 1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boitet, E.R.; Mead, A.J. Application of GIS to a baseline survey of vertebrate roadkills in Baldwin County, Georgia. Southeast. Nat. 2014, 13, 176–190. [Google Scholar] [CrossRef]
- Canal, D.; Martín, B.; de Lucas, M.; Ferrer, M. Dogs are the main species involved in animal-vehicle collisions in southern Spain: Daily, seasonal and spatial analyses of collisions. PLoS ONE 2018, 13, e0203693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, R.J.; Gill, R.M.A. Ecological impacts of increasing numbers of deer in British woodland. Forestry 2001, 74, 193–298. [Google Scholar] [CrossRef]
- Keken, Z.; Kušta, T.; Langer, P.; Skaloš, J. Landscape structural changes between 1950 and 2012 and their role in wildlife–vehicle collisions in the Czech Republic. Land Use Policy 2016, 59, 543–556. [Google Scholar] [CrossRef]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal Rev. 2020, 51, 95–108. [Google Scholar] [CrossRef]
- Valente, A.M.; Acevedo, P.; Figueiredo, A.M.; Fonseca, C.; Torres, R.T. Overabundant wild ungulate populations in Europe: Management with consideration of socio-ecological consequences. Mammal Rev. 2020, 50, 353–366. [Google Scholar] [CrossRef]
- Jakubas, D.; Rys, M.; Lazarus, M. Factors affecting wildlife-vehicle collision on the expressway in a suburban area in northern Poland. North-West. J. Zool. 2018, 14, 107–116. [Google Scholar]
- Rodríguez-Morales, B.; Díaz-Varela, E.R.; Marey-Pérez, M.F. Spatiotemporal analysis of vehicle collisions involving wild boar and roe deer in NW Spain. Accid. Anal. Prev. 2013, 60, 121–133. [Google Scholar] [CrossRef]
- Kim, B.; Lee, B.; Kim, Y. Korean Water Deer; National Institute of Ecology Press: Seocheon, Korea, 2016. [Google Scholar]
- Pagany, R. Wildlife-vehicle collisions-Influencing factors, data collection and research methods. Biol. Conserv. 2020, 251, 108758. [Google Scholar] [CrossRef]
- Gagnon, J.W.; Theimer, T.C.; Dodd, N.L.; Manzo, A.L.; Schweinsburg, R.E. Effects of traffic on elk use of wildlife underpasses in Arizona. J. Wildl. Manag. 2007, 71, 2324–2328. [Google Scholar] [CrossRef]
- Liu, Y.; Nieuwenhuis, M.; McCullagh, A. The Effect of Roadside Land-Use on the Occurrence of Deer Vehicle Collisions. Ir. For. 2018, 75, 8–25. [Google Scholar]
- Pagany, R.; Dorner, W. Do crash barriers and fences have an impact on wildlife–vehicle collisions?—An artificial intelligence and GIS-based analysis. ISPRS Int. J. Geo Inf. 2019, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Ascensão, F.; Yogui, D.; Alves, M.; Medici, E.P.; Desbiez, A. Predicting spatiotemporal patterns of road mortality for medium-large mammals. J. Environ. Manag. 2019, 248, 109320. [Google Scholar] [CrossRef]
Species | ‘04 | ‘05 | ‘06 | ‘07 | ‘08 | ‘09 | ‘10 | ‘11 | ‘12 | ‘13 | ‘14 | ‘15 | ‘16 | ‘17 | ‘18 | ‘19 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydropotes inermis | 1131 | 1779 | 1821 | 2167 | 1557 | 1490 | 1739 | 1914 | 1996 | 1939 | 1824 | 2302 | 1990 | 1643 | 1449 | 1304 | 28,045 |
Nyctereutes procyonoides | 798 | 876 | 820 | 777 | 456 | 258 | 229 | 225 | 225 | 146 | 98 | 86 | 78 | 69 | 45 | 60 | 5246 |
Lepus coreanus | 344 | 366 | 196 | 199 | 158 | 68 | 51 | 35 | 31 | 13 | 17 | 4 | 12 | 10 | 4 | 3 | 1511 |
Sus scrofa | 68 | 43 | 31 | 48 | 96 | 115 | 115 | 90 | 143 | 749 | |||||||
Meles leucurus | 37 | 69 | 24 | 21 | 23 | 17 | 14 | 17 | 26 | 28 | 20 | 17 | 22 | 19 | 18 | 29 | 401 |
Mustela sibirica | 42 | 62 | 46 | 24 | 51 | 27 | 12 | 9 | 5 | 5 | 8 | 5 | 6 | 6 | 3 | 311 | |
Prionailurus bengalensis | 9 | 26 | 27 | 14 | 34 | 33 | 15 | 27 | 21 | 17 | 12 | 13 | 5 | 8 | 3 | 8 | 272 |
others | 75 | 63 | 26 | 14 | 7 | 2 | 9 | 12 | 13 | 9 | 12 | 22 | 19 | 20 | 15 | 10 | 328 |
Total | 2436 | 3241 | 2960 | 3216 | 2286 | 1895 | 2069 | 2307 | 2360 | 2188 | 2039 | 2545 | 2247 | 1884 | 1630 | 1560 | 36,863 |
Region | p-Value | S | Trend | Sen’s Slope |
---|---|---|---|---|
CP | <0.0001 | 407.000 | upward | 0.249 |
GW | <0.0001 | −442.000 | downward | −0.939 |
CN | 0.001 | 246.000 | upward | 0.379 |
CB | 0.030 | −167.000 | downward | −0.425 |
JB | <0.0001 | −582.000 | downward | −1.44 |
GB | <0.0001 | −711.000 | downward | −1.321 |
JN | <0.0001 | −694.000 | downward | −1.546 |
GN | <0.0001 | −427.000 | downward | −0.458 |
Species | p-Value | S | Trend | Sen’s Slope |
---|---|---|---|---|
water deer | 0.231 | 93.000 | no trend | - |
raccoon dog | <0.0001 | −1059.000 | downward | −3 |
Korean hare | <0.0001 | −963.000 | downward | −1 |
wild boar | <0.0001 | 157.000 | upward | 0.561 |
Asian Badger | 0.014 | −182.000 | downward | 0.000 |
Siberian Weasel | <0.0001 | −617.000 | downward | −0.201 |
Leopard Cat | <0.0001 | −301.000 | downward | 0.000 |
Others | 0.002 | −222.000 | downward | 0.000 |
Month | p-Value | S | Trend | Sen’s Slope |
---|---|---|---|---|
January | 0.043 | −46.000 | downward | −6.786 |
February | 0.001 | −73.000 | downward | −5.833 |
March | 0.058 | −43.000 | no trend | - |
April | 0.928 | −3.000 | no trend | - |
May | 0.444 | 18.000 | no trend | - |
June | 0.589 | 13.000 | no trend | - |
July | 0.620 | −12.000 | no trend | - |
August | 0.003 | −66.000 | downward | −4.663 |
September | 0.000 | −83.000 | downward | −9.573 |
October | 0.001 | −78.000 | downward | −19.350 |
November | 0.010 | −58.000 | downward | −11.917 |
December | 0.163 | −32.000 | no trend | - |
Species | p-Value | S | Trend | Slope | |
---|---|---|---|---|---|
All species | 1Q | 0.003 | −66.000 | downward | −16.938 |
2Q | 0.620 | 12.000 | no trend | - | |
3Q | 0.001 | −74.000 | downward | −16.839 | |
4Q | 0.002 | −69.000 | downward | −37.125 | |
water deer | 1Q | 0.224 | 28.000 | no trend | - |
2Q | 0.224 | 28.000 | no trend | - | |
3Q | 0.652 | 11.000 | no trend | - | |
4Q | 0.012 | −57.000 | downward | −16.350 | |
raccoon dog | 1Q | <0.0001 | −90.000 | downward | −11.583 |
2Q | <0.0001 | −92.000 | downward | −7.397 | |
3Q | <0.0001 | −106.000 | downward | −10.833 | |
4Q | <0.0001 | −104.000 | downward | −11.958 | |
Korean hare | 1Q | 0.000 | −87.000 | downward | −4.522 |
2Q | <0.0001 | −92.000 | downward | −2.528 | |
3Q | <0.0001 | −97.000 | downward | −2.000 | |
4Q | <0.0001 | −99.000 | downward | −4.231 | |
wild boar | 1Q | 0.033 | 21.000 | upward | 0.838 |
2Q | 0.114 | 16.000 | no trend | - | |
3Q | 0.118 | 16.000 | no trend | - | |
4Q | 0.048 | 20.000 | upward | 6.500 | |
Asian Badger | 1Q | 0.236 | −27.000 | no trend | - |
2Q | 0.172 | 31.000 | no trend | - | |
3Q | 0.160 | −32.000 | no trend | - | |
4Q | 0.273 | −25.000 | no trend | - | |
Siberian Weasel | 1Q | 0.002 | −69.000 | downward | −0.750 |
2Q | 0.000 | −80.000 | downward | −0.615 | |
3Q | 0.002 | −68.000 | downward | −0.690 | |
4Q | 0.001 | −71.000 | downward | −0.333 | |
leopard Cat | 1Q | 0.055 | −43.000 | no trend | - |
2Q | 0.079 | −39.000 | no trend | - | |
3Q | 0.048 | −44.000 | no trend | - | |
4Q | 0.050 | −44.000 | no trend | - | |
others | 1Q | 0.151 | −32.000 | no trend | - |
2Q | 0.277 | −25.000 | no trend | - | |
3Q | 0.489 | 16.000 | no trend | - | |
4Q | 0.552 | −14.000 | no trend | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Park, H.; Lee, S. Analysis of Roadkill on the Korean Expressways from 2004 to 2019. Int. J. Environ. Res. Public Health 2021, 18, 10252. https://doi.org/10.3390/ijerph181910252
Kim M, Park H, Lee S. Analysis of Roadkill on the Korean Expressways from 2004 to 2019. International Journal of Environmental Research and Public Health. 2021; 18(19):10252. https://doi.org/10.3390/ijerph181910252
Chicago/Turabian StyleKim, Minkyung, Hyomin Park, and Sangdon Lee. 2021. "Analysis of Roadkill on the Korean Expressways from 2004 to 2019" International Journal of Environmental Research and Public Health 18, no. 19: 10252. https://doi.org/10.3390/ijerph181910252
APA StyleKim, M., Park, H., & Lee, S. (2021). Analysis of Roadkill on the Korean Expressways from 2004 to 2019. International Journal of Environmental Research and Public Health, 18(19), 10252. https://doi.org/10.3390/ijerph181910252