Study on the Influence of Proprioceptive Control versus Visual Control on Reaction Speed, Hand Coordination, and Lower Limb Balance in Young Students 14–15 Years Old
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Procedure
2.3. Statistical Analysis
2.4. Hypothesis of the Study
Statistical Hypothesis
3. Results
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mickle, K.J.; Munro, B.J.; Steele, J. Gender and age affect balance performance in primary school-aged children. J. Sci. Med. Sport 2011, 14, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Verbecque, E.; Vereeck, L.; Hallemans, A. Postural sway in children: A literature review. Gait Posture 2016, 49, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.C.; Saxion, C.E.; Cameron, K.; Gerber, J.P. Associations between three clinical assessment tools for postural stability. North Am. J. Sports Phys. Ther. 2010, 5, 122–130. [Google Scholar]
- Nakagawa, L.; Hoffman, M. Performance in Static, Dynamic, and Clinical Tests of Postural Control in Individuals with Recurrent Ankle Sprains. J. Sport Rehabil. 2004, 13, 255–268. [Google Scholar] [CrossRef]
- Hrysomallis, C.; McLaughlin, P.; Goodman, C. Relationship between static and dynamic balance tests among elite Australian Footballers. J. Sci. Med. Sport 2006, 9, 288–291. [Google Scholar] [CrossRef]
- Coleman, R.; Piek, J.P.; Livesey, D.J. A longitudinal study of motor ability and kinaesthetic acuity in young children at risk of developmental coordination disorder. Hum. Mov. Sci. 2001, 20, 95–110. [Google Scholar] [CrossRef]
- Goble, D.J.; Hurvitz, E.A.; Brown, S.H. Deficits in the ability to use proprioceptive feedback in children with hemiplegic cerebral palsy. Int. J. Rehabil. Res. 2009, 32, 267–269. [Google Scholar] [CrossRef]
- Zwicker, J.; Harris, S.R.; Klassen, A.F. Quality of life domains affected in children with developmental coordination disorder: A systematic review. Child. Care Health Dev. 2012, 39, 562–580. [Google Scholar] [CrossRef]
- Konczak, J.; Corcos, D.M.; Horak, F.; Poizner, H.; Shapiro, M.; Tuite, P.; Volkmann, J.; Maschke, M. Proprioception and Motor Control in Parkinson’s Disease. J. Mot. Behav. 2009, 41, 543–552. [Google Scholar] [CrossRef]
- Holst-Wolf, J.M.; Yeh, I.-L.; Konczak, J. Development of Proprioceptive Acuity in Typically Developing Children: Normative Data on Forearm Position Sense. Front. Hum. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Zech, A.; Hübscher, M.; Vogt, L.; Banzer, W.; Hänsel, F.; Pfeifer, K. Balance Training for Neuromuscular Control and Performance Enhancement: A Systematic Review. J. Athl. Train. 2010, 45, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Emery, C.A.; Cassidy, J.D.; Klassen, T.P.; Rosychuk, R.J.; Rowe, B.H. Effectiveness of a home-based balance-training program in reducing sports-related injuries among healthy adolescents: A cluster randomized controlled trial. Can. Med. Assoc. J. 2005, 172, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Ford, K.; Myer, G.D. Anterior Cruciate Ligament Injuries in Female Athletes. Am. J. Sports Med. 2006, 34, 490–498. [Google Scholar] [CrossRef]
- McGuine, T.A.; Keene, J.S. The Effect of a Balance Training Program on the Risk of Ankle Sprains in High School Athletes. Am. J. Sports Med. 2006, 34, 1103–1111. [Google Scholar] [CrossRef]
- McKeon, P.O.; Hertel, J. Systematic Review of Postural Control and Lateral Ankle Instability, Part I: Can Deficits Be Detected with Instrumented Testing? J. Athl. Train. 2008, 43, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Paterno, M.V.; Myer, G.D. Strategies for Enhancing Proprioception and Neuromuscular Control of the Knee. Clin. Orthop. Relat. Res. 2002, 402, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, G.; Caulfield, B. A 4-Week Neuromuscular Training Program and Gait Patterns at the Ankle Joint. J. Athl. Train. 2007, 42, 51–59. [Google Scholar] [PubMed]
- Panics, G.; Tallay, A.; Pavlik, A.; Berkes, I. Effect of proprioception training on knee joint position sense in female team handball players. Br. J. Sports Med. 2008, 42, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Marigold, D.S.; Andujar, J.-E.; Lajoie, K.; Drew, T. Motor planning of locomotor adaptations on the basis of vision. Prog. Brain Res. 2011, 188, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Kiers, H.; van Dieen, J.; Dekkers, H.; Wittink, H.; Vanhees, L. A Systematic Review of the Relationship between Physical Activities in Sports or Daily Life and Postural Sway in Upright Stance. Sports Med. 2013, 43, 1171–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrysomallis, C. Relationship Between Balance Ability, Training and Sports Injury Risk. Sports Med. 2007, 37, 547–556. [Google Scholar] [CrossRef]
- Hrysomallis, C. Balance Ability and Athletic Performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumway-Cook, A.W.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice, 4th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2013. [Google Scholar]
- Röijezon, U.; Clark, N.; Treleaven, J. Proprioception in musculoskeletal rehabilitation. Part 1: Basic science and principles of assessment and clinical interventions. Man. Ther. 2015, 20, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Speers, R.; Kuo, A.; Horak, F. Contributions of altered sensation and feedback responses to changes in coordination of postural control due to aging. Gait Posture 2002, 16, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Anson, J.; Waddington, G.; Adams, R.; Liu, Y. The Role of Ankle Proprioception for Balance Control in relation to Sports Performance and Injury. BioMed Res. Int. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goble, D.J. Proprioceptive Acuity Assessment Via Joint Position Matching: From Basic Science to General Practice. Phys. Ther. 2010, 90, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Pasma, J.H.; Boonstra, T.A.; Campfens, S.F.; Schouten, A.C.; Van Der Kooij, H. Sensory reweighting of proprioceptive information of the left and right leg during human balance control. J. Neurophysiol. 2012, 108, 1138–1148. [Google Scholar] [CrossRef] [Green Version]
- Bouisset, S.; Do, M.-C. Posture, dynamic stability, and voluntary movement. Neurophysiol. Clin. Neurophysiol. 2008, 38, 345–362. [Google Scholar] [CrossRef]
- Clark, N.; Röijezon, U.; Treleaven, J. Proprioception in musculoskeletal rehabilitation. Part 2: Clinical assessment and intervention. Man. Ther. 2015, 20, 378–387. [Google Scholar] [CrossRef]
- Han, J.; Waddington, G.; Adams, R.; Anson, J.; Liu, Y. Assessing proprioception: A critical review of methods. J. Sport Health Sci. 2015, 5, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Waddington, G.; Anson, J.; Adams, R. Level of competitive success achieved by elite athletes and multi-joint proprioceptive ability. J. Sci. Med. Sport 2015, 18, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Cavill, N.; Kahlmeier, S.; Racioppi, F. Physical Activity and Health in Europe: Evidence for Action; WHO: Copenhagen, Denmark, 2006. [Google Scholar]
- Ten Brink, P.; Mutafoglu, K.; Schweitzer, J.-P.; Kettunen, M.; Twigger-Ross, C.; Baker, J.; Kuipers, Y.; Emonts, M.; Tyrväinen, L.; Hujala, T.; et al. The Health and Social Benefits of Nature and Biodiversity Protection. A report for the European Commission; Institute for European Environmental Policy: Brussels, Belgium, 2016. [Google Scholar]
- Coon, J.T.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does Participating in Physical Activity in Outdoor Natural Environments Have a Greater Effect on Physical and Mental Wellbeing than Physical Activity Indoors? A Systematic Review. Environ. Sci. Technol. 2011, 45, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe Recommendation No. R (92) 13 REV of the Committee of Ministers to Member States on the Revised European Sports Charter. 1992. Available online: https://rm.coe.int/16804c9dbb (accessed on 20 September 2021).
- Eigenschenk, B.; Thomann, A.; McClure, M.; Davies, L.; Gregory, M.; Dettweiler, U.; Inglés, E. Benefits of Outdoor Sports for Society. A Systematic Literature Review and Reflections on Evidence. Int. J. Environ. Res. Public Health 2019, 16, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, T.; Gray, T.; Mann, K. Australian Outdoor Adventure Activity. Benefits Catalogue; University of Canberra: Canberra, Australia, 2008. [Google Scholar]
- Makhlouf, I.; Chaouachi, A.; Chaouachi, M.; Ben Othman, A.; Granacher, U.; Behm, D.G. Combination of Agility and Plyometric Training Provides Similar Training Benefits as Combined Balance and Plyometric Training in Young Soccer Players. Front. Physiol. 2018, 9, 1611. [Google Scholar] [CrossRef] [Green Version]
- Aranha, V.P.; Moitra, M.; Saxena, S.; Narkeesh, K.; Arumugam, N.; Samuel, A.J. Motor cognitive processing speed estimation among the primary schoolchildren by deriving prediction formula: A cross-sectional study. J. Neurosci. Rural. Pr. 2017, 8, 079–083. [Google Scholar] [CrossRef]
- Schneiders, A.G.; Sullivan, S.J.; O’Malley, K.J.; Clarke, S.V.; Knappstein, S.A.; Taylor, L.J. A Valid and Reliable Clinical Determination of Footedness. PM&R 2010, 2, 835–841. [Google Scholar] [CrossRef]
- McManus, I.C.; Bryden, M.P. The genetics of handedness, cerebral dominance and lateralization. In Handbook of Neuropsychology: Vol. Child Neuropsychology; Rapin, I., Segalowitz, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 115–142. [Google Scholar]
- Panta, K.; Arulsingh, W.; Raj, J.O.; Sinha, M.; Rahman, M. A study to associate the Flamingo Test and the Stork Test in measuring static balance on healthy adults. Foot Ankle Online J. 2015, 1–4. [Google Scholar] [CrossRef]
- Latorre-Roman, P.; Robles-Fuentes, A.; García-Pinillos, F.; Salas-Sánchez, J. Reaction Times of Preschool Children on the Ruler Drop Test: A Cross-Sectional Study with Reference Values. Percept. Mot. Ski. 2018, 125, 866–878. [Google Scholar] [CrossRef]
- King, B.R.; Pangelinan, M.M.; Kagerer, F.A.; Clark, J.E. Improvements in proprioceptive functioning influence multisensory-motor integration in 7- to 13-year-old children. Neurosci. Lett. 2010, 483, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, R.; Phillips, R.; Roscoe, J.; Roscoe, D.; Davis, B. Physical Education and the Study of Sport, 4th ed.; Harcourt Publishers: London, UK, 2000; p. 130. [Google Scholar]
- Bair, W.-N.; Kiemel, T.; Jeka, J.; Clark, J.E. Development of multisensory reweighting for posture control in children. Exp. Brain Res. 2007, 183, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, G.; Sibley, K.M.; Cheung, H.J.; Camilleri, J.M.; McIlroy, W.E. Generalizability of perturbation-evoked cortical potentials: Independence from sensory, motor and overall postural state. Neurosci. Lett. 2009, 451, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.A.; Jacobs, J.V.; Horak, F.B. Effects of Amplitude Cueing on Postural Responses and Preparatory Cortical Activity of People with Parkinson Disease. J. Neurol. Phys. Ther. 2014, 38, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlin, A.; Mochizuki, G.; Staines, W.; McIlroy, W.E. Localizing evoked cortical activity associated with balance reactions: Does the anterior cingulate play a role? J. Neurophysiol. 2014, 111, 2634–2643. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, E.B.; van Schijndel, T.J.; Friel, D.; Schulz, L. Children balance theories and evidence in exploration, explanation, and learning. Cogn. Psychol. 2012, 64, 215–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, N.; Ayyub, M.; Sun, H.; Wen, X.; Xiang, P.; Gao, Z. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review. BioMed Res. Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Wittenberg, E.; Thompson, J.; Nam, C.S.; Franz, J.R. Neuroimaging of Human Balance Control: A Systematic Review. Front. Hum. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Elena, S.; Georgeta, N.; Cecilia, G.; Elena, L. Identification of the Balance Capability—A Perceptual-motor Component-in Teenagers. Procedia Soc. Behav. Sci. 2014, 127, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Cerrah, A.O.; Bayram, I.; Yıldızer, G.; Uğurlu, O.; Şimşek, D.; Ertan, H. Fonksiyonel Denge Antrenman?n?n Adölesan Futbolcular?n Statik ve Dinamik Denge Performanslar? Üzerine Etkileri. Int. J. Sport Exerc. Train. Sci. 2016, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Granacher, U.; Gollhofer, A.; Kriemler, S. Effects of Balance Training on Postural Sway, Leg Extensor Strength, and Jumping Height in Adolescents. Res. Q. Exerc. Sport 2010, 81, 245–251. [Google Scholar] [CrossRef]
- Schedler, S.; Tenelsen, F.; Wich, L.; Muehlbauer, T. Effects of balance training on balance performance in youth: Role of training difficulty. BMC Sports Sci. Med. Rehabil. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Altavilla, G.; Tafuri, D.; Raiola, G. Influence of sports on the control of static balance in physical education at school. J. Phys. Educ. Sport 2014, 14, 351. [Google Scholar] [CrossRef]
- Riemann, B.L.; Schmitz, R. The relationship between various modes of single leg postural control assessment. Int. J. Sports Phys. Ther. 2012, 7, 257–266. [Google Scholar] [PubMed]
- Vandorpe, B.; Vandendriessche, J.; Vaeyens, R.; Pion, J.; Matthys, S.; Lefevre, J.; Philippaerts, R.; Lenoir, M. Relationship between sports participation and the level of motor coordination in childhood: A longitudinal approach. J. Sci. Med. Sport 2012, 15, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Schedler, S.; Kiss, R.; Muehlbauer, T. Age and sex differences in human balance performance from 6–18 years of age: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0214434. [Google Scholar] [CrossRef] [PubMed]
Female Gender (33) Mean ± SD (Median) | Male Gender (74) Mean ± SD (Median) | p-Value | |
---|---|---|---|
Ruler Drop Test | |||
Dominant hand | 18.7 ± 8.292 (18.00) | 16.24 ± 7.346 (14.82) | 0.0957 |
Nondominant hand | 18.86 ± 6.909 (17.00) | 16.89 ± 7.384 (15.89) | 0.3297 |
Standing Stork (Eyes Closed) | |||
Dominant leg | 3.642 ± 2.309 (3.25) | 4.130 ± 3.469 (3.420) | 0.5848 |
Nondominant leg | 2.916 ± 1.385 (2.66) | 4.926 ± 3.666 (4.015) | * 0.0057 |
Standing Stork (Opened Eyes) | |||
Dominant leg | 3.691 ± 2.111 (3.19) | 3.870 ± 3.060 (3.095) | 0.8820 |
Nondominant leg | 3.280 ± 1.425 (2.84) | 3.816 ± 2.620 (3.030) | 0.2715 |
Practice Sport (47) Mean ± SD (Median) | Do Not Practice Sports (60) Mean ± SD (Median) | p-Value | |
---|---|---|---|
Ruler Drop test | |||
Dominant hand | 15.76 ± 6.822 (14.30) | 17.95 ± 8.2436 (16.81) | 0.1459 |
Nondominant hand | 15.63 ± 7.682 (14.71) | 18.41 ± 6.652 (17.56) | * 0.0212 |
Standing Stork (Eyes Closed) | |||
Dominant leg | 4.065 ± 3.012 (3.46) | 3.913 ± 3.284 (3.325) | 0.8359 |
Nondominant leg | 4.764 ± 3.997 (3.33) | 3.947 ± 2.545 (3.115) | 0.5937 |
Standing Stork (Opened Eyes) | |||
Dominant leg | 3.957 ± 3.482 (3.15) | 3.704 ± 2.129 (3.215) | 0.4899 |
Nondominant leg | 4.022 ± 2.779 (3.30) | 3.360 ± 1.867 (2.865) | 0.1368 |
Standing Stork (Eyes Closed) Mean ± SD (Median) | Standing Stork (Eyes Opened) Mean ± SD (Median) | p-Value | |
---|---|---|---|
Dominant Leg | |||
Female gender (33) | 3.642 ± 2.309 (3.25) | 3.691 ± 2.111 (3.19) | 0.7613 |
Male gender (74) | 4.130 ± 3.469 (3.420) | 3.870 ± 3.060 (3.095) | 0.4588 |
Nondominant Leg | |||
Female gender (33) | 2.916 ± 1.385 (2.66) | 3.280 ± 1.425 (2.84) | 0.2278 |
Male gender (74) | 4.926 ± 3.666 (4.015) | 3.816 ± 2.620 (3.030) | * 0.0179 |
Variables (n = 107) | Ruler Drop Test | ||
---|---|---|---|
r Coefficient | 95% Confidence Interval | p-Value | |
Dominant Hand | |||
Standing stork (eyes closed)—dominant leg | −0.07377 | −0.2600 to 0.1178 | 0.4502 |
Standing stork (eyes opened)—dominant leg | −0.03854 | −0.2268 to 0.1525 | 0.6935 |
Nondominant Hand | |||
Standing stork (eyes closed)—nondominant leg | 0.2294 | 0.04128 to 0.4018 | * 0.0175 |
Standing stork (eyes opened)—nondominant leg | 0.3256 | 0.1447 to 0.4855 | * 0.0006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabo, D.A.; Neagu, N.; Teodorescu, S.; Panait, C.M.; Sopa, I.S. Study on the Influence of Proprioceptive Control versus Visual Control on Reaction Speed, Hand Coordination, and Lower Limb Balance in Young Students 14–15 Years Old. Int. J. Environ. Res. Public Health 2021, 18, 10356. https://doi.org/10.3390/ijerph181910356
Szabo DA, Neagu N, Teodorescu S, Panait CM, Sopa IS. Study on the Influence of Proprioceptive Control versus Visual Control on Reaction Speed, Hand Coordination, and Lower Limb Balance in Young Students 14–15 Years Old. International Journal of Environmental Research and Public Health. 2021; 18(19):10356. https://doi.org/10.3390/ijerph181910356
Chicago/Turabian StyleSzabo, Dan Alexandru, Nicolae Neagu, Silvia Teodorescu, Ciprian Marius Panait, and Ioan Sabin Sopa. 2021. "Study on the Influence of Proprioceptive Control versus Visual Control on Reaction Speed, Hand Coordination, and Lower Limb Balance in Young Students 14–15 Years Old" International Journal of Environmental Research and Public Health 18, no. 19: 10356. https://doi.org/10.3390/ijerph181910356
APA StyleSzabo, D. A., Neagu, N., Teodorescu, S., Panait, C. M., & Sopa, I. S. (2021). Study on the Influence of Proprioceptive Control versus Visual Control on Reaction Speed, Hand Coordination, and Lower Limb Balance in Young Students 14–15 Years Old. International Journal of Environmental Research and Public Health, 18(19), 10356. https://doi.org/10.3390/ijerph181910356