Google Street View-Derived Neighborhood Characteristics in California Associated with Coronary Heart Disease, Hypertension, Diabetes
Abstract
:1. Introduction
Study Aims and Hypotheses
2. Materials and Methods
2.1. Google Street View Image Data
2.2. Neighborhood Definitions
2.3. Neighborhood Characteristics and Image Processing
2.4. Image Data Processing
2.5. Individual-Level Health Outcome Data
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wing, S.; Barnett, E.; Casper, M.; Tyroler, H. Geographic and socioeconomic variation in the onset of decline of coronary heart disease mortality in white women. Am. J. Public Health 1992, 82, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.; Blane, D.; White, I. Levels of mortality, education, and social conditions in the 107 local education authority areas of England. J. Epidemiol. Community Health 1996, 50, 15–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eames, M.; Ben-Shlomo, Y.; Marmot, M.G. Social deprivation and premature mortality: Regional comparison across England. Br. Med. J. 1993, 307, 1097–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, C.A.; Miller, T.; Chang, E.T.; Yin, D.; Cockburn, M.; Gomez, S.L. Racial and social class gradients in life expectancy in contemporary California. Soc. Sci. Med. (1982) 2010, 70, 1373–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, K.D.; Ma, S. A systematic review of relations between neighborhoods and mental health. J. Ment. Health Policy Econ. 2006, 9, 137–154. [Google Scholar] [PubMed]
- Mujahid, M.S.; Diez Roux, A.V.; Shen, M.; Gowda, D.; Sanchez, B.; Shea, S.; Jacobs, D.R.; Jackson, S.A. Relation between neighborhood environments and obesity in the Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2008, 167, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Black, J.L.; Macinko, J.; Dixon, L.B.; Fryer, J.G.E. Neighborhoods and obesity in New York City. Health Place 2010, 16, 489–499. [Google Scholar] [CrossRef]
- Grigsby-Toussaint, D.S.; Lipton, R.; Chavez, N.; Handler, A.; Johnson, T.P.; Kubo, J. Neighborhood socioeconomic change and diabetes risk: Findings from the Chicago childhood diabetes registry. Diabetes Care 2010, 33, 1065–1068. [Google Scholar] [CrossRef] [Green Version]
- Rothstein, R. The Color of Law: A Forgotten History of How Our Government Segregated America; Liveright Publishing: New York, NY, USA, 2017. [Google Scholar]
- Thornton, L.E.; Ball, K.; Lamb, K.E.; McCann, J.; Parker, K.; Crawford, D.A. The impact of a new McDonald’s restaurant on eating behaviours and perceptions of local residents: A natural experiment using repeated cross-sectional data. Health Place 2016, 39, 86–91. [Google Scholar] [CrossRef]
- Sugiyama, T.; Leslie, E.; Giles-Corti, B.; Owen, N. Associations of neighbourhood greenness with physical and mental health: Do walking, social coherence and local social interaction explain the relationships? J. Epidemiol. Community Health 2008, 62, e9. [Google Scholar] [CrossRef] [Green Version]
- Kweon, B.-S.; Sullivan, W.C.; Wiley, A.R. Green common spaces and the social integration of inner-city older adults. Environ. Behav. 1998, 30, 832–858. [Google Scholar] [CrossRef]
- Beyer, K.M.; Kaltenbach, A.; Szabo, A.; Bogar, S.; Nieto, F.J.; Malecki, K.M. Exposure to neighborhood green space and mental health: Evidence from the survey of the health of Wisconsin. Int. J. Environ. Res. Public Health 2014, 11, 3453–3472. [Google Scholar] [CrossRef] [Green Version]
- Richardson, E.A.; Pearce, J.; Mitchell, R.; Kingham, S. Role of physical activity in the relationship between urban green space and health. Public Health 2013, 127, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, W.C.; Kuo, F.E.; Depooter, S.F. The fruit of urban nature: Vital neighborhood spaces. Environ. Behav. 2004, 36, 678–700. [Google Scholar] [CrossRef]
- Latham, K.; Williams, M.M. Does neighborhood disorder predict recovery from mobility limitation? Findings from the Health and Retirement Study. J. Aging Health 2015, 27, 1415–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, L.; Hill, T.D.; Burdette, A.M. Does sleep quality mediate the association between neighborhood disorder and self-rated physical health? Prev. Med. 2010, 51, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Garvin, E.; Branas, C.; Keddem, S.; Sellman, J.; Cannuscio, C. More than just an eyesore: Local insights and solutions on vacant land and urban health. J. Urban. Health Bull. N. Y. Acad. Med. 2013, 90, 412–426. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; O’Fallon, L.R.; Dearry, A. Creating healthy communities, healthy homes, healthy people: Initiating a research agenda on the built environment and public health. Am. J. Public Health 2003, 93, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
- Keralis, J.M.; Javanmardi, M.; Khanna, S.; Dwivedi, P.; Huang, D.; Tasdizen, T.; Nguyen, Q.C. Health and the built environment in United States cities: Measuring associations using Google Street View-derived indicators of the built environment. BMC Public Health 2020, 20, 215. [Google Scholar] [CrossRef]
- Remigio, R.V.; Zulaika, G.; Rabello, R.S.; Bryan, J.; Sheehan, D.M.; Galea, S.; Carvalho, M.S.; Rundle, A.; Lovasi, G.S. A Local View of Informal Urban Environments: A Mobile Phone-Based Neighborhood Audit of Street-Level Factors in a Brazilian Informal Community. J. Urban. Health 2019, 96, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Rzotkiewicz, A.; Pearson, A.L.; Dougherty, B.V.; Shortridge, A.; Wilson, N. Systematic review of the use of Google Street View in health research: Major themes, strengths, weaknesses and possibilities for future research. Health Place 2018, 52, 240–246. [Google Scholar] [CrossRef]
- Google Google Maps Street View: Explore. Available online: https://www.google.com/streetview/explore/ (accessed on 2 August 2021).
- Google Street View Coverage. Available online: https://commons.wikimedia.org/wiki/File:Google_Street_View_coverage.svg (accessed on 2 August 2021).
- Rundle, A.G.; Bader, M.D.M.; Richards, C.A.; Neckerman, K.M.; Teitler, J.O. Using Google Street View to Audit Neighborhood Environments. Am. J. Prev. Med. 2011, 40, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Mooney, S.J.; Bader, M.D.M.; Lovasi, G.S.; Neckerman, K.M.; Teitler, J.O.; Rundle, A.G. Validity of an Ecometric Neighborhood Physical Disorder Measure Constructed by Virtual Street Audit. Am. J. Epidemiol. 2014, 180, 626–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badland, H.M.; Opit, S.; Witten, K.; Kearns, R.A.; Mavoa, S. Can Virtual Streetscape Audits Reliably Replace Physical Streetscape Audits? J. Urban Health 2010, 87, 1007–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brookfield, K.; Tilley, S. Using virtual street audits to understand the walkability of older adults’ route choices by gender and age. Int. J. Environ. Res. Public Health 2016, 13, 1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clews, C.; Brajkovich-Payne, R.; Dwight, E.; Fauzul, A.A.; Burton, M.; Carleton, O.; Cook, J.; Deroles, C.; Faulkner, R.; Furniss, M. Alcohol in urban streetscapes: A comparison of the use of Google Street View and on-street observation. BMC Public Health 2016, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban. For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, Q.; Wang, Z.; Shao, Z. ‘Big data’for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts. Appl. Geogr. 2015, 63, 337–345. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Z. Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Appl. Geogr. 2016, 76, 147–153. [Google Scholar] [CrossRef]
- Letchford, A. Streetview. Available online: https://github.com/robolyst/streetview (accessed on 2 September 2021).
- U.S. Census Bureau Census Tracts. Available online: https://www2.census.gov/geo/pdfs/education/CensusTracts.pdf (accessed on 1 August 2021).
- Mayne, S.L.; Jose, A.; Mo, A.; Vo, L.; Rachapalli, S.; Ali, H.; Davis, J.; Kershaw, K.N. Neighborhood disorder and obesity-related outcomes among women in Chicago. Int. J. Environ. Res. Public Health 2018, 15, 1395. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.C.; Huang, Y.; Kumar, A.; Duan, H.; Keralis, J.M.; Dwivedi, P.; Meng, H.-W.; Brunisholz, K.D.; Jay, J.; Javanmardi, M. Using 164 Million Google Street View Images to Derive Built Environment Predictors of COVID-19 Cases. Int. J. Environ. Res. Public Health 2020, 17, 6359. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.C.; Khanna, S.; Dwivedi, P.; Huang, D.; Huang, Y.; Tasdizen, T.; Brunisholz, K.D.; Li, F.; Gorman, W.; Nguyen, T.T.; et al. Using Google Street View to examine associations between built environment characteristics and U.S. health outcomes. Prev. Med. Rep. 2019, 14, 100859. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yost, K.; Perkins, C.; Cohen, R.; Morris, C.; Wright, W. Socioeconomic status and breast cancer incidence in California for different race/ethnic groups. Cancer Causes Control 2001, 12, 703–711. [Google Scholar] [CrossRef]
- Yang, J.; Schupp, C.; Harrati, A.; Clarke, C.; Keegan, T.; Gomez, S. Developing an Area-Based Socioeconomic Measure from American Community Survey Data. Available online: https://cancerregistry.ucsf.edu/sites/g/files/tkssra1781/f/wysiwyg/Yang%20et%20al.%202014_CPIC_ACS_SES_Index_Documentation_3-10-2014.pdf (accessed on 2 August 2021).
- Gomez, S.L.; Glaser, S.L.; McClure, L.A.; Shema, S.J.; Kealey, M.; Keegan, T.H.; Satariano, W.A. The California Neighborhoods Data System: A new resource for examining the impact of neighborhood characteristics on cancer incidence and outcomes in populations. Cancer Causes Control 2011, 22, 631–647. [Google Scholar]
- Nouri, S.; Lyles, C.R.; Rubinsky, A.D.; Patel, K.; Desai, R.; Fields, J.; DeRouen, M.C.; Volow, A.; Bibbins-Domingo, K.; Sudore, R.L. Evaluation of Neighborhood Socioeconomic Characteristics and Advance Care Planning Among Older Adults. JAMA Netw. Open 2020, 3, e2029063. [Google Scholar] [CrossRef]
- Acevedo-Garcia, D.; Osypuk, T.L. Invited commentary: Residential segregation and health—the complexity of modeling separate social contexts. Am. J. Epidemiol. 2008, 168, 1255–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spruill, T.M. Chronic psychosocial stress and hypertension. Curr. Hypertens. Rep. 2010, 12, 10–16. [Google Scholar]
- Mujahid, M.S.; Roux, A.V.D.; Morenoff, J.D.; Raghunathan, T.E.; Cooper, R.S.; Ni, H.; Shea, S. Neighborhood characteristics and hypertension. Epidemiology 2008, 194, 590–598. [Google Scholar] [CrossRef]
Characteristic | N (%) |
---|---|
Age (Mean, SD) | 53.41 (17.93) |
Female | 121,829 (56.89) |
Married/Significant Other | 110,510 (51.60) |
Insurance | |
Private/Medicare Advantage | 115,193 (53.79) |
Medicare | 53,864 (25.15) |
Medicaid/Medi-Cal | 28,643 (13.37) |
Unspecified/Charity | 16,463 (7.69) |
Race/Ethnicity | |
American Indian or Alaska Native | 783 (0.37) |
Asian | 33,103 (15.46) |
Black or African American | 13,027 (6.08) |
Hispanic/Latino | 23,442 (10.95) |
Native Hawaiian or Other Pacific Island | 3331 (1.56) |
Other | 14,983 (7.00) |
White or Caucasian | 125,494 (58.60) |
English preferred language | 197,064 (92.02) |
Smoking status | |
Current smoker | 14,682 (6.86) |
Former smoker | 55,156 (25.75) |
Never smoker | 144,325 (67.39) |
Assigned primary care provider | 172,818 (80.69) |
Coronary artery disease | 14,426 (6.74) |
Hypertension | 60,129 (28.08) |
Diabetes mellitus | 25,841 (12.07) |
Neighborhood SES | |
1st Quintile | 13,127 (6.13) |
2nd Quintile | 19,705 (9.20) |
3rd Quintile | 30,773 (14.37) |
4th Quintile | 46,285 (21.61) |
5th Quintile | 104,273 (48.69) |
Google Street View Built Environment | |
Green space | |
1st Tertile (lowest) | 97,430 (45.49) |
2nd Tertile | 47,028 (21.96) |
3rd Tertile | 69,705 (32.55) |
Visible wires | |
1st Tertile (lowest) | 76,371 (35.66) |
2nd Tertile | 65,214 (30.45) |
3rd Tertile | 72,578 (33.89) |
Dilapidated buildings | |
1st Tertile (lowest) | 85,161 (39.76) |
2nd Tertile | 70,439 (32.89) |
3rd Tertile | 58,563 (27.35) |
Characteristic (Higher Tertiles Indicate Higher Prevalence) | Coronary Artery Disease | Hypertension | Diabetes |
---|---|---|---|
Prevalence Ratio (95% CI) | Prevalence Ratio (95% CI) | Prevalence Ratio (95% CI) | |
Green streets, 3rd tertile | 0.74 (0.71, 0.78) * | 0.71 (0.68, 0.74) * | 0.84 (0.80, 0.88) * |
Green streets, 2nd tertile | 0.93 (0.88, 0.99) * | 0.94 (0.90, 0.98) * | 1.00 (0.95, 1.05) |
Visible wires, 3rd tertile | 1.21 (1.14, 1.28) * | 1.24 (1.18, 1.32) * | 1.10 (1.05, 1.16) * |
Visible wires, 2nd tertile | 1.13 (1.06, 1.19) * | 1.19 (1.13, 1.25) * | 1.09 (1.04, 1.15) * |
Dilapidated building, 3rd tertile | 1.18 (1.11, 1.25) * | 1.19 (1.13, 1.25) * | 1.14 (1.09, 1.20) * |
Dilapidated building, 2nd tertile | 1.15 (1.09, 1.22) * | 1.18 (1.13, 1.24) * | 1.15 (1.10, 1.21) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Nguyen, Q.C.; Rubinsky, A.D.; Tasdizen, T.; Deligani, A.H.N.; Dwivedi, P.; Whitaker, R.; Fields, J.D.; DeRouen, M.C.; Mane, H.; et al. Google Street View-Derived Neighborhood Characteristics in California Associated with Coronary Heart Disease, Hypertension, Diabetes. Int. J. Environ. Res. Public Health 2021, 18, 10428. https://doi.org/10.3390/ijerph181910428
Nguyen TT, Nguyen QC, Rubinsky AD, Tasdizen T, Deligani AHN, Dwivedi P, Whitaker R, Fields JD, DeRouen MC, Mane H, et al. Google Street View-Derived Neighborhood Characteristics in California Associated with Coronary Heart Disease, Hypertension, Diabetes. International Journal of Environmental Research and Public Health. 2021; 18(19):10428. https://doi.org/10.3390/ijerph181910428
Chicago/Turabian StyleNguyen, Thu T., Quynh C. Nguyen, Anna D. Rubinsky, Tolga Tasdizen, Amir Hossein Nazem Deligani, Pallavi Dwivedi, Ross Whitaker, Jessica D. Fields, Mindy C. DeRouen, Heran Mane, and et al. 2021. "Google Street View-Derived Neighborhood Characteristics in California Associated with Coronary Heart Disease, Hypertension, Diabetes" International Journal of Environmental Research and Public Health 18, no. 19: 10428. https://doi.org/10.3390/ijerph181910428
APA StyleNguyen, T. T., Nguyen, Q. C., Rubinsky, A. D., Tasdizen, T., Deligani, A. H. N., Dwivedi, P., Whitaker, R., Fields, J. D., DeRouen, M. C., Mane, H., Lyles, C. R., Brunisholz, K. D., & Bibbins-Domingo, K. (2021). Google Street View-Derived Neighborhood Characteristics in California Associated with Coronary Heart Disease, Hypertension, Diabetes. International Journal of Environmental Research and Public Health, 18(19), 10428. https://doi.org/10.3390/ijerph181910428