Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Surface Temperature (LST) Data Retrieval
2.3. Land Use Factors Extraction
2.4. Regression Analysis
3. Results
3.1. Spatial Variation of LST
3.2. Land Use Factors in Different LST Zones
3.3. Spatial Correlation
3.4. Correlation between Land Use Factors and LST
4. Discussion
4.1. Impact of Land Use Type Factors on LST
4.2. Comparison of the Relationships of Land Cover and Building-Group Morphology on LST
4.3. Relationships between the Industrial and Commercial Anthropogenic Heat and LST
4.4. Planning Strategies Implication
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- United Nations. 2018 Revision of World Urbanization Prospects 2018; United Nations: New York, NY, USA, 2018.
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Unger, J. Intra-urban relationship between surface geometry and urban heat island: Review and new approach. Clim. Res. 2004, 27, 253–264. [Google Scholar] [CrossRef] [Green Version]
- He, B.-J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qingming, Z.; Guo, H.; Jin, Z. Characterizing the spatial dynamics of land surface temperature–impervious surface fraction relationship. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 55–65. [Google Scholar] [CrossRef]
- Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resour. Conserv. Recycl. 2012, 64, 23–29. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E.; An, X.; Ren, C.; Lee, M.; Wang, U.; He, Z. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. Int. J. Climatol. 2012, 32, 121–136. [Google Scholar] [CrossRef]
- Song, J.; Chen, W.; Zhang, J.; Huang, K.; Hou, B.; Prishchepov, A.V. Effects of building density on land surface temperature in China: Spatial patterns and determinants. Landsc. Urban Plan. 2020, 198, 103794. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.; Li, X.; Wang, S. Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Xiao, R.; Ouyang, Z.-Y.; Zheng, H.; Li, W.; Schienke, E.W.; Wang, X.-K. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Dai, Z.; Guldmann, J.M.; Hu, Y. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing. Sci. Total Environ. 2018, 626, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Bottyán, Z.; Unger, J. A multiple linear statistical model for estimating the mean maximum urban heat island. Theor. Appl. Climatol. 2003, 75, 233–243. [Google Scholar] [CrossRef]
- Stone, B.; Rodgers, M.O. Urban form and thermal efficiency: How the design of cities influences the urban heat island effect. J. Am. Plan. Assoc. 2001, 67, 186–198. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens. 1998, 19, 895–920. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Chunho, L.I.U. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Yue, W.; Qiu, S.; Xu, H.; Xu, L.; Zhang, L. Polycentric urban development and urban thermal environment: A case of Hangzhou, China. Landsc. Urban Plan. 2019, 189, 58–70. [Google Scholar] [CrossRef]
- Yan, L.; QinGeng, W.; Yiran, Z.; YuanYuan, S.; YanYan, Z.; Ping, S. Anthropogenic heat emissions in the Yangtze River Delta region. China Environ. Sci. 2014, 34, 295–301. [Google Scholar]
- Zhang, X.; Shen, J.; Gao, X. Towards a comprehensive understanding of intercity cooperation in China’s city-regionalization: A comparative study of Shenzhen-Hong Kong and Guangzhou-Foshan city groups. Land Use Policy 2021, 103, 105339. [Google Scholar] [CrossRef]
- Niu, Q.; Nie, C.; Lin, F.; Li, L.; Ji, L. Model study of relationship between local temperature and artificial heat release. Sci. China Technol. Sci. 2012, 55, 821–830. [Google Scholar] [CrossRef]
- Wang, W.-W.; Li, G.-L.; Xue, J. Spatial distribution of urban heat island in Hangzhou and its mitigation countermeasures. Ziran Zaihai Xuebao 2009, 18, 14–20. [Google Scholar]
- Quah, A.K.L.; Roth, M. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmos. Environ. 2012, 46, 92–103. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Chen, L.; Yang, L.; Chen, A. Assessing the stability of annual temperatures for different urban functional zones. Build. Environ. 2013, 65, 90–98. [Google Scholar] [CrossRef]
- Yue, W.; Liu, Y.; Fan, P.; Ye, X.; Wu, C. Assessing spatial pattern of urban thermal environment in Shanghai, China. Stoch. Environ. Res. Risk Assess. 2012, 26, 899–911. [Google Scholar] [CrossRef]
- Zhang, X.; Cheung, D.M.W.; Sun, Y.; Tan, J. Political decentralization and the path-dependent characteristics of the state authoritarianism: An integrated conceptual framework to understand China’s territorial fragmentation. Eurasian Geogr. Econ. 2019, 60, 548–581. [Google Scholar] [CrossRef]
- Yao, L.; Chen, L.; Wei, W. Exploring the linkage between urban flood risk and spatial patterns in small urbanized catchments of Beijing, China. Int. J. Environ. Res. Public Health 2017, 14, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, S.; Yamaguchi, Y. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sens. Environ. 2005, 99, 44–54. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.M.; McAlpine, C.A. Large seasonal and diurnal anthropogenic heat flux across four Australian cities. J. South. Hemisph. Earth Syst. Sci. 2016, 66, 342–360. [Google Scholar]
- Dhakal, S.; Hanaki, K. Improvement of urban thermal environment by managing heat discharge sources and surface modification in Tokyo. Energy Build. 2002, 34, 13–23. [Google Scholar] [CrossRef]
- Rinner, C.; Hussain, M. Toronto’s urban heat island-exploring the relationship between land use and surface temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef] [Green Version]
- Jusuf, S.K.; Wong, N.H.; Hagen, E.; Anggoro, R.; Hong, Y. The influence of land use on the urban heat island in Singapore. Habitat Int. 2007, 31, 232–242. [Google Scholar] [CrossRef]
- Li, T.; Cao, J.; Xu, M.; Wu, Q.; Yao, L. The influence of urban spatial pattern on land surface temperature for different functional zones. Landsc. Ecol. Eng. 2020, 16, 249–262. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Heun Song, S.; Cheol Jung, B.; Koh, W. Testing for serial correlation, spatial autocorrelation and random effects using panel data. J. Econ. 2007, 140, 5–51. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Ambrosini, D.; Galli, G.; Mancini, B.; Nardi, I.; Sfarra, S. Evaluating mitigation effects of urban heat islands in a historical small center with the ENVI-Met® climate model. Sustainability 2014, 6, 7013–7029. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Yao, L.; Sun, R.; Chen, L. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecol. Indic. 2014, 45, 424–433. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution ? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Lou, X.; Hou, Q. The research on aggregate analysis of the regulatory detailed planning by considering the traffic capacity. Int. J. Cogn. Informatics Nat. Intell. 2015, 9, 1–15. [Google Scholar] [CrossRef]
- He, B.J.; Ding, L.; Prasad, D. Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Peng, H.; Wang, H.; Shen, J. The impact of building configurations and anthropogenic heat on daily urban air temperature cycles. Build. Environ. 2020, 169, 106564. [Google Scholar] [CrossRef]
- Xie, Q.; Li, J. Detecting the cool island effect of urban parks in Wuhan: A city on rivers. Int. J. Environ. Res. Public Health 2021, 18, 132. [Google Scholar] [CrossRef]
- Yue, W.Z.; Liu, X. Assessment on heat island effect based on urban regulatory planning. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2016, 27, 3631–3640. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Oke, T.R. The urban energy balance. Prog. Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S.; Wang, Q. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data. ISPRS J. Photogramm. Remote Sens. 2017, 132, 170–184. [Google Scholar] [CrossRef]
- Yao, L.; Xu, Y.; Zhang, B. Effect of urban function and landscape structure on the urban heat island phenomenon in Beijing, China. Landsc. Ecol. Eng. 2019, 15, 379–390. [Google Scholar] [CrossRef]
- Hu, T.; Yang, J.; Li, X.; Gong, P. Mapping urban land use by using landsat images and open social data. Remote Sens. 2016, 8, 151. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. Properties of tests for spatial dependence in linear regression models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Yang, X.; Jin, W. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa. J. Environ. Manag. 2010, 91, 1943–1951. [Google Scholar] [CrossRef]
- Hou, L.; Yue, W.; Liu, X. Spatiotemporal Patterns and Drivers of Summer Heat Island in Beijing-Tianjin-Hebei Urban Agglomeration, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7516–7527. [Google Scholar]
- Lu, Y.; Yue, W.; Liu, Y.; Huang, Y. Investigating the spatiotemporal non-stationary relationships between urban spatial forms and land surface temperature: A case study in Wuhan, China. Sustain. Cities Soc. 2021, 72, 103070. [Google Scholar] [CrossRef]
- Srivanit, M.; Kazunori, H. The influence of urban morphology indicators on summer diurnal range of urban climate in Bangkok metropolitan area, Thailand. Int. J. Civ. Environ. Eng. 2011, 11, 34–46. [Google Scholar]
- Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C.; Hese, S. Remote Sensing of Environment Spatio-temporal analysis of the relationship between 2D / 3D urban site characteristics and land surface temperature. Remote Sens. Environ. 2017, 193, 225–243. [Google Scholar] [CrossRef]
- Zhou, Y.; Weng, Q.; Gurney, K.R.; Shuai, Y.; Hu, X. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use. ISPRS J. Photogramm. Remote Sens. 2012, 67, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Hadria, R.; Benabdelouahab, T.; Mahyou, H.; Balaghi, R.; Bydekerke, L.; El Hairech, T.; Ceccato, P. Relationships between the three components of air temperature and remotely sensed land surface temperature of agricultural areas in Morocco. Int. J. Remote Sens. 2018, 39, 356–373. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Luan, X.; Yuan, M. Understanding China’s city-regionalization: Spatial structure and relationships between functional and institutional spaces in the Pearl River Delta. Urban Geogr. 2021, 42, 312–339. [Google Scholar] [CrossRef]
Categories | Factors | Abbreviation | Description | Data Resource |
---|---|---|---|---|
Land use type composition | Percentage of industrial area | PIA | Measures the proportional abundance of industrial area in the planning management units | Wuhan Natural Resources and Planning Bureau (2014) Resource and Environment Science and Data Center (https://www.resdc.cn/data.aspx?DATAID=341) Autonavi (accessed on: 3 September 2015) * |
Percentage of commercial area | PCA | Measures the proportional abundance of commercial area in the planning management units | Wuhan Natural Resources and Planning Bureau (2014) Resource and Environment Science and Data Center (https://www.resdc.cn/data.aspx?DATAID=341) Autonavi (accessed on: 3 September 2015) * | |
Land cover | Percentage of impervious surface area | ISA | Measures the proportional abundance impervious surface area in the planning management units | United States Geological Survey (USGS) (earthexplorer.usgs.gov/) (accessed on: 6 October 2014) |
Percentage of water | PW | Measures the proportional water bodies in the planning management units | United States Geological Survey (USGS) (earthexplorer.usgs.gov/) (accessed on: 6 October 2014) | |
Percentage of vegetation | PV | Measures the proportional vegetation in the planning units | United States Geological Survey (USGS) (earthexplorer.usgs.gov/) (accessed on: 6 October 2014) | |
Building-group morphology | Building density | BD | Divide the total base area of all the buildings in the planning management units | Wuhan Natural Resources and Planning Bureau |
Floor area ratio | FAR | Divide the total floor area of all the buildings in the planning management units | Wuhan Natural Resources and Planning Bureau |
PIA | PCA | ISA | PW | PV | BD | FAR | |
---|---|---|---|---|---|---|---|
Zone 1 (>31.26 °C) | 26.74% | 7.95% | 92.01% | 0.82% | 3.44% | 0.34 | 1.07 |
Zone 2 (30.05–31.25 °C) | 10.14% | 7.28% | 85.44% | 1.14% | 6.20% | 0.25 | 1.1 |
Zone 3 (29.03–30.04 °C) | 7.24% | 4.66% | 77.37% | 2.61% | 11.75% | 0.19 | 0.99 |
Zone 4 (27.82–29.02 °C) | 3.76% | 3.85% | 71.75% | 5.90% | 16.35% | 0.16 | 0.89 |
Zone 5 (<27.81 °C) | 2.36% | 2.84% | 48.73% | 22.18% | 28.76% | 0.09 | 0.48 |
D.F. | Value | p-Value | |
---|---|---|---|
LM (SLM) | 1 | 153.4246 | 0.0000 |
Robust LM (SLM) | 1 | 16.5381 | 0.0001 |
LM (SEM) | 1 | 195.5782 | 0.0000 |
Robust LM (SEM) | 1 | 58.6917 | 0.0000 |
Land Use Factors | Pearson Correlation Coefficients | |
---|---|---|
Land use types | PIA (%) | 0.426 ** |
PCA (%) | 0.215 ** | |
Land cover | ISA (%) | 0.472 ** |
PW (%) | −0.453 ** | |
PV (%) | −0.436 ** | |
Building morphology | BD | 0.598 ** |
FAR | 0.216 ** |
SEM | OLS | |
---|---|---|
PIA | 0.0438864 ** | 0.230 ** |
PCA | 0.00372912 | 0.123 ** |
ISA | 0.0109246 | −0.259 ** |
PW | −0.0687816 ** | −0.281 ** |
PV | −0.0309925 ** | −0.355 * |
BD | 0.136333 ** | 0.734 ** |
FAR | −0.0838769 ** | −0.439 ** |
R2 | 0.765939 | 0.624 |
LL | 1477.276743 | 1376.74 |
AIC | −2938.55 | −2737.48 |
SC | −2903.53 | −2702.45 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
PIA | 0.104152 ** | 0.0532416 ** | 0.0835761 ** | |||
PCA | 0.0215723 * | 0.000783343 | 0.595001 | |||
ISA | 0.0433368 ** | 0.0479207 ** | ||||
PW | −0.0738547 ** | −0.0800255 ** | ||||
PV | −0.0147743 | −0.0192404 | ||||
BD | 0.167664 ** | 0.194329 ** | ||||
FAR | −0.0591297 ** | −0.078539 ** | ||||
R2 | 0.506609 | 0.695894 | 0.666540 | 0.388342 | 0.671549 | 0.595001 |
LL | 1256.369315 | 1404.785989 | 1371.161039 | 1195.782597 | 1380.489894 | 1312.004322 |
AIC | −2508.74 | −2801.57 | −2732.32 | −2387.57 | −2752.98 | −2614.01 |
SC | −2499.98 | −2784.06 | −2710.43 | −2378.81 | −2735.47 | −2592.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Yue, W.; Huang, Y. Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China. Int. J. Environ. Res. Public Health 2021, 18, 9987. https://doi.org/10.3390/ijerph18199987
Lu Y, Yue W, Huang Y. Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China. International Journal of Environmental Research and Public Health. 2021; 18(19):9987. https://doi.org/10.3390/ijerph18199987
Chicago/Turabian StyleLu, Youpeng, Wenze Yue, and Yaping Huang. 2021. "Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China" International Journal of Environmental Research and Public Health 18, no. 19: 9987. https://doi.org/10.3390/ijerph18199987
APA StyleLu, Y., Yue, W., & Huang, Y. (2021). Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China. International Journal of Environmental Research and Public Health, 18(19), 9987. https://doi.org/10.3390/ijerph18199987