Community-Based Portable Reefs to Promote Mangrove Vegetation Growth: Bridging between Ecological and Engineering Principles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Survey
2.2. Laboratory Test
3. Field Observation Results
3.1. Survey in the Study Site
3.2. Mangrove Plantation Test at the Research Site
3.3. Water-Level Observations
3.4. In Situ Wave Experiment
3.5. Comparison of Mangrove Growth between Laboratory and Field Experiments
4. Case Study: Design of Portable Reef as a Community-Based Breakwater
4.1. Stability of Rubble Mound
4.2. Wave Transmission and Cross-Sectional Design
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ewel, K.C.; Twilley, R.R.; Ong, J. Different kinds of mangrove forests provide different goods and services. Glob. Ecol. Biogeogr. Lett. 1998, 7, 83–94. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. In Advances in Marine Biology; Academic Press Inc.: Cambridge, MA, USA, 2001; Volume 40, pp. 81–251. [Google Scholar]
- Vermaat, J.E.; Thampanya, U. Mangroves mitigate tsunami damage: A further response. Estuar. Coast. Shelf Sci. 2006, 69, 1–3. [Google Scholar] [CrossRef]
- Kathiresan, K.; Rajendran, N. Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 2005, 65, 601–606. [Google Scholar] [CrossRef]
- Teh, S.Y.; Koh, H.L.; Liu, P.L.F.; Ismail, A.I.M.; Lee, H.L. Analytical and numerical simulation of tsunami mitigation by mangroves in Penang, Malaysia. J. Asian Earth Sci. 2009, 36, 38–46. [Google Scholar] [CrossRef]
- Delfino, R.J.; Carlos, C.; David, L.; Lasco, R.; Juanico, D.E. Perceptions of Typhoon Haiyan-affected communities about the resilience and storm protection function of mangrove ecosystems in Leyte and Eastern Samar, Philippines. Clim. Disaster Dev. J. 2015, 1, 15–24. [Google Scholar] [CrossRef]
- Hu, Z.; Suzuki, T.; Zitman, T.; Uittewaal, W.; Stive, M. Laboratory study on wave dissipation by vegetation in combined current-wave flow. Coast. Eng. 2014, 88, 131–142. [Google Scholar] [CrossRef]
- Mazda, Y.; Magi, M.; Ikeda, Y.; Kurokawa, T.; Asano, T. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetl. Ecol. Manag. 2006, 14, 365–378. [Google Scholar] [CrossRef]
- Parvathy, K.G.; Bhaskaran, P.K. Wave attenuation in presence of mangroves: A sensitivity study for varying bottom slopes. Int. J. Ocean Clim. Syst. 2017. [Google Scholar] [CrossRef] [Green Version]
- Mcivor, A.; Möller, I.; Spencer, T.; Spalding, M. Reduction of Wind and Swell Waves by Mangroves. In Natural Coastal Protection Series: Report 1 Cambridge Coastal Research Unit Working Paper 40; The Nature Conservancy: Arlington, VA, USA; Wetlands International: Wageningen, The Netherlands, 2012; p. 27. [Google Scholar]
- Takagi, H. Long-term design of mangrove landfills as an effective tide attenuator under relative sea-level rise. Sustainability 2018, 10, 1045. [Google Scholar] [CrossRef] [Green Version]
- Takagi, H. “Adapted mangrove on hybrid platform”—Coupling of ecological and engineering principles against coastal hazards. Results Eng. 2019, 4, 100067. [Google Scholar] [CrossRef]
- Thampanya, U.; Vermaat, J.E.; Sinsakul, S.; Panapitukkul, N. Coastal erosion and mangrove progradation of Southern Thailand. Estuar. Coast. Shelf Sci. 2006, 68, 75–85. [Google Scholar] [CrossRef]
- Horstman, E.M.; Dohmen-Janssen, C.M.; Narra, P.M.F.; van den Berg, N.J.F.; Siemerink, M.; Hulscher, S.J.M.H. Wave attenuation in mangroves: A quantitative approach to field observations. Coast. Eng. 2014, 94, 47–62. [Google Scholar] [CrossRef]
- Kathiresan, K. Mangrove forests of India. Curr. Sci. 2018, 114, 976–981. [Google Scholar] [CrossRef]
- Noor, T.; Batool, N.; Mazhar, R.; Ilyas, N. Effects of Siltation, Temperature and Salinity on Mangrove Plants. Eur. Acad. Res. 2015, 2, 14172–14179. [Google Scholar]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Rasmeemasmuang, T.; Sasaki, J. Wave Reduction in Mangrove Forests: General Information and Case Study in Thailand. Handb. Coast. Disaster Mitig. Eng. Plan. 2015, 2015, 511–535. [Google Scholar] [CrossRef]
- Sui, L.; Wang, J.; Yang, X.; Wang, Z. Spatial-temporal characteristics of coastline changes in Indonesia from 1990 to 2018. Sustainability 2020, 12, 3242. [Google Scholar] [CrossRef] [Green Version]
- Duke, N.C.; Meynecke, J.-O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D.; et al. A world without mangroves? Science 2007, 317, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Primavera, J.H. Development and conservation of Philippine mangroves: Institutional issues. Ecol. Econ. 2000, 35, 91–106. [Google Scholar] [CrossRef]
- Rahman, M.A.A.; Asmawi, M.Z. Local Residents’ Awareness towards the Issue of Mangrove Degradation in Kuala Selangor, Malaysia. Proc. Soc. Behav. Sci. 2016, 222, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Macintosh, D.J.; Ashton, E.C.; Havanon, S. Mangrove Rehabilitation and Intertidal Biodiversity: A Study in the Ranong Mangrove Ecosystem, Thailand. Estuar. Coast. Shelf Sci. 2002, 55, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Mcleod, E.; Salm, R.V. Managing Mangroves for Resilience to Climate Change IUCN Global Marine Programme; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2006; 64p. [Google Scholar]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. Bioscience 2001, 51, 807. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Hamilton, S.; Barbier, E.B.; Primavera, J.; Lewis, R.R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 2019, 3, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Van Tao, D.; Ha, N.H. Mangrove replanting, Disaster preparedness and many other benefits. Clim. Coast. Coop. 2011, 176–178. [Google Scholar]
- Thompson, B.S. The political ecology of mangrove forest restoration in Thailand: Institutional arrangements and power dynamics. Land Use Policy 2018, 78, 503–514. [Google Scholar] [CrossRef]
- Primavera, J.H.; Esteban, A.J.M.A.; Esteban, J.M.A. A review of mangrove rehabilitation in the Philippines: Successes, failures and future prospects. Wetl. Ecol Manag. 2008, 16, 345–358. [Google Scholar] [CrossRef]
- Primavera, J.H.; Rollon, R.N.; Samson, M.S. The Pressing Challenges of Mangrove Rehabilitation: Pond Reversion and Coastal Protection. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D., Eds.; Elsevier Inc.: Waltham, MA, USA, 2011; Volume 10, pp. 217–244. [Google Scholar]
- Kamali, B.; Hashim, R. Mangrove restoration without planting. Ecol. Eng. 2011, 37, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Kodikara, K.A.S.; Mukherjee, N.; Jayatissa, L.P.; Dahdouh-Guebas, F.; Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka. Restor. Ecol. 2017, 25, 705–716. [Google Scholar] [CrossRef]
- Teutli-Hernández, C.; Herrera-Silveira, J.A.; Comín, F.A.; López, M.M. Nurse species could facilitate the recruitment of mangrove seedlings after hydrological rehabilitation. Ecol. Eng. 2019, 130, 263–270. [Google Scholar] [CrossRef]
- Elster, C. Reasons for reforestation success and failure with three mangrove species in Colombia. For. Ecol. Manag. 2000, 131, 201–214. [Google Scholar] [CrossRef]
- Le Minor, M.; Bartzke, G.; Zimmer, M.; Gillis, L.; Helfer, V.; Huhn, K. Numerical modelling of hydraulics and sediment dynamics around mangrove seedlings: Implications for mangrove establishment and reforestation. Estuar. Coast. Shelf Sci. 2019, 217, 81–95. [Google Scholar] [CrossRef]
- Tamin, N.M.; Zakaria, R.; Hashim, R.; Yin, Y. Establishment of Avicennia marina mangroves on accreting coastline at Sungai Haji Dorani, Selangor, Malaysia. Estuar. Coast. Shelf Sci. 2011, 94, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Takagi, H.; Sekiguchi, S.; Thao, N.D.; Rasmeemasmuang, T. Do wooden pile breakwaters work for community-based coastal protection? J. Coast. Conserv. 2020, 24, 1–11. [Google Scholar] [CrossRef]
- Stanley, O.D.; Lewis, R.R. Strategies for Mangrove Rehabilitation in an Eroded Coastline of Selangor, Peninsular Malaysia. J. Coast. Dev. 2009, 12, 142–154. [Google Scholar]
- Lewis, R.R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Lewis, R.R.; Brown, B.M.; Flynn, L.L. Methods and criteria for successful mangrove forest rehabilitation. In Coastal Wetlands: An Integrated Ecosystem Approach; Gerardo, M.E., Perillo, E.W., Cahoon, D.R., Hopkinson, C.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 863–887. [Google Scholar]
- Quarto, A.; Thiam, I. Community-Based Ecological Mangrove. Nat. Faune Wetl. Int. 2018, 32, 39–45. [Google Scholar]
- Chen, L.; Wang, W.; Li, Q.Q.; Zhang, Y.; Yang, S.; Osland, M.J.; Huang, J.; Peng, C.; Chen, L.; Wang, W.; et al. Mangrove species’ responses to winter air temperature extremes in China. Ecosphere 2017, 8, e01865. [Google Scholar] [CrossRef]
- Tai, A.; Hashimoto, A.; Oba, T.; Kawai, K.; Otsuki, K.; Nagasaka, H.; Saita, T. Growth of mangrove forests and the influence on flood disaster at Amami Oshima Island, Japan. J. Disaster Res. 2015, 10, 486–494. [Google Scholar] [CrossRef]
- Nabiul, I.K.M.; Kabir, M.E. Ecology of Kandelia obovata (S., L.) Yong: A Fast-Growing Mangrove in Okinawa, Japan. In Participatory Mangrove Management in a Changing Climate; DasGupta, R., Shaw, R., Eds.; Springer: Tokyo, Japan, 2017; pp. 287–301. [Google Scholar]
- Sheue, C.R.; Liu, H.Y.; Yong, J.W.H. Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. Taxon 2003, 52, 287–294. [Google Scholar] [CrossRef]
- Das, S.K.; Patra, J.K.; Thatoi, H. Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. Int. Rev. Hydrobiol. 2016, 101, 3–19. [Google Scholar] [CrossRef]
- Takagi, H.; Quan, N.H.; Anh, L.T.; Thao, N.D.; Tri, V.P.D.; Anh, T.T. Practical modelling of tidal propagation under fluvial interaction in the Mekong Delta. Int. J. River Basin Manag. 2019, 17, 377–387. [Google Scholar] [CrossRef]
- Chan, H.T.; Baba, S. Manual on Guidelines for Rehabilitation of Coastal Forests Damaged by Natural Hazards in the Asia Pacific Region; International Society of Mangrove Ecosystem (ISME): Nishihara, Japan; International Tropical Timber Organization (ITTO): Yokohama, Japan, 2009; p. 66. [Google Scholar]
- Ravishankar, T.; Ramasubramanian, R. Manual on Mangrove Raising Techniques; M.S. Swaminathan Research Foundation (MSSRF): Chennai, India, 2004; ISBN 9788578110796. [Google Scholar]
- Hashim, R.; Kamali, B.; Tamin, N.M.; Zakaria, R. An integrated approach to coastal rehabilitation: Mangrove restoration in Sungai Haji Dorani, Malaysia. Estuar. Coast. Shelf Sci. 2010, 86, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Dattatri, J.; Raman, H.; Shankar, N.J. Performance Characteristics of Submerged Breakwaters. In Proceedings of the 16th International Conference on Coastal Engineering, Hamburg, Germany, 27 August–3 September 1978; American Society of Civil Engineers: New York, NY, USA, 1978; pp. 2153–2171. [Google Scholar]
- Twu, S.-W.; Liu, C.-C.; Hsu, W.-H. Wave damping characteristics of deeply submerged breakwaters. J. Waterw. Port. Coast. Ocean Eng. 2001, 127, 97–105. [Google Scholar] [CrossRef]
- Shirlal, K.G.; Rao, S.; Ganesh, V. Manu Stability of breakwater defenced by a seaward submerged reef. Ocean Eng. 2006, 33, 829–846. [Google Scholar] [CrossRef]
- Sindhu, S.; Shirlal, K.G. Manu Prediction of wave transmission characteristics at submerged reef breakwater. Proc. Eng. 2015, 116, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, M.; Vicinanza, D.; Buccino, M. 2D Wave setup behind submerged breakwaters. Ocean Eng. 2008, 35, 1015–1028. [Google Scholar] [CrossRef]
- Van der Meer, J.W.; Pilarczyk, K.W. Stability of Low-Crested and Reef Breakwaters. In Proceedings of the 22nd International Conference on Coastal Engineering, Delft, The Netherlands, 2–6 July 1990; American Society of Civil Engineers: New York, NY, USA, 1991; Volume 2, pp. 1375–1388. [Google Scholar]
- Chasten, M.A.; Rosati, J.D.; McCormick, J.W. Engineering Design Guidance for Detached Breakwaters as Shore Stabilization Structures; Randall, R.E., Ed.; US Army Corps of Engineers: Washington, DC, USA, 1993. [Google Scholar]
- Ahrens, J.P. Stability of Reef Breakwaters. J. Waterw. Port Coast. Ocean Eng. 1989, 115, 221–234. [Google Scholar] [CrossRef]
- Thaha, M.A.; Muhiddin, A.B. The combination of low crested breakwater with mangroves to reduce the vulnerability of the coast due to climate change. In Asian and Pacific Coasts: Proceedings of the 6th International Conference on Asian and Pacific Coasts; World Scientific: Hongkong, China, 2011; pp. 541–550. [Google Scholar]
- Centre d’Etudes Techniques Maritimes Et Fluviales (CETMEF); Construction Industry Research and Information Association (CIRIA); CUR Building & Infrastructure. The Rock Manual: The Use of Rock in Hydraulic Engineering, 2nd ed.; C683 CIRIA: London, UK, 2007; Chapter 5; pp. 487–756. [Google Scholar]
Variables | Notation | Value |
---|---|---|
Wave heights | H | 0.3 m |
Wave periods | T | 2 to 3.5 s |
Water depth | d | 0.4 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreeranga, S.; Takagi, H.; Shirai, R. Community-Based Portable Reefs to Promote Mangrove Vegetation Growth: Bridging between Ecological and Engineering Principles. Int. J. Environ. Res. Public Health 2021, 18, 590. https://doi.org/10.3390/ijerph18020590
Sreeranga S, Takagi H, Shirai R. Community-Based Portable Reefs to Promote Mangrove Vegetation Growth: Bridging between Ecological and Engineering Principles. International Journal of Environmental Research and Public Health. 2021; 18(2):590. https://doi.org/10.3390/ijerph18020590
Chicago/Turabian StyleSreeranga, Sindhu, Hiroshi Takagi, and Rikuo Shirai. 2021. "Community-Based Portable Reefs to Promote Mangrove Vegetation Growth: Bridging between Ecological and Engineering Principles" International Journal of Environmental Research and Public Health 18, no. 2: 590. https://doi.org/10.3390/ijerph18020590
APA StyleSreeranga, S., Takagi, H., & Shirai, R. (2021). Community-Based Portable Reefs to Promote Mangrove Vegetation Growth: Bridging between Ecological and Engineering Principles. International Journal of Environmental Research and Public Health, 18(2), 590. https://doi.org/10.3390/ijerph18020590