Leveraging the Work Environment to Minimize the Negative Impact of Nurse Burnout on Patient Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Data
2.2. Sample
2.3. Measures
2.4. Covariates
2.5. Data Analysis
3. Results
3.1. Descriptive Characteristics of Hospitals
3.2. Descriptive Characteristics of Nurses and Patients
3.3. Effect of the Work Environment on the Association between Nurse Burnout and Patient Outcomes
3.4. Effect of Magnet Status on the Association between Nurse Burnout and Patient Outcomes
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aiken, L.H.; Clarke, S.P.; Sloane, D.M.; Sochalski, J.; Silber, J.H. Hospital nurse staffing and patient mortality, nurse burnout, and job dissatisfaction. JAMA 2002, 288, 1987–1993. [Google Scholar] [CrossRef] [Green Version]
- McHugh, M.D.; Kutney-Lee, A.; Cimiotti, J.P.; Sloane, D.M.; Aiken, L.H. Nurses’ widespread job dissatisfaction, burnout, and frustration with health benefits signal problems for patient care. Health Aff. 2011, 30, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Aiken, L.H.; Sermeus, W.; Van den Heede, K.; Sloane, D.M.; Busse, R.; McKee, M.; Bruyneel, L.; Rafferty, A.M.; Griffiths, P.; Moreno-Casbas, M.T. Patient safety, satisfaction, and quality of hospital care: Cross sectional surveys of nurses and patients in 12 countries in Europe and the United States. BMJ 2012, 344, e1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (W.H.O.). Burn-Out An “Occupational Phenomenon”: International Classification of Diseases. Available online: https://www.who.int/mental_health/evidence/burn-out/en/ (accessed on 29 September 2019).
- Maslach, C.; Jackson, S.E. The measurement of experienced burnout. J. Organ. Behav. 1981, 2, 99–113. [Google Scholar] [CrossRef]
- Maslach, C.; Jackson, S.E.; Leiter, M.P.; Schaufeli, W.B.; Schwab, R.L. Maslach Burnout Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1986; Volume 21. [Google Scholar] [CrossRef]
- Maslach, C.; Schaufeli, W.B.; Leiter, M.P. Job Burnout. Annu. Rev. Psychol. 2001, 52, 397–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, E.T.; Sanders, J.; Duan, R.; Riman, K.A.; Schoenauer, K.M.; Chen, Y. A Meta-Analysis of the Associations between the Nurse Work Environment in Hospitals and 4 Sets of Outcomes. Med. Care 2019, 57, 353–361. [Google Scholar] [CrossRef]
- Aiken, L.H.; Sloane, D.M. Effects of organizational innovations in AIDS care on burnout among urban hospital nurses. Work Occup. 1997, 24, 453–477. [Google Scholar] [CrossRef]
- Rafferty, A.M.; Clarke, S.P.; Coles, J.; Ball, J.; James, P.; McKee, M.; Aiken, L.H. Outcomes of variation in hospital nurse staffing in English hospitals: Cross-sectional analysis of survey data and discharge records. Int. J. Nurs. Stud. 2007, 44, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Aiken, L.H.; Sloane, D.M.; Cimiotti, J.P.; Clarke, S.P.; Flynn, L.; Seago, J.A.; Spetz, J.; Smith, H.L. Implications of the California nurse staffing mandate for other states. Health Serv. Res. 2010, 45, 904–921. [Google Scholar] [CrossRef]
- Jackson, S.E. Participation in decision making as a strategy for reducing job-related strain. J. Appl. Psychol. 1983, 68, 3. [Google Scholar] [CrossRef]
- Kutney-Lee, A.; Germack, H.; Hatfield, L.; Kelly, S.; Maguire, P.; Dierkes, A.; Del Guidice, M.; Aiken, L.H. Nurse Engagement in Shared Governance and Patient and Nurse Outcomes. J. Nurs. Adm. 2016, 46, 605–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutney-Lee, A.; Wu, E.S.; Sloane, D.M.; Aiken, L.H. Changes in hospital nurse work environments and nurse job outcomes: An analysis of panel data. Int. J. Nurs. Stud. 2013, 50, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, L.H.; Johnson, J.; Watt, I.; Tsipa, A.; O’Connor, D.B. Healthcare staff wellbeing, burnout, and patient safety: A systematic review. PLoS ONE 2016, 11, e0159015. [Google Scholar] [CrossRef]
- Leiter, M.P.; Harvie, P.; Frizzell, C. The correspondence of patient satisfaction and nurse burnout. Soc. Sci. Med. 1998, 47, 1611–1617. [Google Scholar] [CrossRef]
- Vahey, D.C.; Aiken, L.H.; Sloane, D.M.; Clarke, S.P.; Vargas, D. Nurse burnout and patient satisfaction. Med. Care 2004, 42, II57–II66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carthon, J.M.B.; Hatfield, L.; Brom, H.; Houton, M.; Kelly-Hellyer, E.; Schlak, A.; Aiken, L.H. System-Level Improvements in Work Environments Lead to Lower Nurse Burnout and Higher Patient Satisfaction. J. Nurs. Care Qual. 2020. [Google Scholar] [CrossRef]
- White, E.M.; Aiken, L.H.; McHugh, M.D. Registered Nurse Burnout, Job Dissatisfaction, and Missed Care in Nursing Homes. J. Am. Geriatr. Soc. 2019, 67, 2065–2071. [Google Scholar] [CrossRef] [Green Version]
- Halbesleben, J.R. The role of exhaustion and workarounds in predicting occupational injuries: A cross-lagged panel study of health care professionals. J. Occup. Health Psychol. 2010, 15, 1–16. [Google Scholar] [CrossRef]
- Debono, D.S.; Greenfield, D.; Travaglia, J.F.; Long, J.C.; Black, D.; Johnson, J.; Braithwaite, J. Nurses’ workarounds in acute healthcare settings: A scoping review. BMC Health Serv. Res. 2013, 13, 175. [Google Scholar] [CrossRef] [Green Version]
- Kelly, L.A.; McHugh, M.D.; Aiken, L.H. Nurse outcomes in Magnet® and non-Magnet hospitals. J. Nurs. Adm. 2012, 42, S44–S49. [Google Scholar] [CrossRef] [Green Version]
- Kutney-Lee, A.; Stimpfel, A.W.; Sloane, D.M.; Cimiotti, J.P.; Quinn, L.W.; Aiken, L.H. Changes in patient and nurse outcomes associated with magnet hospital recognition. Med. Care 2015, 53, 550. [Google Scholar] [CrossRef] [Green Version]
- Brady-Schwartz, D.C. Further evidence on the Magnet Recognition program: Implications for nursing leaders. J. Nurs. Adm. 2005, 35, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Hess, R.; DesRoches, C.; Donelan, K.; Norman, L.; Buerhaus, P.I. Perceptions of nurses in magnet® hospitals, non-magnet hospitals, and hospitals pursuing magnet status. J. Nurs. Adm. 2011, 41, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, B.T.; Buerhaus, P.I.; Donelan, K.; Norman, L.; Dittus, R. Magnet status and registered nurse views of the work environment and nursing as a career. J. Nurs. Adm. 2007, 37, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Friese, C.R.; Xia, R.; Ghaferi, A.; Birkmeyer, J.D.; Banerjee, M. Hospitals in ‘Magnet’program show better patient outcomes on mortality measures compared to non-‘Magnet’hospitals. Health Aff. 2015, 34, 986–992. [Google Scholar] [CrossRef] [Green Version]
- Tawfik, D.S.; Scheid, A.; Profit, J.; Shanafelt, T.; Trockel, M.; Adair, K.C.; Sexton, J.B.; Ioannidis, J.P.A. Evidence Relating Health Care Provider Burnout and Quality of Care: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2019, 171, 1539–3704. [Google Scholar] [CrossRef]
- Salyers, M.P.; Bonfils, K.A.; Luther, L.; Firmin, R.L.; White, D.A.; Adams, E.L.; Rollins, A.L. The relationship between professional burnout and quality and safety in healthcare: A meta-analysis. J. Gen. Intern. Med. 2017, 32, 475–482. [Google Scholar] [CrossRef]
- Davenport, D.L.; Henderson, W.G.; Mosca, C.L.; Khuri, S.F.; Mentzer, R.M., Jr. Risk-adjusted morbidity in teaching hospitals correlates with reported levels of communication and collaboration on surgical teams but not with scale measures of teamwork climate, safety climate, or working conditions. J. Am. Coll. Surg. 2007, 205, 778–784. [Google Scholar] [CrossRef]
- Welp, A.; Meier, L.L.; Manser, T. Emotional exhaustion and workload predict clinician-rated and objective patient safety. Front. Psychol. 2015, 5, 1573. [Google Scholar] [CrossRef] [Green Version]
- Schaufeli, W.B.; Keijsers, G.J.; Miranda, D.R. Burnout, technology use, and ICU performance. In Organizational Risk Factors for Job Stress; American Psychological Association: Worcester, MA, USA, 1995. [Google Scholar] [CrossRef]
- Cimiotti, J.P.; Aiken, L.H.; Sloane, D.M.; Wu, E.S. Nurse staffing, burnout, and health care-associated infection. Am. J. Infect. Control 2012, 40, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Sillero-Sillero, A.; Zabalegui, A. Safety and satisfaction of patients with nurse’s care in the perioperative. Revista Latino Americana de Enfermagem 2019, 27. [Google Scholar] [CrossRef]
- Vogus, T.J.; Cooil, B.; Sitterding, M.; Everett, L.Q. Safety organizing, emotional exhaustion, and turnover in hospital nursing units. Med. Care 2014, 52, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, M.S.; Corrigan, J.M.; Kohn, L.T. To Err is Human: Building A Safer Health System; National Academies Press: Washington, DA, USA, 2000; Volume 6. [Google Scholar]
- Dillman, D.A. Mail and Telephone Surveys: The Total Design Method; Wiley: New York, NY, USA, 1978; Volume 1. [Google Scholar]
- Lasater, K.B.; Jarrín, O.F.; Aiken, L.H.; McHugh, M.D.; Sloane, D.M.; Smith, H.L. A methodology for studying organizational performance: A multistate survey of front-line providers. Med. Care 2019, 57, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Lasater, K.B.; Mchugh, M.D. Nurse staffing and the work environment linked to readmissions among older adults following elective total hip and knee replacement. Int. J. Qual. Health Care 2016, 28, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHugh, M.D.; Kelly, L.A.; Smith, H.L.; Wu, E.S.; Vanak, J.M.; Aiken, L.H. Lower mortality in magnet hospitals. J. Nurs. Adm. 2013, 43, S4–S10. [Google Scholar] [CrossRef] [Green Version]
- Ball, J.E.; Bruyneel, L.; Aiken, L.H.; Sermeus, W.; Sloane, D.M.; Rafferty, A.M.; Lindqvist, R.; Tishelman, C.; Griffiths, P.; Consortium, R.C. Post-operative mortality, missed care and nurse staffing in nine countries: A cross-sectional study. Int. J. Nurs. Stud. 2018, 78, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Brooks Carthon, J.M.; Kutney-Lee, A.; Jarrín, O.; Sloane, D.; Aiken, L.H. Nurse staffing and postsurgical outcomes in black adults. J. Am. Geriatr. Soc. 2012, 60, 1078–1084. [Google Scholar] [CrossRef] [Green Version]
- Kutney-Lee, A.; Sloane, D.M.; Aiken, L.H. An increase in the number of nurses with baccalaureate degrees is linked to lower rates of postsurgery mortality. Health Aff. 2013, 32, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Bakker, A.B.; Le Blanc, P.M.; Schaufeli, W.B. Burnout contagion among intensive care nurses. J. Adv. Nurs. 2005, 51, 276–287. [Google Scholar] [CrossRef]
- Schabracq, M.; Winnubst, J.A.; Cooper, C.L. The Handbook of Work and Health Psychology; Wiley Online Library: Hoboken, NJ, USA, 2003. [Google Scholar]
- Shirom, A. Job-Related Burnout: A Review; American Psychological Association: Washington, DC, USA, 2003. [Google Scholar] [CrossRef]
- Dyrbye, L.N.; West, C.P.; Shanafelt, T.D. Defining Burnout as a Dichotomous Variable. J. Gen. Intern. Med. 2009, 24, 440. [Google Scholar] [CrossRef]
- Pedhazur, E.J.; Kerlinger, F.N. Multiple Regression in Behavioral Research: Explanation and Prediction; Holt, Rinehart, and Winston: New York, NY, USA, 1982. [Google Scholar]
- Maslach, C.; Jackson, S.E.; Leiter, M.P. MBI: Maslach Burnout Inventory; CPP, Incorporated: Sunnyvale, CA, USA, 1996. [Google Scholar]
- Aiken, L.H.; Patrician, P.A. Measuring Organizational Traits of Hospitals: The Revised Nursing Work Index. Nurs. Res. 2000, 49, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Lake, E.T. Development of the practice environment scale of the Nursing Work Index. Res. Nurs. Health 2002, 25, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, D.M. Issues of level in organizational research: Multi-level and cross-level perspectives. Res. Organ. Behav. 1985, 7, 1–37. [Google Scholar]
- Verran, J.A.; Gerber, R.M.; Milton, D.A. Data aggregation: Criteria for psychometric evaluation. Res. Nurs. Health 1995, 18, 77–80. [Google Scholar] [CrossRef]
- Brennan, T.A.; Hebert, L.E.; Laird, N.M.; Lawthers, A.; Thorpe, K.E.; Leape, L.L.; Localio, A.R.; Lipsitz, S.R.; Newhouse, J.P.; Weiler, P.C. Hospital characteristics associated with adverse events and substandard care. JAMA 1991, 265, 3265–3269. [Google Scholar] [CrossRef]
- Agency for Healthcare Research and Quality (AHRQ). Patient Safety Indicators Technical Specifications Updates—Version 6.0 (ICD-9), July 2017. Available online: https://www.qualityindicators.ahrq.gov/Archive/PSI_TechSpec_ICD09_v60.aspx (accessed on 29 April 2020).
- Agency for Healthcare Research and Quality (AHRQ). Patient Safety Indicators Technical Specifications Updates—Version v2019 (ICD 10-CM/PCS), July 2019. Available online: https://www.qualityindicators.ahrq.gov/Archive/PSI_TechSpec_ICD10_v2019.aspx (accessed on 15 June 2020).
- Krumholz, H.M.; Brindis, R.G.; Brush, J.E.; Cohen, D.J.; Epstein, A.J.; Furie, K.; Howard, G.; Peterson, E.D.; Rathore, S.S.; Smith, S.C., Jr.; et al. Standards for statistical models used for public reporting of health outcomes: An American Heart Association Scientific Statement from the Quality of Care and Outcomes Research Interdisciplinary Writing Group: Cosponsored by the Council on Epidemiology and Prevention and the Stroke Council: Endorsed by the American College of Cardiology Foundation. Circulation 2006, 113, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Evans, D.; Faris, P.; Dean, S.; Quan, H. Risk adjustment performance of Charlson and Elixhauser comorbidities in ICD-9 and ICD-10 administrative databases. BMC Health Serv. Res. 2008, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.J. The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18 July 1965; University of California Press: Berkley, CA, USA, 1967. [Google Scholar]
- White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 817–838. [Google Scholar] [CrossRef]
- NCSS Statistical Software. PASS 15 Power Analysis and Sample Size Software. Available online: Ncss.com/software/pass (accessed on 15 June 2020).
- Cimiotti, J.P.; Quinlan, P.M.; Larson, E.L.; Pastor, D.K.; Lin, S.X.; Stone, P.W. The magnet process and the perceived work environment of nurses. Nurs. Res. 2005, 54, 384–390. [Google Scholar] [CrossRef]
- Schmalenberg, C.; Kramer, M. Essentials of a productive nurse work environment. Nurs. Res. 2008, 57, 2–13. [Google Scholar] [CrossRef]
- Missios, S.; Bekelis, K. Association of Hospitalization for Neurosurgical Operations in Magnet Hospitals with Mortality and Length of Stay. Neurosurgery 2017, 82, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Bekelis, K.; Missios, S.; MacKenzie, T.A. Association of Magnet status with hospitalization outcomes for ischemic stroke patients. J. Am. Heart Assoc. 2017, 6, e005880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasater, K.B.; Aiken, L.H.; Sloane, D.M.; French, R.; Martin, B.; Reneau, K.; Alexander, M.; McHugh, M.D. Chronic hospital nurse understaffing meets COVID-19: An observational study. BMJ Qual. Saf. 2020. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (IOM). Crossing the Quality Chasm: A New Health System for the 21st Century; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- National Academies of and Medicine (NAM). Taking Action Against Clinician Burnout: A Systems Approach to Professional Well-Being; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Berwick, D.M.; Nolan, T.W.; Whittington, J. The triple aim: Care, health, and cost. Health Aff. 2008, 27, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Bodenheimer, T.; Sinsky, C. From triple to quadruple aim: Care of the patient requires care of the provider. Ann. Fam. Med. 2014, 12, 573–576. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Sewell, K.A.; Woody, G.; Rose, M.A. The state of the science of nurse work environments in the United States: A systematic review. Int. J. Nurs. Sci. 2018, 5, 287–300. [Google Scholar] [CrossRef]
All Hospitals (n = 523) | Quartile 1 (n = 132) | Quartile 2 (n = 130) | Quartile 3 (n = 131) | Quartile 4 (n = 130) | p a | |
---|---|---|---|---|---|---|
Average Nurse Burnout Score, mean (SD) | <0.001 | |||||
21.0 (3.6) | 16.6 (1.9) | 19.8 (0.6) | 21.9 (0.7) | 25.7 (2.1) | ||
Nurse Work Environment, n (%) | <0.001 | |||||
Poor | 131 (25.1) | 7 (5.3) | 14 (10.7) | 39 (29.8) | 71 (54.2) | |
Mixed | 262 (50.1) | 50 (19.1) | 72 (27.5) | 83 (31.7) | 57 (21.8) | |
Good | 130 (24.9) | 75 (57.7) | 44 (33.9) | 9 (6.9) | 2 (1.5) | |
Magnet Status, n (%) | <0.001 | |||||
Magnet | 83 (15.9) | 31 (37.4) | 28 (33.7) | 15 (18.1) | 9 (10.8) | |
Number of Beds, n (%) | 0.021 | |||||
≤100 | 39 (7.5) | 18 (46.2) | 5 (12.8) | 6 (15.4) | 10 (25.6) | |
101–250 | 220 (42.1) | 57 (25.9) | 49 (22.3) | 61 (27.7) | 53 (24.1) | |
>250 | 264 (50.5) | 57 (21.6) | 76 (28.8) | 64 (24.2) | 67 (25.4) | |
Teaching Status, n (%) | 0.046 | |||||
None | 224 (42.8) | 68 (30.4) | 53 (23.7) | 55 (24.6) | 48 (21.4) | |
Minor | 250 (47.8) | 54 (21.6) | 60 (24.0) | 61 (24.4) | 75 (30.0) | |
Major | 49 (9.4) | 10 (20.4) | 17 (34.7) | 15 (30.6) | 7 (14.3) | |
Technology Status, n (%) | 0.596 | |||||
High | 279 (53.4) | 65 (23.3) | 74 (26.5) | 68 (24.4) | 72 (25.8) | |
State, n (%) | 0.092 | |||||
California | 207 (39.6) | 62 (30.0) | 52 (25.1) | 52 (25.1) | 41 (19.8) | |
New Jersey | 57 (10.9) | 15 (26.3) | 19 (33.3) | 13 (22.8) | 10 (17.5) | |
Pennsylvania | 110 (21.0) | 21 (19.1) | 23 (20.9) | 27 (24.6) | 39 (35.5) | |
Florida | 149 (28.5) | 34 (22.8) | 36 (24.2) | 39 (26.2) | 40 (26.9) |
Nurse Demographics | All Nurses (n = 20,406) No. (%) |
---|---|
Age (years), mean (SD) | 48.0 (12.2) |
Sex | |
Female | 18,400 (90.2) |
Male | 1954 (9.6) |
Education | |
Diploma/Associates | 8108 (39.7) |
Baccalaureate | 9852 (48.3) |
Masters/Doctorate | 2376 (11.6) |
Years of Experience, mean (SD) | 20.2 (13.1) |
Position | |
Direct Care Staff | 15,645 (76.7) |
Nurse Manager/Administration | 1643 (8.1) |
Other Nursing Role | 2991 (14.7) |
All Surgical Patients No. (%) | |
---|---|
Patient Demographics | |
Age (years), mean (SD) | 62.0 (16.6) |
Men | 887,507 (45.8) |
Race/Ethnicity | |
White | 1,367,827 (70.5) |
Black/African American | 170,594 (8.8) |
Hispanic | 270,792 (14.0) |
Asian/Pacific Islander | 61,714 (3.2) |
Native American | 3434 (0.2) |
Other | 44,363 (2.3) |
Transfer status | 45,138 (2.3) |
Surgical Group | |
General Surgery | 691,867 (35.7) |
Orthopedic Surgery | 993,636 (51.2) |
Vascular Surgery | 254,375 (13.1) |
Comorbidities | |
Hypertension | 1,099,302 (56.7) |
Obesity | 326,084 (16.8) |
Diabetes without chronic complications | 307,979 (15.9) |
Chronic pulmonary disease | 301,960 (15.6) |
Fluid and electrolyte disorders | 293,505 (15.1) |
Deficiency anemias | 260,988 (13.5) |
Hypothyroidism | 247,901 (12.8) |
Depression | 202,213 (10.4) |
Renal Failure | 179,447 (9.3) |
Diabetes with chronic complications | 130,965 (6.8) |
Peripheral vascular disease | 127,437 (6.6) |
Other neurological disorders | 102,772 (5.3) |
Congestive heart failure | 83,853 (4.3) |
Valvular disease | 72,481 (3.7) |
Liver Disease | 69,653 (3.6) |
Coagulopathy | 68,125 (3.5) |
Weight loss | 61,047 (3.2) |
Rheumatoid arthritis/collagen vas | 59,997 (3.1) |
Alcohol abuse | 59,426 (3.1) |
Psychoses | 57,581 (3.0) |
Metastatic cancer | 45,292 (2.3) |
Drug abuse | 45,302 (2.3) |
Paralysis | 30,630 (1.6) |
Solid tumor without metastasis | 25,703 (1.3) |
Chronic blood loss anemia | 19,499 (1.0) |
Pulmonary circulation disease | 17,892 (0.9) |
Lymphoma | 9211 (0.5) |
Peptic Ulcer Disease with bleeding | 8784 (0.5) |
AIDs | 3174 (0.2) |
Outcomes | |
30-day in-hospital mortality | 15,000 (0.8) |
Failure to rescue | 12,858 (4.2) |
Length of stay (days), mean (SD) | 4.3 (5.3) |
Patient Outcomes | Model 1: Unadjusted | Model 2: Hospital Characteristics | Model 3: Patient Characteristics | Model 4: Work Environment | Model 5: Magnet | Model 6: Magnet & Work Environment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p a | OR (95% CI) | p a | OR (95% CI) | p a | OR (95% CI) | p a | OR (95% CI) | p a | OR (95% CI) | p a | |
30-day in-hospital mortality | ||||||||||||
Burnout | 1.06 (1.02, 1.11) | 0.003 | 1.07 (1.02, 1.11) | 0.004 | 1.05 (1.01, 1.10) | 0.023 | 0.97 (0.92, 1.03) | 0.310 | 1.03 (0.98, 1.07) | 0.242 | 0.97 (0.92, 1.02) | 0.289 |
Work Environment | -- | -- | -- | 0.86 (0.81, 0.92) | <0.001 | -- | 0.89 (0.83, 0.95) | 0.001 | ||||
Magnet | -- | -- | -- | -- | 0.82 (0.75, 0.90) | <0.001 | 0.86 (0.79, 0.94) | 0.001 | ||||
Failure to Rescue | ||||||||||||
Burnout | 1.05 (0.99, 1.10) | 0.086 | 1.06 (1.00, 1.12) | 0.043 | 1.05 (1.00, 1.09) | 0.037 | 0.98 (0.93, 1.04) | 0.510 | 1.03 (0.98, 1.07) | 0.230 | 0.98 (0.93, 1.04) | 0.496 |
Work Environment | -- | -- | -- | 0.88 (0.83, 0.95) | <0.001 | -- | 0.91 (0.85, 0.98) | 0.009 | ||||
Magnet | -- | -- | -- | -- | 0.87 (0.79, 0.95) | 0.003 | 0.90 (0.82, 0.99) | 0.038 | ||||
30-day length of stay (IRR) | ||||||||||||
Burnout | 1.02 (1.00, 1.05) | 0.038 | 1.02 (1.00, 1.04) | 0.043 | 1.02 (1.00, 1.03) | 0.013 | 1.00 (0.98, 1.01) | 0.722 | 1.01 (1.00, 1.03) | 0.030 | 1.00 (0.98, 1.01) | 0.722 |
Work Environment | -- | -- | -- | 0.96 (0.94, 0.99) | 0.003 | -- | 0.96 (0.94, 0.99) | 0.004 | ||||
Magnet | -- | -- | -- | -- | 0.99 (0.95, 1.02) | 0.464 | 1.00 (0.97, 1.04) | 0.927 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlak, A.E.; Aiken, L.H.; Chittams, J.; Poghosyan, L.; McHugh, M. Leveraging the Work Environment to Minimize the Negative Impact of Nurse Burnout on Patient Outcomes. Int. J. Environ. Res. Public Health 2021, 18, 610. https://doi.org/10.3390/ijerph18020610
Schlak AE, Aiken LH, Chittams J, Poghosyan L, McHugh M. Leveraging the Work Environment to Minimize the Negative Impact of Nurse Burnout on Patient Outcomes. International Journal of Environmental Research and Public Health. 2021; 18(2):610. https://doi.org/10.3390/ijerph18020610
Chicago/Turabian StyleSchlak, Amelia E., Linda H. Aiken, Jesse Chittams, Lusine Poghosyan, and Matthew McHugh. 2021. "Leveraging the Work Environment to Minimize the Negative Impact of Nurse Burnout on Patient Outcomes" International Journal of Environmental Research and Public Health 18, no. 2: 610. https://doi.org/10.3390/ijerph18020610
APA StyleSchlak, A. E., Aiken, L. H., Chittams, J., Poghosyan, L., & McHugh, M. (2021). Leveraging the Work Environment to Minimize the Negative Impact of Nurse Burnout on Patient Outcomes. International Journal of Environmental Research and Public Health, 18(2), 610. https://doi.org/10.3390/ijerph18020610