Internet Addiction and Burnout in A Single Hospital: Is There Any Association?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Psychometric Measures
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Previous Diseases and Concomitant Medications
3.3. Internet Use
3.4. Internet Addiction
3.5. Burnout
3.6. Risk Factors of Internet Addiction
3.7. Burnout and Internet Addiction
3.8. Multivariate Analysis
4. Discussion
5. Declarations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, Y.C.; Chiu, Y.C.; Lin, Y.H. Systematic review and meta-analysis of epidemiology of internet addiction. Neurosci. Biobehav. Rev. 2020, 118, 612–622. [Google Scholar] [CrossRef]
- Zsidó, A.N.; Darnai, G.; Inhóf, O.; Perlaki, G.; Orsi, G.; Nagy, S.A.; Lábadi, B.; Lénárd, K.; Kovács, N.; Dóczi, T.; et al. Differentiation between young adult Internet addicts, smokers, and healthy controls by the interaction between impulsivity and temporal lobe thickness. J. Behav. Addict. 2019, 8, 35–47. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Tseng, P.T.; Lin, P.Y.; Chen, T.Y.; Stubbs, B.; Carvalho, A.F.; Wu, C.K.; Chen, Y.W.; Wu, M.K. Internet Addiction and Its Relationship With Suicidal Behaviors: A Meta-Analysis of Multinational Observational Studies. J. Clin. Psychiatry 2018, 79, 17r11761. [Google Scholar] [CrossRef] [PubMed]
- Petruzelka, B.; Vacek, J.; Gavurova, B.; Kubak, M.; Gabrhelik, R.; Rogalewicz, V.; Bartak, M. Interaction of Socioeconomic Status with Risky Internet Use, Gambling and Substance Use in Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 4803. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Li, A.Y. Internet addiction prevalence and quality of (real) life: A meta-analysis of 31 nations across seven world regions. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 755–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, X.; Hong, X.; Chen, X. Profiles and sociodemographic correlates of Internet addiction in early adolescents in southern China. Addict. Behav. 2020, 106, 106385. [Google Scholar] [CrossRef]
- Hinojo-Lucena, F.J.; Aznar-Díaz, I.; Cáceres-Reche, M.P.; Trujillo-Torres, J.M.; Romero-Rodríguez, J.M. Problematic Internet Use as a Predictor of Eating Disorders in Students: A Systematic Review and Meta-Analysis Study. Nutrients 2019, 11, 2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannidis, K.; Hook, R.; Goudriaan, A.E.; Vlies, S.; Fineberg, N.A.; Grant, J.E.; Chamberlain, S.R. Cognitive deficits in problematic internet use: Meta-analysis of 40 studies. Br. J. Psychiatry 2019, 215, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.J.; Kwon, J.H. Risk and protective factors of internet addiction: A meta-analysis of empirical studies in Korea. Yonsei Med. J. 2014, 55, 1691–1711. [Google Scholar] [CrossRef] [Green Version]
- Buneviciene, I.; Bunevicius, A. Prevalence of internet addiction in healthcare professionals: Systematic review and meta-analysis. Int. J. Soc. Psychiatry 2020. [CrossRef]
- Busireddy, K.R.; Miller, J.A.; Ellison, K.; Ren, V.; Qayyum, R.; Panda, M. Efficacy of Interventions to Reduce Resident Physician Burnout: A Systematic Review. J. Grad. Med. Educ. 2017, 9, 294–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvagioni, D.A.J.; Melanda, F.N.; Mesas, A.E.; González, A.D.; Gabani, F.L.; Andrade, S.M.D. Physical, psychological and occupational consequences of job burnout: A systematic review of prospective studies. PLoS ONE 2017, 12, e0185781. [Google Scholar] [CrossRef]
- Molodynski, A.; Lewis, T.; Kadhum, M.; Farrell, S.M.; Lemtiri Chelieh, M.; Falcão De Almeida, T.; Masri, R.; Kar, A.; Volpe, U.; Moir, F.; et al. Cultural variations in wellbeing, burnout and substance use amongst medical students in twelve countries. Int. Rev. Psychiatry 2020, 1–6. [Google Scholar] [CrossRef]
- Salmela-Aro, K.; Upadyaya, K.; Hakkarainen, K.; Lonka, K.; Alho, K. The Dark Side of Internet Use: Two Longitudinal Studies of Excessive Internet Use, Depressive Symptoms, School Burnout and Engagement among Finnish Early and Late Adolescents. J. Youth Adolesc. 2017, 46, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Demetrovics, Z.; Szeredi, B.; Rózsa, S. The three-factor model of Internet addiction: The development of the Problematic Internet Use Questionnaire. Behav. Res. Methods 2008, 40, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Kovács, M.; Makkos, A.; Pintér, D.; Juhász, A.; Darnai, G.; Karádi, K.; Janszky, J.; Kovács, N. Screening for Problematic Internet Use May Help Identify Impulse Control Disorders in Parkinson’s Disease. Behav. Neurol. 2019, 2019, 4925015. [Google Scholar] [CrossRef]
- Maslach, C.; Jackson, S.E. The measurement of experienced burnout. J. Occ. Behav. 1981, 2, 99–113. [Google Scholar] [CrossRef]
- Darnai, G.; Perlaki, G.; Zsidó, A.N.; Inhóf, O.; Orsi, G.; Horváth, R.; Nagy, S.A.; Lábadi, B.; Tényi, D.; Kovács, N.; et al. Internet addiction and functional brain networks: Task-related fMRI study. Sci. Rep. 2019, 9, 15777. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wise, R.A.; Baler, R. The dopamine motive system: Implications for drug and food addiction. Nat. Rev. Neurosci. 2017, 18, 741–752. [Google Scholar] [CrossRef]
- Qin, K.; Zhang, F.; Chen, T.; Li, L.; Li, W.; Suo, X.; Lei, D.; Kemp, G.J.; Gong, Q. Shared gray matter alterations in individuals with diverse behavioral addictions: A voxel-wise meta-analysis. J. Behav. Addict. 2020, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghasi, M.; Matinfar, A.; Golzarand, M.; Salari-Moghaddam, A.; Ebrahimpour-Koujan, S. Internet Use in Relation to Overweight and Obesity: A Systematic Review and Meta-Analysis of Cross-Sectional Studies. Adv. Nutr. 2020, 11, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cao, J.; Li, Y.; Cheng, P.; Liu, B.; Hao, Z.; Yao, H.; Shi, D.; Peng, L.; Guo, L.; et al. Association Between Internet Addiction and the Risk of Musculoskeletal Pain in Chinese College Freshmen - A Cross-Sectional Study. Front. Psychol. 2019, 10, 1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.W.B.; Lim, R.B.C.; Lee, C.; Ho, R.C.M. Prevalence of Internet Addiction in Medical Students: A Meta-analysis. Acad. Psychiatry 2018, 42, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Aboujaoude, E.; Koran, L.M.; Gamel, N.; Large, M.D.; Serpe, R.T. Potential markers for problematic internet use: A telephone survey of 2513 adults. CNS Spectr. 2006, 11, 750–755. [Google Scholar] [CrossRef]
- Tomaszek, K.; Muchacka-Cymerman, A. Sex Differences in the Relationship between Student School Burnout and Problematic Internet Use among Adolescents. Int. J. Environ. Res. Public Health. 2019, 16, 4107. [Google Scholar] [CrossRef] [Green Version]
- Grover, S.; Sahoo, S.; Bhalla, A.; Avasthi, A. Problematic internet use and its correlates among resident doctors of a tertiary care hospital of North India: A cross-sectional study. Asian J. Psychiatry 2019, 39, 42–47. [Google Scholar] [CrossRef]
- Chiu, C.J. Relationship Between Internet Behaviors and Social Engagement in Middle-Aged and Older Adults in Taiwan. Int. J. Environ. Res. Public Health. 2019, 16, 416. [Google Scholar] [CrossRef] [Green Version]
- Avci, D.K.; Sahin, H.A. Relationship Between Burnout Syndrome and Internet Addiction, and the Risk Factors in Healthcare Employees in a University Hospital. Konuralp Tıp Dergisi 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, H.; Choi, J.W.; Kim, S.Y.; Kim, J.W. What Types of Internet Services Make Adolescents Addicted? Correlates of Problematic Internet Use. Neuropsychiatr. Dis. Treat. 2020, 16, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- Chandrima, R.M.; Kircaburun, K.; Kabir, H.; Riaz, B.K.; Kuss, D.J.; Griffiths, M.D.; Mamun, M.A. Adolescent problematic internet use and parental mediation: A Bangladeshi structured interview study. Addict. Behav. Rep. 2020, 12, 100288. [Google Scholar] [CrossRef]
- Tenzin, K.; Dorji, T.; Choeda, T.; Wangdi, P.; Oo, M.M.; Tripathi, J.P.; Tenzin, T.; Tobgay, T. Internet Addiction among Secondary School Adolescents: A Mixed Methods Study. J. Nepal. Med. Assoc. 2019, 57, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Tajirian, T.; Stergiopoulos, V.; Strudwick, G.; Sequeira, L.; Sanches, M.; Kemp, J.; Ramamoorthi, K.; Zhang, T.; Jankowicz, D. The Influence of Electronic Health Record Use on Physician Burnout: Cross-Sectional Survey. J. Med. Internet Res. 2020, 22, e19274. [Google Scholar] [CrossRef]
- Mamun, M.A.; Griffiths, M.D. The assessment of internet addiction in Bangladesh: Why are prevalence rates so different? Asian J. psychiatry 2019, 40, 46–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaibara, A.; Fukuda, M.; Tsumura, H.; Kanda, H. At-risk Internet addiction and related factors among junior high school teachers-based on a nationwide cross-sectional study in Japan. Environ. Health Prev. Med. 2019, 24, 3. [Google Scholar] [CrossRef] [PubMed]
(N = 485) | % |
---|---|
Gender | |
Female | 84.8 |
Male | 15.6 |
Age | |
18–25 years | 7.7 |
26–35 years | 16.2 |
36–45 years | 29.9 |
46–55 years | 30.2 |
56–62 years | 13.7 |
more than 62 years | 2.3 |
Marital status | |
single | 16.7 |
relationship | 21.0 |
married | 47.7 |
divorced/widow | 14.6 |
Number of children | |
have no child | 27.7 |
1 child | 24.8 |
2 children | 34.1 |
more than 3 children | 13.4 |
Type of work | |
medical clerk | 6.8 |
assistant | 25.4 |
nurse | 40.9 |
doctor | 10.1 |
other health care worker | 15.1 |
other | 1.7 |
Years spent with work | |
1–12 months | 5.0 |
1–5 years | 13.6 |
6–10 years | 11.1 |
11–20 years | 20.4 |
21–30 years | 25.8 |
31–40 years | 21.8 |
more than 40 years | 2.3 |
Workflow | |
acute care | 45.9 |
chronic care | 6.1 |
rehabilitation | 8.0 |
outpatient care | 28.5 |
Secondary employment | |
yes | 82.3 |
no | 17.7 |
Not Addicted to Internet (n = 466) | Internet Addiction (n = 19) | |
---|---|---|
Gender | ||
Male | 69 (14.8%) | 5 (26.3%) * |
Female | 397 (85.2%) | 14 (73.7%) |
Age (years) | ||
18–25 years | 29 (6.2%) | 8 (42%) * |
26–35 years | 76 (16.3%) | 3 (15.8%) |
36–45 years | 141 (30.2%) | 4 (21%) |
46–55 years | 144 (30.9%) | 2 (10.5%) |
56–62 years | 64 (13.2%) | 2 (10.5%) |
more than 62 years | 12 (2.6%) | 0 (0.0%) |
Marital status (%) | ||
single | 75 (16.1%) | 6 (31.6%) ** |
relationship | 95 (20.4%) | 7 (36.8%) ** |
married | 227 (48.7%) | 4 (21%) |
divorced / widow | 69 (14.8%) | 2 (10.5%) |
Number of children | ||
have no child | 125 (26.8%) | 9 (47.3%) * |
1 child | 117 (25.1%) | 4 (21%) |
2 children | 163 (35%) | 4 (21%) |
more than 3 children | 63 (13.5%) | 2 (10.5%) |
Type of work | ||
medical clerk | 29 (6.2%) | 4 (21%) ** |
assistant | 121 (26%) | 2 (10.5%) |
nurse | 190 (40.8%) | 8 (42.1%) |
doctor | 49 (10.5%) | 0 (0.0%) |
other healthcare worker | 69 (14.8%) | 4 (21%) |
other | 8 (1.7%) | 1 (5.2%) |
Years spent with work | ||
1–12 months | 22 (4.7%) | 2 (10.5%) |
1–5 years | 59 (12.6%) | 7 (36.8%) * |
6–10 years | 50 (10.7%) | 4 (21%) |
11–20 years | 97 (20.8%) | 2 (010.5%) |
21–30 years | 124 (26.6%) | 1 (5.3%) |
31–40 years | 103 (22.1%) | 3 (15.8%) |
more than 40 years | 11 (2.4%) | 0 (0.0%) |
Workflow | ||
acute care | 216 (46.3%) | 7 (36.8%) |
chronic care | 27 (5.8%) | 3 (15.8%) * |
rehabilitation | 37 (7.9%) | 2 (10.5%) |
outpatient care | 136 (29.2%) | 2 (10.5%) |
healthcare associated work | 50 (10.7%) | 5 (26.3%) |
Not Addicted to Internet (n = 466) | Internet Addiction (n = 19) | |
---|---|---|
Burnout | ||
low | 114 (24.5%) | 3 (15.8%) |
moderate | 330 (70.8%) | 16 (84.2%) |
severe | 22 (4.7) | 0 (0.0%) |
emotional exhaustion | 20.89 ± 9.7 | 22.9 ± 8.05 |
depersonalisation | 9.32 ± 5.08 | 9.89 ± 1.13 |
personal accomplishment | 19.53 ± 7.08 | 19.68 ± 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toth, G.; Kapus, K.; Hesszenberger, D.; Pohl, M.; Kosa, G.; Kiss, J.; Pusch, G.; Fejes, E.; Tibold, A.; Feher, G. Internet Addiction and Burnout in A Single Hospital: Is There Any Association? Int. J. Environ. Res. Public Health 2021, 18, 615. https://doi.org/10.3390/ijerph18020615
Toth G, Kapus K, Hesszenberger D, Pohl M, Kosa G, Kiss J, Pusch G, Fejes E, Tibold A, Feher G. Internet Addiction and Burnout in A Single Hospital: Is There Any Association? International Journal of Environmental Research and Public Health. 2021; 18(2):615. https://doi.org/10.3390/ijerph18020615
Chicago/Turabian StyleToth, Gabor, Krisztian Kapus, David Hesszenberger, Marietta Pohl, Gabor Kosa, Julianna Kiss, Gabriella Pusch, Eva Fejes, Antal Tibold, and Gergely Feher. 2021. "Internet Addiction and Burnout in A Single Hospital: Is There Any Association?" International Journal of Environmental Research and Public Health 18, no. 2: 615. https://doi.org/10.3390/ijerph18020615
APA StyleToth, G., Kapus, K., Hesszenberger, D., Pohl, M., Kosa, G., Kiss, J., Pusch, G., Fejes, E., Tibold, A., & Feher, G. (2021). Internet Addiction and Burnout in A Single Hospital: Is There Any Association? International Journal of Environmental Research and Public Health, 18(2), 615. https://doi.org/10.3390/ijerph18020615