Controlling COVID-19 Outbreaks with Financial Incentives
Abstract
:1. Introduction
2. Mathematical Model and Numerical Solution Algorithm
3. Computational Experiments
3.1. Estimation without Financial Incentives
3.2. Estimation with Financial Incentives
- Step 1.
- Before the implementation of the incentive policy, we first estimate and using the SUC model with the number of confirmed cases up to now. Here, is fixed.
- Step 2.
- Assuming that financial incentives are provided, we compute , and T using the SUC model and the iterative method until . Here, we use the same parameters as those used and obtained in Step 1 except for . Instead of , we use that is greater than 0.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Data
No | Date | Cases | No | Date | Cases | No | Date | Cases | No | Date | Cases |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 25-March | 8910 | 30 | 23-April | 9677 | 59 | 22-May | 9941 | 88 | 20-June | 10,945 |
2 | 26-March | 8957 | 31 | 24-April | 9681 | 60 | 23-May | 9960 | 89 | 21-June | 10,985 |
3 | 27-March | 9023 | 32 | 25-April | 9687 | 61 | 24-May | 9977 | 90 | 22-June | 10,996 |
4 | 28-March | 9115 | 33 | 26-April | 9688 | 62 | 25-May | 9990 | 91 | 23-June | 11,012 |
5 | 29-March | 9171 | 34 | 27-April | 9691 | 63 | 26-May | 10,006 | 92 | 24-June | 11,043 |
6 | 30-March | 9185 | 35 | 28-April | 9693 | 64 | 27-May | 10,043 | 93 | 25-June | 11,066 |
7 | 31-March | 9268 | 36 | 29-April | 9697 | 65 | 28-May | 10,111 | 94 | 26-June | 11,093 |
8 | 01-April | 9327 | 37 | 30-April | 9697 | 66 | 29-May | 10,166 | 95 | 27-June | 11,124 |
9 | 02-April | 9375 | 38 | 01-May | 9698 | 67 | 30-May | 10,193 | 96 | 28-June | 11,164 |
10 | 03-April | 9415 | 39 | 02-May | 9698 | 68 | 31-May | 10,208 | 97 | 29-June | 11,194 |
11 | 04-April | 9392 | 40 | 03-May | 9701 | 69 | 01-June | 10,238 | 98 | 30-June | 11,217 |
12 | 05-April | 9433 | 41 | 04-May | 9701 | 70 | 02-June | 10,274 | 99 | 01-July | 11,252 |
13 | 06-April | 9464 | 42 | 05-May | 9701 | 71 | 03-June | 10,320 | 100 | 02-July | 11,296 |
14 | 07-April | 9494 | 43 | 06-May | 9701 | 72 | 04-June | 10,353 | 101 | 03-July | 11,348 |
15 | 08-April | 9523 | 44 | 07-May | 9702 | 73 | 05-June | 10,387 | 102 | 04-July | 11,384 |
16 | 09-April | 9539 | 45 | 08-May | 9703 | 74 | 06-June | 10,430 | 103 | 05-July | 11,427 |
17 | 10-April | 9561 | 46 | 09-May | 9720 | 75 | 07-June | 10,483 | 104 | 06-July | 11,449 |
18 | 11-April | 9579 | 47 | 10-May | 9746 | 76 | 08-June | 10,516 | 105 | 07-July | 11,469 |
19 | 12-April | 9587 | 48 | 11-May | 9775 | 77 | 09-June | 10,551 | 106 | 08-July | 11,499 |
20 | 13-April | 9596 | 49 | 12-May | 9797 | 78 | 10-June | 10,594 | 107 | 09-July | 11,526 |
21 | 14-April | 9611 | 50 | 13-May | 9819 | 79 | 11-June | 10,634 | 108 | 10-July | 11,548 |
22 | 15-April | 9627 | 51 | 14-May | 9845 | 80 | 12-June | 10,677 | 109 | 11-July | 11,568 |
23 | 16-April | 9638 | 52 | 15-May | 9867 | 81 | 13-June | 10,720 | 110 | 12-July | 11,589 |
24 | 17-April | 9646 | 53 | 16-May | 9876 | 82 | 14-June | 10,751 | 111 | 13-July | 11,608 |
25 | 18-April | 9655 | 54 | 17-May | 9882 | 83 | 15-June | 10,774 | 112 | 14-July | 11,622 |
26 | 19-April | 9658 | 55 | 18-May | 9887 | 84 | 16-June | 10,795 | 113 | 15-July | 11,633 |
27 | 20-April | 9664 | 56 | 19-May | 9896 | 85 | 17-June | 10,826 | 114 | 16-July | 11,647 |
28 | 21-April | 9668 | 57 | 20-May | 9920 | 86 | 18-June | 10,877 | 115 | 17-July | 11,668 |
29 | 22-April | 9673 | 58 | 21-May | 9930 | 87 | 19-June | 10,909 |
Appendix B. MATLAB Code
References
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Younes, A.B.; Hasan, Z. COVID-19: Modeling, prediction, and control. Appl. Sci. 2020, 10, 3666. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Coronavirus Disease 2019 (COVID-19) Situation Report 179, accesed 17 July 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200717-covid-19-sitrep-179.pdf?sfvrsn=2f1599fa_28 (accessed on 6 January 2021).
- Novel Coronavirus (COVID-19) Situation Reports Published by the Korea Disease Control and Prevention Agency (KDCA). Available online: http://www.kdca.go.kr/board/board.es?mid=a20501000000&bid=0015 (accessed on 6 January 2021).
- Khalifa, S.A.; Mohamed, B.S.; Elashal, M.H.; Du, M.; Guo, Z.; Zhao, C.; Musharraf, S.G.; Boskabady, M.H.; El-Seedi, H.H.R.; Efferth, T.; et al. Comprehensive overview on multiple strategies fighting COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 5813. [Google Scholar] [CrossRef] [PubMed]
- Ha, B.T.T.; La Quang, N.; Mirzoev, T.; Tai, N.T.; Thai, P.Q.; Dinh, P.C. Combating the COVID-19 Epidemic: Experiences from Vietnam. Int. J. Environ. Res. Public Health 2020, 17, 3125. [Google Scholar] [CrossRef] [PubMed]
- Pung, R.; Chiew, C.J.; Young, B.E.; Chin, S.; Chen, M.I.; Clapham, H.E.; Cook, A.R.; Maurer-Stroh, S.; Toh, M.P.H.S.; Poh, C.; et al. Investigation of three clusters of COVID-19 in Singapore: Implications for surveillance and response measures. Lancet 2020, 395, 1039–1046. [Google Scholar] [CrossRef]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Guzzetta, G.; Poletti, P.; Ajelli, M.; Trentini, F.; Marziano, V.; Cereda, D.; Tirani, M.; Diurno, G.; Bodina, A.; Barone, A.; et al. Potential short-term outcome of an uncontrolled COVID-19 epidemic in Lombardy, Italy, February to March 2020. Eurosurveillance 2020, 25, 2000293. [Google Scholar] [CrossRef]
- Xie, K.; Liang, B.; Dulebenets, M.A.; Mei, Y. The impact of risk perception on social distancing during the COVID-19 pandemic in China. Int. J. Environ. Res. Public Health 2020, 17, 6256. [Google Scholar]
- Ghinai, I.; McPherson, T.D.; Hunter, J.C.; Kirking, H.L.; Christiansen, D.; Joshi, K.; Rubin, R.; Morales-Estrada, S.; Black, S.R.; Pacilli, M.; et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet 2020, 395, 1137–1144. [Google Scholar] [CrossRef]
- Peeri, N.C.; Shrestha, N.; Rahman, M.S.; Zaki, R.; Tan, Z.; Bibi, S.; Baghbanzadeh, M.; Aghamohammadi, N.; Zhang, W.; Haque, U. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol. 2020, 49, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Day, M. Covid-19: Identifying and isolating asymptomatic people helped eliminate virus in Italian village. BMJ 2020, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjödin, H.; Wilder-Smith, A.; Osman, S.; Farooq, Z.; Rocklöv, J. Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020. Eurosurveillance 2020, 25, 2000280. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Shao, Q.; Li, D.; Sun, M. How the individuals’ risk aversion affect the epidemic spreading. Appl. Math. Comput. 2020, 369, 124894. [Google Scholar] [CrossRef]
- Reuters News. Available online: https://www.reuters.com/article/us-china-health-rewards/china-city-offers-1400-reward-for-virus-patients-who-report-to-authorities-idUSKCN20L0GE (accessed on 6 January 2021).
- Chamie, G.; Ndyabakira, A.; Marson, K.G.; Emperador, D.M.; Kamya, M.R.; Havlir, D.V.; Kwarisiima, D.; Thirumurthy, H. A pilot randomized trial of incentive strategies to promote HIV retesting in rural Uganda. PLoS ONE 2020, 15, e0233600. [Google Scholar] [CrossRef] [PubMed]
- Adamson, B.; El-Sadr, W.; Dimitrov, D.; Gamble, T.; Beauchamp, G.; Carlson, J.J.; Garrison, L.; Donnell, D. The cost-effectiveness of financial incentives for viral suppression: HPTN 065 study. Value Health 2019, 22, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rat-Aspert, O.; Fourichon, C. Modelling collective effectiveness of voluntary vaccination with and without incentives. Prev. Vet. Med. 2010, 93, 265–275. [Google Scholar] [CrossRef]
- Lee, C.; Li, Y.; Kim, J. The susceptible-unidentified infected-confirmed (SUC) epidemic model for estimating unidentified infected population for COVID-19. Chaos Soliton. Fract. 2020, 139, 110090. [Google Scholar] [CrossRef]
- Capasso, V.; Serio, G. A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 1978, 42, 43–61. [Google Scholar] [CrossRef]
- Gray, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J. A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 2011, 71, 876–902. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Liu, J.B.; Li, H. Global dynamics of an SIQR model with vaccination and elimination hybrid strategies. Mathematics 2018, 6, 328. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Khan, Y.; Islam, S. Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment. Physica A 2018, 493, 210–227. [Google Scholar] [CrossRef]
- Wu, M.; Dai, W.; Lu, Z.; Zhao, Y.; Wang, M. The method for risk evaluation in assembly process based on the discrete-time SIRS epidemic model and information entropy. Entropy 2019, 21, 1029. [Google Scholar] [CrossRef] [Green Version]
- Nistal, R.; De la Sen, M.; Alonso-Quesada, S.; Ibeas, A. On a new discrete SEIADR model with mixed controls: Study of its properties. Mathematics 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
p | 7 | 14 | 21 |
---|---|---|---|
C | 11,664 | 11,664 | 11,675 |
U | 75 | 42 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.; Kwak, S.; Kim, J. Controlling COVID-19 Outbreaks with Financial Incentives. Int. J. Environ. Res. Public Health 2021, 18, 724. https://doi.org/10.3390/ijerph18020724
Lee C, Kwak S, Kim J. Controlling COVID-19 Outbreaks with Financial Incentives. International Journal of Environmental Research and Public Health. 2021; 18(2):724. https://doi.org/10.3390/ijerph18020724
Chicago/Turabian StyleLee, Chaeyoung, Soobin Kwak, and Junseok Kim. 2021. "Controlling COVID-19 Outbreaks with Financial Incentives" International Journal of Environmental Research and Public Health 18, no. 2: 724. https://doi.org/10.3390/ijerph18020724
APA StyleLee, C., Kwak, S., & Kim, J. (2021). Controlling COVID-19 Outbreaks with Financial Incentives. International Journal of Environmental Research and Public Health, 18(2), 724. https://doi.org/10.3390/ijerph18020724