Prevalence of Asymptomatic Malaria Infections in Seemingly Healthy Children, the Rural Dzanga Sangha Region, Central African Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Malaria Screening and Blood Sampling Procedures
2.3. Hemoglobin Measurements
2.4. Statistical Methods
2.5. Ethical Approval
3. Results
3.1. Characteristics of the Study Participants
3.2. Prevalence of Asymptomatic Malaria
3.2.1. Bantu Children
3.2.2. Pygmy Children
3.3. Prevalence of Anemia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
CAR | Central African Republic |
mRDT | malaria Rapid Diagnostic Test |
Pf HRP 2 | Plasmodium falciparum Histidine-Rich Protein 2 |
CI | Confidence Interval |
OR | Odds Ratio |
SD | Standard Deviation |
References
- Ryan, E.T.; Hill, D.R.; Solomon, T.; Aronson, N.; Endy, T.P. (Eds.) Hunter’s Tropical Medicine and Emerging Infectious Diseases, 10th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 734–754. [Google Scholar]
- Plewes, K.; Lepold, S.L.; Kingston, H.W.; Dondorp, A.M. Malaria. What’s New in the Management of Malaria? Infect. Dis. Clin. N. Am. 2019, 33, 39–60. [Google Scholar] [CrossRef]
- Brasil, P.; Zalis, M.G.; de Pina-Costa, A.; Siqueira, A.M.; Junior, C.B.; Silva, S.; Areas, A.L.L.; Pelajo-Machado, M.; de Alvarenga, D.A.M.; da Silva Santelli, A.C.F.; et al. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: A molecular epidemiological investigation. Lancet Glob. Health 2017, 5, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Ta, T.H.; Hisam, S.; Lanza, M.; Jiram, A.I.; Ismail, N.; Rubio, J.M. First case of naturally acquired human infection with Plasmodium cynomolgi. Malar. J. 2014, 3, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Douglas, R.G.; Amino, R.; Sinnis, P.; Frischknecht, F. Active migration and passive transport of malaria parasites. Trends Parasitol. 2015, 31, 357–362. [Google Scholar] [CrossRef]
- World Health Organization (WHO). World Malaria Report 2020; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/9789240015791 (accessed on 4 December 2020).
- Chiodini, J. COVID-19 and impact on malaria. Travel Med. Infect. Dis. 2020, 35, 101824. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Recommended Selection Criteria for Procurement of Malaria Rapid Diagnostic Tests. Global Malaria Programme; WHO: Geneva, Switzerland, 2018; Available online: https://www.who.int/malaria/publications/atoz/rdtselection_criteria/en/ (accessed on 10 October 2020).
- Gideon Informatics, Inc. Gideon Infectious Diseases—Malaria; GIDEON: Los Angeles, CA, USA, 2020; Available online: https://web.Gideonline.com/web/epidemiology/# (accessed on 10 October 2020).
- Gresenguet, G.; Moyen, M.; Koffi, B.; Bangamingo, J.P. Policy brief on improving access to artemisinin-based combination therapies for malaria in Central African Republic. Int. J. Technol. Assess. Health Care 2010, 26, 242–245. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Country Profiles—Central African Republic; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/malaria/publications/country-profiles/profile_caf_en.pdf?ua=1 (accessed on 10 October 2020).
- World Health Organization (WHO). Malaria Rapid Diagnostic Test. Performance. Results of WHO Product Testing of Malaria RDTs: Round 8 (2016–2018); WHO: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/bitstream/handle/10665/276190/9789241514965-eng.pdf (accessed on 10 October 2020).
- United Nations Office for the Coordination of Humanitarian Affairs (OCHA). Central African Republic—Situation Report; OCHA: Bangui, Central African Republic, 2020; Available online: https://reports.unocha.org/en/country/car/ (accessed on 24 October 2020).
- Hulland, E.N.; Wiens, K.E.; Shirude, S.; Morgan, J.D.; Bertozzi-Villa, A.; Farag, T.H.; Fullman, N.; Kraemer, M.U.G.; Miller-Petrie, M.K.; Gupta, V.; et al. Travel time to health facilities in areas of outbreak potential: Maps for guiding local preparedness and response. BMC Med. 2019, 17, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outbreaks News Today. Malaria: More than 500K Cases Reported in Chad, Deadliest Disease in Country. Available online: http://outbreaknewstoday.com/malaria-more-than-500k-cases-reported-in-chad-deadliest-disease-in-country-77667/ (accessed on 30 September 2020).
- Orish, V.N.; De-Gaulle, V.F.; Sanyaolu, A.O. Interpreting rapid diagnostic test (RDT) for Plasmodium falciparum. BMC Res. Notes 2018, 11, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerstenlauer, C. Recognition and Management of Malaria. Nurs. Clin. N. Am. 2019, 54, 245–260. [Google Scholar] [CrossRef]
- Lalloo, D.G.; Shingadia, D.; Bell, D.J.; Beeching, N.J.; Whitty, C.J.M.; Chiodini, P.L. PHE Advisory Committee on Malaria Prevention in UK Travellers. UK malaria treatment guidelines 2016. J. Infect. 2016, 72, 635–649. [Google Scholar] [CrossRef]
- Murray, C.K.; Gasser, R.A.; Alan, J.; Magill, J.; Miller, R.S. Update on rapid diagnostic testing for malaria. Clin. Microbiol. Rev. 2008, 21, 97–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severe malaria. Trop. Med. Int. Health 2014, 19, 7–131. [CrossRef]
- McMorrow, M.L.; Masanja, M.I.; Abdulla, S.M.; Kahigwa, E.; Kachur, S.P. Challenges in routine implementation and quality control of rapid diagnostic tests for malaria—Rufiji District, Tanzania. Am. J. Trop. Med. Hyg. 2008, 79, 385–390. Available online: https://pubmed.ncbi.nlm.nih.gov/18784230/ (accessed on 16 January 2021). [CrossRef]
- Maltha, J.; Gillet, P.; Jacobs, J. Malaria rapid diagnostic tests in endemic settings. Clin. Microbiol. Infect. 2013, 19, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Nankabirwa, J.I.; Yeka, A.; Arinaitwe, E.; Kigozi, R.; Drakeley, C.; Kamya, M.R.; Greenhouse, B.; Rosenthal, P.J.; Dorsey, G.; Staedke, S.G. Estimating malaria parasite prevalence from community surveys in Uganda: A comparison of microscopy, rapid diagnostic tests and polymerase chain reaction. Malar. J. 2015, 14, 528. [Google Scholar] [CrossRef] [Green Version]
- Bisoffi, Z.; Gobbi, F.; Buonfrate, D.; van den Jef, E. Diagnosis of malaria infection with or without disease. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012036. [Google Scholar] [CrossRef]
- Azikiwe, C.C.A.; Ifezulike, C.C.; Siminialayi, I.M.; Amazu, L.U.; Enye, J.C.; Nwakwunite, O.E. A comparative laboratory diagnosis of malaria: Microscopy versus rapid diagnostic test kits. Asian Pac. J. Trop. Biomed. 2012, 2, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Zekar, L.; Sharman, T. Plasmodium Falciparum Malaria; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555962/ (accessed on 30 October 2020).
- Teh, R.N.; Sumbele, I.U.N.; Nkeudem, G.A.; Meduke, D.N.; Ojong, S.T.; Kimbi, H.K. Concurrence of CareStartTM Malaria HRP2 RDT with microscopy in population screening for Plasmodium falciparum infection in the Mount Cameroon area: Predictors for RDT positivity. Trop. Med. Health 2019, 47, 17. [Google Scholar] [CrossRef] [PubMed]
- Kimbi, H.K.; Keka, F.C.; Nyabeyeu, H.N.; Ajeagah, H.U.; Tonga, C.F.; Lum, E.; Gah, A.H.; Lehman, L.G. An update of asymptomatic falciparum malaria in school children in Muea southwest Cameroon. J. Bacteriol. Parasitol. 2012, 3, 154. Available online: https://www.longdom.org/open-access/an-update-of-asymptomatic-falciparum-malaria-in-school-children-in-muea-southwest-cameroon-2155-9597.1000154.pdf (accessed on 30 October 2020). [CrossRef] [Green Version]
- Kun, J.F.; Missinou, M.; Lell, B.; Sovric, M.; Knoop, H.; Bojowald, B.; Dangelmaier, O.; Kremsner, P. New emerging Plasmodium falciparum genotypes in children during the transition phase from asymptomatic parasitemia to malaria. Am. J. Trop. Med. Hyg. 2002, 66, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Le Port, A.; Cot, M.; Etard, J.F.; Gaye, O.; Migot-Nabias, F.; Garcia, A. Relation between Plasmodium falciparum asymptomatic infection and malaria attacks in a cohort of Syngalese children. Malaria J. 2008, 7, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henning, L.; Schellenberg, D.; Smith, T.; Alonso, P.; Tanner, M.; Mshinda, H.; Beck, H.-P.; Felger, I. A prospective study of Plasmodium falciparum multiplicity of infection and morbidity in Tanzanian children. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 687–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndamukong-Nyanga, J.; Kimbi, H.; Sumbele, I.; Emmaculate, L.; Nweboh, M.; Nana, Y.; Bertek, S.; Ndamukong, K. Assessing the Performance Characteristics of the “CareStartTM Malaria HRP2 pf (CAT NO: G0141, ACCESSBIO)” Rapid Diagnostic Test for Asymptomatic Malaria in Mutengene, Cameroon. Int. J. Trop. Dis. Health 2014, 4, 1011–1023. [Google Scholar] [CrossRef]
- Maziarz, M.; Nabalende, H.; Otim, I.; Legason, I.D.; Kinyera, T.; Ogwang, M.D.; Talisuna, A.O.; Reynolds, S.J.; Kerchan, P.; Bhatia, K.; et al. A cross-sectional study of asymptomatic Plasmodium falciparum infection burden and risk factors in general population children in 12 villages in northern Uganda. Malar. J. 2018, 17, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor, A.M.; Kirui, V.C.; Brooker, S.J.; Snow, R.W. The use of insecticide treated nets by age: Implications for universal coverage in Africa. BMC Public Health 2009, 9, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, S.E.; Jukes, M.C.H.; Njagi, J.K.; Khasakhala, L.; Cundill, B.; Otido, J.; Crudder, C.; Estambale, B.B.A.; Brooker, S. Effect of intermittent preventive treatment of malaria on health and education in schoolchildren: A cluster-randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Godson, I.I.; Singh, S.; Singh, R.B.; Isyaku, N.T.; Ebere, U.V. High prevalence of asymptomatic malaria in apparently healthy schoolchildren in Aliero, Kebbi state, Nigeria. J. Vector Borne Dis. 2014, 51, 128–132. Available online: https://pubmed.ncbi.nlm.nih.gov/24947220/ (accessed on 16 January 2021).
- Gudo, E.S.; Prista, A.; Jani, I.V. Impact of asymptomatic Plasmodium falciparum parasitemia on the imunohematological indices among school children and adolescents in a rural area highly endemic for malaria in southern Mozambique. BMC Infect. Dis. 2013, 13, 244. [Google Scholar] [CrossRef] [Green Version]
- Orish, V.N.; Aho, K.A.; Ofori-Amoah, J.; Osei-Yeboah, J.; Jamfaru, I.; Afeke, I.; Mac-Ankrah, L.; Adzaku, F. Asymptomatic Plasmodium falciparum infection and poor school performance in primary school children in the Volta Region of Ghana. Ethop. J. Health Sci. 2018, 28, 749–758. [Google Scholar] [CrossRef]
- Ssempiira, J.; Nambuusi, B.; Kissa, J.; Agaba, B.; Makumbi, F.; Kasasa, S.; Vounatsou, P. The contribution of malaria control interventions on spatio-temporal changes of parasitaemia risk in Uganda during 2009–2014. Parasit. Vectors 2017, 10, 450. [Google Scholar] [CrossRef]
- Ssempiira, J.; Nambuusi, B.; Kissa, J.; Agaba, B.; Makumbi, F.; Kasasa, S.; Vounatsou, P. Geostatistical modelling of malaria indicator survey data to assess the effects of interventions on the geographical distribution of malaria prevalence in children less than 5 years in Uganda. PLoS ONE 2017, 12, e0174948. [Google Scholar] [CrossRef] [PubMed]
- Okech, B.; Mujuzi, G.; Ogwal, A.; Shirai, H.; Horii, T.; Egwang, T.G. High titers of igg antibodies against Plasmodium falciparum serine repeat antigen 5 (sera5) are associated with protection against severe malaria in Ugandan children. Am. J. Trop. Med. Hyg. 2006, 74, 191–197. Available online: https://pubmed.ncbi.nlm.nih.gov/16474069/ (accessed on 16 January 2021). [CrossRef] [PubMed]
- Laurent, A.; Schellenberg, J.; Shirima, K.; Ketende, S.C.; Alonso, P.L.; Mshinda, H.; Tanner, M.; Schellenberg, D. Performance of HRP-2 based rapid diagnostic test for malaria and its variation with age in an area of intense malaria transmission in southern Tanzania. Malar. J. 2010, 9, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimbi, H.K.; Sumbele, I.; Nweboh, M.; Anchang-Kimbi, J.K.; Lum, E.; Nana, Y.; Ndip, L.M.; Njom, H.; Lehman, L.G. Malaria and haematologic parameters of pupils at different altitudes along the slope of Mount Cameroon: A cross-sectional study. Malar. J. 2013, 12, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nzobo, B.J.; Ngasala, B.E.; Kihamia, C.M. Prevalence of asymptomatic malaria infection and use of different malaria control measures among primary school children in Morogoro Municipality, Tanzania. Malar. J. 2015, 14, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | mRDT (–) (n = 223) | mRDT (+) (n = 107) | Total (n = 330) | p-Value |
---|---|---|---|---|
Age (years) | 0.3663 1 | |||
Mean (SD) | 9.0 (3.1) | 8.7 (3.2) | 8.9 (3.1) | |
Range | 1.0–15.0 | 1.0–15.0 | 1.0–15.0 | |
Median | 9.0 | 9.0 | 9.0 | |
95% CI | (8.6; 9.4) | (8.1; 9.3) | (8.6; 9.3) | |
Age groups (years) | 0.6217 2 | |||
1–5 | 25 (11.2%) | 14 (13.1%) | 39 (11.8%) | |
6–15 | 198 (88.8%) | 93 (86.9%) | 291 (88.2%) | |
Sex | 0.9316 2 | |||
Female | 101 (45.3%) | 49 (45.8%) | 150 (45.5%) | |
Male | 122 (54.7%) | 58 (54.2%) | 180 (54.5%) | |
Body weight (kg) | 0.2432 1 | |||
Mean (SD) | 23.3 (8.8) | 22.5 (9.4) | 23.0 (9.0) | |
Range | 7.8–59.9 | 9.9–56.9 | 7.8–59.9 | |
Median | 21.3 | 19.9 | 20.9 | |
95% CI | (22.1; 24.4) | (20.6; 24.3) | (22.0; 24.0) | |
Body temperature (°C) | 0.3086 1 | |||
Mean (SD) | 36.8 (0.3) | 36.8 (0.4) | 36.8 (0.3) | |
Range | 36.5–37.5 | 36.2–37.5 | 36.2–37.5 | |
Median | 36.7 | 36.7 | 36.7 | |
95% CI | (36.7; 36.8) | (36.7; 36.9) | (36.7; 36.8) | |
Temperature categories | 0.0551 2 | |||
Correct | 179 (80.3%) | 74 (69.2%) | 253 (76.7 %) | |
Low-grade fever | 44 (19.7%) | 33 (30.8%) | 77 (23.3 %) | |
Fever | 0 (0.0%) | 0 (0.0%) | 0 (0.0 %) |
Variables | mRDT (–) (n = 101) | mRDT (+) (n = 69) | Total (n = 170) | p-Value |
---|---|---|---|---|
Age (years) | 0.0139 1 | |||
Mean (SD) | 7.8 (2.5) | 7.0 (1.5) | 7.5 (2.2) | |
Range | 1.0–15.0 | 3.0–10.0 | 1.0–15.0 | |
Median | 8.0 | 7.0 | 7.0 | |
95% CI | (7.3; 8.3) | (6.7; 7.4) | (7.2; 7.8) | |
Age groups (years) | 0.9545 2 | |||
1–5 | 12 (11.9%) | 8 (11.6%) | 20 (11.8%) | |
6–15 | 89 (88.1%) | 61 (88.4%) | 150 (88.2%) | |
Sex | 0.9692 2 | |||
Female | 48 (47.5%) | 33 (47.8%) | 81 (47.6%) | |
Male | 53 (52.5%) | 36 (52.2%) | 89 (52.4%) | |
Body weight (kg) | 0.0038 1 | |||
Mean (SD) | 18.3 (5.5) | 16.1 (3.2) | 17.4 (4.8) | |
Range | 9.1–37.8 | 10.0–26.3 | 9.1–37.8 | |
Median | 17.3 | 15.5 | 16.3 | |
95% CI | (17.2; 19.4) | (15.3; 16.9) | (16.7; 18.1) | |
Body temperature (°C) | 0.6546 1 | |||
Mean (SD) | 36.8 (0.3) | 36.8 (0.4) | 36.8 (0.4) | |
Range | 36.1–37.5 | 36.3–37.5 | 36.3–37.5 | |
Median | 36.6 | 36.7 | 36.7 | |
95% CI | (36.7; 36.9) | (36.7; 36.9) | (36.8; 36.9) | |
Temperature categories | 0.6300 2 | |||
Correct | 73 (72.3%) | 48 (69.6%) | 121 (71.2%) | |
Low-grade fever | 28 (27.7%) | 21 (30.4%) | 49 (28.8%) | |
Fever | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Regression Analysis | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Sex | ||||
Females | 1.02 (0.64; 1.62) | 0.9316 | ||
Males | 0.98 (0.62; 1.56) | 0.9316 | ||
Age (years) | 0.97 (0.90; 1.04) | 0.3910 | ||
Age categories (years) | ||||
1–5 | 1.19 (0.59; 2.40) | 0.6220 | ||
6–15 | 0.84 (0.42; 1.69) | 0.6220 | ||
Body weight (kg) | 0.99 (0.96; 1.02) | 0.4471 | ||
Hemoglobin level (g/dL) | 0.86 (0.75; 0.99) | 0.0410 | 0.88 (0.76; 1.02) | 0.0805 |
Anemia categories | ||||
Severe | 0.96 (0.35; 2.60) | 0.9354 | ||
Moderate | 1.47 (0.88; 2.45) | 0.1447 | ||
Mild | 0.97 (0.61; 1.55) | 0.9115 | ||
Normal Hb level | 0.61 (0.32; 1.18) | 0.1402 | ||
Body temperature (°C) | 1.42 (0.73; 2.77) | 0.3036 | ||
Body temperature categories | ||||
Correct | 0.55 (0.33; 0.93) | 0.0266 | 0.23 (0.02; 2.59) | 0.2343 |
Low-grade fever | 1.71 (1.00; 2.91) | 0.0496 | 0.38 (0.03; 4.36) | 0.4349 |
Regression Analysis | Univariate | Multivariate | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Sex | ||||
Females | 1.01 (0.55; 1.87) | 0.9692 | ||
Males | 0.99 (0.54; 1.82) | 0.9692 | ||
Age (years) | 0.84 (0.72; 0.98) | 0.0233 | 1.05 (0.81; 1.35) | 0.7363 |
Age categories (years) | ||||
1–5 | 0.97 (0.34; 2.52) | 0.9545 | ||
6–15 | 1.03 (0.40; 2.66) | 0.9545 | ||
Body weight (kg) | 0.89 (0.82; 0.97) | 0.0042 | 0.88 (0.77; 1.00) | 0.0436 |
Hemoglobin level (g/dL) | 0.88 (0.71; 1.08) | 0.2264 | ||
Anemia categories | ||||
Severe | 2.01 (0.71; 5.70) | 0.1867 | ||
Moderate | 0.90 (0.47; 1.72) | 0.7560 | ||
Mild | 1.19 (0.64; 2.20) | 0.5837 | ||
Normal Hb level | 0.38 (0.12; 1.22) | 0.1034 | ||
Body temperature (°C) | 1.08 (0.46; 2.54) | 0.8643 | ||
Body temperature categories | ||||
Correct | 0.88 (0.45; 1.72) | 0.7015 | ||
Low-grade fever | 1.20 (0.61; 2.36) | 0.5987 |
Variables | mRDT (–) (n = 223) | mRDT (+) (n = 107) | Total (n = 330) | p-Value |
---|---|---|---|---|
Hemoglobin level (g/dL) | 0.0399 1 | |||
Mean (SD) | 10.7 (1.7) | 10.3 (1.5) | 10.6 (1.6) | |
Range | 5.1–14.7 | 6.7–13.5 | 5.1–14.7 | |
Median | 10.9 | 10.3 | 10.7 | |
95% CI | (10.5; 10.9) | (10.0; 10.6) | (10.4; 10.8) | |
Anemia categories | 0.3315 2 | |||
Severe | 13 (5.8%) | 6 (5.6%) | 19 (5.8%) | |
Moderate | 52 (23.3%) | 33 (30.8%) | 85 (25.8%) | |
Mild | 114 (51.1%) | 54 (50.5%) | 168 (50.9%) | |
Normal Hb level | 44 (19.7%) | 14 (13.1%) | 58 (17.6%) |
Variables | mRDT (–) (n = 101) | mRDT (+) (n = 69) | Total (n = 170) | p-Value |
---|---|---|---|---|
Hemoglobin level (g/dL) | 0.2269 1 | |||
Mean (SD) | 10.2 (1.5) | 9.9 (1.5) | 10.1 (1.5) | |
Range | 7.1–13.8 | 5.4–12.6 | 5.4–13.8 | |
Median | 10.4 | 10.0 | 10.2 | |
95% CI | (9.9; 10.5) | (9.6; 10.3) | (9.9; 10.3) | |
Anemia categories | 0.2239 2 | |||
Severe | 7 (6.9%) | 9 (13.0%) | 16 (9.4%) | |
Moderate | 36 (35.6%) | 23 (33.3%) | 59 (34.7%) | |
Mild | 44 (43.6%) | 33 (47.8%) | 77 (45.3%) | |
Normal Hb level | 14 (13.9%) | 4 (5.8%) | 18 (10.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzeniewski, K.; Bylicka-Szczepanowska, E.; Lass, A. Prevalence of Asymptomatic Malaria Infections in Seemingly Healthy Children, the Rural Dzanga Sangha Region, Central African Republic. Int. J. Environ. Res. Public Health 2021, 18, 814. https://doi.org/10.3390/ijerph18020814
Korzeniewski K, Bylicka-Szczepanowska E, Lass A. Prevalence of Asymptomatic Malaria Infections in Seemingly Healthy Children, the Rural Dzanga Sangha Region, Central African Republic. International Journal of Environmental Research and Public Health. 2021; 18(2):814. https://doi.org/10.3390/ijerph18020814
Chicago/Turabian StyleKorzeniewski, Krzysztof, Emilia Bylicka-Szczepanowska, and Anna Lass. 2021. "Prevalence of Asymptomatic Malaria Infections in Seemingly Healthy Children, the Rural Dzanga Sangha Region, Central African Republic" International Journal of Environmental Research and Public Health 18, no. 2: 814. https://doi.org/10.3390/ijerph18020814
APA StyleKorzeniewski, K., Bylicka-Szczepanowska, E., & Lass, A. (2021). Prevalence of Asymptomatic Malaria Infections in Seemingly Healthy Children, the Rural Dzanga Sangha Region, Central African Republic. International Journal of Environmental Research and Public Health, 18(2), 814. https://doi.org/10.3390/ijerph18020814