Effects of Fine Particulate Matter and Its Components on Emergency Room Visits for Pediatric Pneumonia: A Time-Stratified Case-Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Population
2.2. Pollutant and Meteorological Data
2.3. Statistics
3. Results
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Bullet Point:
- PM2.5 was significantly associated with pediatric pneumonia.
- ED visits for pediatric pneumonia were more directly related to nitrate and EC.
- Children were more susceptible to nitrate during the warm season.
Abbreviations
AIC | Akaike information criterion |
CI | confidence interval |
EC | elemental carbon |
ED | emergency department |
IL | interleukin |
IQR | interquartile range |
OC | organic carbon |
OR | odds ratio |
PAH | polycyclic aromatic hydrocarbons |
PM | particulate matter |
WBC | white blood cell |
References
- Walker, C.L.F.; Rudan, I.; Liu, L.; Nair, H.; Theodoratou, E.; Bhutta, Z.A.; O’Brien, K.L.; Campbell, H.; Black, R.E. Global burden of childhood pneumonia and diarrhoea. Lancet 2013, 381, 1405–1416. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, X.S.; Zhao, Z.; Chen, Q.; Wu, D.; Sun, X.; Wu, L.; Jin, L. Summer-winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. Ecotoxicol. Environ. Saf. 2018, 165, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.L.; Liu, S.Y.; Chou, C.C.; Lee, Y.H.; Cheng, T.J. The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. PLoS ONE 2017, 12, e0173158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.J.; Lee, K.H.; Lee, C.W.; Hsu, P.C. Association between Particulate Matter Air Pollution and Hospital Emergency Room Visits for Pneumonia with Septicemia: A Retrospective Analysis. Aerosol Air Qual. Res. 2019, 19, 345–354. [Google Scholar] [CrossRef]
- Liu, H.; Tian, Y.; Cao, Y.; Song, J.; Huang, C.; Xiang, X.; Li, M.; Hu, Y. Fine particulate air pollution and hospital admissions and readmissions for acute myocardial infarction in 26 Chinese cities. Chemosphere 2018, 192, 282–288. [Google Scholar] [CrossRef]
- Nhung, N.T.T.; Amini, H.; Schindler, C.; Kutlar Joss, M.; Dien, T.M.; Probst-Hensch, N.; Perez, L.; Kunzli, N. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut. 2017, 230, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.L.; Ebisu, K.; Peng, R.D.; Walker, J.; Samet, J.M.; Zeger, S.L.; Dominici, F. Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2005. Am. J. Epidemiol. 2008, 168, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L.; Ebisu, K.; Peng, R.D.; Dominici, F. Adverse health effects of particulate air pollution: Modification by air conditioning. Epidemiology 2009, 20, 682–686. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-Y.; Kim, H.; Yi, S.-M.; Cheong, J.-P.; Heo, J. Short-term Effects of Ambient PM2.5 and PM2.5–10 on Mortality in Major Cities of Korea. Aerosol Air Qual. Res. 2018, 18, 1853–1862. [Google Scholar] [CrossRef]
- Cheng, M.H.; Chiu, H.F.; Yang, C.Y. Coarse Particulate Air Pollution Associated with Increased Risk of Hospital Admissions for Respiratory Diseases in a Tropical City, Kaohsiung, Taiwan. Int. J. Environ. Res. Public Health 2015, 12, 13053–13068. [Google Scholar] [CrossRef]
- Grivas, G.; Cheristanidis, S.; Chaloulakou, A.; Koutrakis, P.; Mihalopoulos, N. Elemental Composition and Source Apportionment of Fine and Coarse Particles at Traffic and Urban Background Locations in Athens, Greece. Aerosol Air Qual. Res. 2018, 18, 1642–1659. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.L.; Lin, Y.C.; Lin, C.M.; Hsiao, K.Y. Effects of fine particulate matter and its constituents on emergency room visits for asthma in southern Taiwan during 2008–2010: A population-based study. Environ. Sci. Pollut. Res. Int. 2017, 24, 15012–15021. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Yamagami, M.; Ikemori, F.; Hisatsune, K.; Nitta, H. Associations between Fine Particulate Matter Components and Daily Mortality in Nagoya, Japan. J. Epidemiol. 2016, 26, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Q.; Liu, Y.; Mulholland, J.A.; Russell, A.G.; Darrow, L.A.; Tolbert, P.E.; Strickland, M.J. Pediatric emergency department visits and ambient Air pollution in the U.S. State of Georgia: A case-crossover study. Environ. Health 2016, 15, 115. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Wang, X.; Pang, N.; Wang, L.; Wang, Y.; Xu, T.; Zhang, Y.; Zhou, T.; Li, W. The impact of airborne particulate matter on pediatric hospital admissions for pneumonia among children in Jinan, China: A case-crossover study. J. Air Waste Manag. Assoc. 2017, 67, 669–676. [Google Scholar] [CrossRef]
- Huang, C.H.; Lin, H.C.; Tsai, C.D.; Huang, H.K.; Lian, I.B.; Chang, C.C. The Interaction Effects of Meteorological Factors and Air Pollution on the Development of Acute Coronary Syndrome. Sci. Rep. 2017, 7, 44004. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.N.; Cheng, F.J.; Tsai, M.T.; Tsai, C.M.; Chuang, P.C.; Cheng, C.Y. Fine particulate matter constituents associated with emergency room visits for pediatric asthma: A time-stratified case-crossover study in an urban area. BMC Public Health 2021, 21, 1593. [Google Scholar] [CrossRef]
- Peng, R.D.; Bell, M.L.; Geyh, A.S.; McDermott, A.; Zeger, S.L.; Samet, J.M.; Dominici, F. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ. Health Perspect. 2009, 117, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Levy, D.; Sheppard, L.; Checkoway, H.; Kaufman, J.; Lumley, T.; Koenig, J.; Siscovick, D. A case-crossover analysis of particulate matter air pollution and out-of-hospital primary cardiac arrest. Epidemiology 2001, 12, 193–199. [Google Scholar] [CrossRef]
- Cheng, F.J.; Wu, K.H.; Hung, S.C.; Lee, K.H.; Lee, C.W.; Liu, K.Y.; Hsu, P.C. Association between ambient air pollution and out-of-hospital cardiac arrest: Are there potentially susceptible groups? J. Expo. Sci. Environ. Epidemiol. 2020, 30, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.D.; Dominici, F.; Pastor-Barriuso, R.; Zeger, S.L.; Samet, J.M. Seasonal analyses of air pollution and mortality in 100 US cities. Am. J. Epidemiol. 2005, 161, 585–594. [Google Scholar] [CrossRef]
- DeVries, R.; Kriebel, D.; Sama, S. Low level air pollution and exacerbation of existing copd: A case crossover analysis. Environ. Health 2016, 15, 98. [Google Scholar] [CrossRef] [Green Version]
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef]
- Bañeras, J.; Ferreira-González, I.; Marsal, J.R.; Barrabés, J.A.; Ribera, A.; Lidón, R.M.; Domingo, E.; Martí, G.; García-Dorado, D. Short-term exposure to air pollutants increases the risk of ST elevation myocardial infarction and of infarct-related ventricular arrhythmias and mortality. Int. J. Cardiol. 2018, 250, 35–42. [Google Scholar] [CrossRef]
- Malig, B.J.; Green, S.; Basu, R.; Broadwin, R. Coarse particles and respiratory emergency department visits in California. Am. J. Epidemiol. 2013, 178, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strickland, M.J.; Hao, H.; Hu, X.; Chang, H.H.; Darrow, L.A.; Liu, Y. Pediatric Emergency Visits and Short-Term Changes in PM2.5 Concentrations in the U.S. State of Georgia. Environ. Health Perspect. 2016, 124, 690–696. [Google Scholar] [PubMed] [Green Version]
- Chen, S.Y.; Lin, Y.L.; Chang, W.T.; Lee, C.T.; Chan, C.C. Increasing emergency room visits for stroke by elevated levels of fine particulate constituents. Sci. Total Environ. 2014, 473–474, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Mathes, R.; Ross, Z.; Nadas, A.; Thurston, G.; Matte, T. Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environ. Health Perspect. 2011, 119, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Sarnat, S.E.; Winquist, A.; Schauer, J.J.; Turner, J.R.; Sarnat, J.A. Fine particulate matter components and emergency department visits for cardiovascular and respiratory diseases in the St. Louis, Missouri-Illinois, metropolitan area. Environ. Health Perspect. 2015, 123, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Darrow, L.A.; Klein, M.; Flanders, W.D.; Mulholland, J.A.; Tolbert, P.E.; Strickland, M.J. Air pollution and acute respiratory infections among children 0–4 years of age: An 18-year time-series study. Am. J. Epidemiol. 2014, 180, 968–977. [Google Scholar]
- Kumar, P.; Kumar, S.; Yadav, S. Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi. Environ. Sci. Pollut. Res. Int. 2018, 25, 6061–6078. [Google Scholar] [CrossRef] [PubMed]
- Pardo, M.; Shafer, M.M.; Rudich, A.; Schauer, J.J.; Rudich, Y. Single Exposure to near Roadway Particulate Matter Leads to Confined Inflammatory and Defense Responses: Possible Role of Metals. Environ. Sci. Technol. 2015, 49, 8777–8785. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, I.W.; Bergvall, C.; Bottai, M.; Westerholm, R.; Stenius, U.; Dreij, K. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter. Toxicol. Appl. Pharmacol. 2013, 266, 408–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.H.; Hwang, S.A.; Kinney, P.L.; Lin, S. Seasonal and temperature modifications of the association between fine particulate air pollution and cardiovascular hospitalization in New York state. Sci. Total Environ. 2017, 578, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-Y.; Cheng, S.-Y.; Chen, C.-C.; Pan, H.-Y.; Wu, K.-H.; Cheng, F.-J. Ambient air pollution is associated with pediatric pneumonia: A time-stratified case–crossover study in an urban area. Environ. Health 2019, 18, 77. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, M., Jr.; London, N.R., Jr.; Tharakan, A.; Surya, N.; Sussan, T.E.; Rao, X.; Biswal, S. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice. Am. J. Respir. Cell Mol. Biol. 2017, 57, 59–65. [Google Scholar] [CrossRef]
- Miyata, R.; van Eeden, S.F. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol. Appl. Pharmacol. 2011, 257, 209–226. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Kashani, H.; Faridi, S.; Kunzli, N.; Nabizadeh, R.; Momeniha, F.; Gholampour, A.; Arhami, M.; Zare, A.; et al. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environ. Pollut. 2017, 223, 695–704. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, B.; Zhu, X.; Wang, A.; Yang, M.; Gu, S.; Wang, X.; Leng, P.; Zierold, K.M.; Li, X.; et al. Seasonal Variations, Source Apportionment, and Health Risk Assessment of Heavy Metals in PM2.5 in Ningbo, China. Aerosol Air Qual. Res. 2019, 19, 2083–2092. [Google Scholar] [CrossRef]
- Pan, H.-Y.; Cheung, S.-M.; Chen, F.-C.; Wu, K.-H.; Cheng, S.-Y.; Chuang, P.-C.; Cheng, F.-J. Short-Term Effects of Ambient Air Pollution on ST-Elevation Myocardial Infarction Events: Are There Potentially Susceptible Groups? Int. J. Environ. Res. Public Health 2019, 16, 3760. [Google Scholar] [CrossRef] [Green Version]
All | Number = 1737 | % |
---|---|---|
Demographic characteristics of patients | ||
Age (mean ± standard deviation) | 5.1 ± 3.6 | |
Male sex | 921 | 53.0 |
Respiratory disease | 47 | 0.3 |
Cerebral palsy | 48 | 0.3 |
Epilepsy | 34 | 0.2 |
Warm season | 867 | 49.9 |
Warm days (≥26.5 °C) | 801 | 46.1 |
Minimum | Percentiles | Maximum | Mean | IQR | |||
---|---|---|---|---|---|---|---|
25% | 50% | 75% | |||||
PM2.5 (µg/m3) | 6.9 | 18.9 | 31.6 | 43.0 | 119.5 | 32.7 | 24.1 |
PM10 (µg/m3) | 10.7 | 29.7 | 46.6 | 66.9 | 449.5 | 50.3 | 37.2 |
Nitrate (µg/m3) | 0.3 | 1.4 | 3.9 | 6.6 | 20.7 | 4.4 | 5.2 |
Sulfate (µg/m3) | 1.1 | 5.6 | 9.1 | 12.5 | 33.7 | 9.4 | 6.9 |
Organic carbon (µg/m3) | 1.4 | 5.4 | 7.5 | 10.6 | 27.8 | 8.2 | 5.2 |
Elemental carbon (µg/m3) | 0.5 | 1.5 | 2.0 | 2.6 | 16.5 | 2.1 | 1.1 |
Temperature (°C) | 13.4 | 22.6 | 26.5 | 28.8 | 31.6 | 25.5 | 6.2 |
Humidity (%) | 44.0 | 69.0 | 73.4 | 77.3 | 95.3 | 73.2 | 8.3 |
PM10 | PM2.5 | Nitrate | Sulfate | Organic Carbon | Elemental Carbon | Temperature (°C) | Humidity (%) | |
---|---|---|---|---|---|---|---|---|
PM10 | 0.909 | 0.669 | 0.774 | 0.731 | 0.568 | −0.493 | −0.410 | |
PM2.5 | 0.793 | 0.908 | 0.822 | 0.669 | −0.504 | −0.406 | ||
Nitrate | 0.680 | 0.833 | 0.643 | −0.580 | −0.269 | |||
Sulfate | 0.673 | 0.592 | −0.403 | −0.359 | ||||
Organic carbon | 0.732 | −0.536 | −0.377 | |||||
Elemental carbon | −0.376 | −0.277 | ||||||
Temperature (°C) | 0.315 | |||||||
Humidity (%) |
Adjusted for PM2.5 | Adjusted for PM10 | Adjusted for Nitrate | Adjusted for Organic Carbon | Adjusted for Elemental Carbon | |
---|---|---|---|---|---|
PM2.5 | 1.160 (1.011–1.331) | 1.063 (0.951–1.189) | 1.168 (1.050–1.300) | 1.124 (1.024–1.233) | |
PM10 | 1.019 (0.903–1.150) | 1.051 (0.966–1.144) | 1.102 (1.012–1.199) | 1.084 (1.002–1.173) | |
Nitrate | 1.230 (1.064–1.442) | 1.250 (1.104–1.416) | 1.299 (1.136–1.485) | 1.231 (1.095–1.384) | |
Organic carbon | 1.024 (0.889–1.181) | 1.081 (0.951–1.229) | 0.997 (0.870–1.143) | 1.028 (0.887–1.192) | |
Elemental carbon | 1.091 (1.014–1.175) | 1.108 (1.030–1.193) | 1.083 (1.010–1.162) | 1.130 (1.029–1.242) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-T.; Ho, Y.-N.; Chiang, C.-Y.; Chuang, P.-C.; Pan, H.-Y.; Chiu, I.-M.; Tsai, C.-M.; Cheng, F.-J. Effects of Fine Particulate Matter and Its Components on Emergency Room Visits for Pediatric Pneumonia: A Time-Stratified Case-Crossover Study. Int. J. Environ. Res. Public Health 2021, 18, 10599. https://doi.org/10.3390/ijerph182010599
Tsai M-T, Ho Y-N, Chiang C-Y, Chuang P-C, Pan H-Y, Chiu I-M, Tsai C-M, Cheng F-J. Effects of Fine Particulate Matter and Its Components on Emergency Room Visits for Pediatric Pneumonia: A Time-Stratified Case-Crossover Study. International Journal of Environmental Research and Public Health. 2021; 18(20):10599. https://doi.org/10.3390/ijerph182010599
Chicago/Turabian StyleTsai, Ming-Ta, Yu-Ni Ho, Charng-Yen Chiang, Po-Chun Chuang, Hsiu-Yung Pan, I-Min Chiu, Chih-Min Tsai, and Fu-Jen Cheng. 2021. "Effects of Fine Particulate Matter and Its Components on Emergency Room Visits for Pediatric Pneumonia: A Time-Stratified Case-Crossover Study" International Journal of Environmental Research and Public Health 18, no. 20: 10599. https://doi.org/10.3390/ijerph182010599
APA StyleTsai, M. -T., Ho, Y. -N., Chiang, C. -Y., Chuang, P. -C., Pan, H. -Y., Chiu, I. -M., Tsai, C. -M., & Cheng, F. -J. (2021). Effects of Fine Particulate Matter and Its Components on Emergency Room Visits for Pediatric Pneumonia: A Time-Stratified Case-Crossover Study. International Journal of Environmental Research and Public Health, 18(20), 10599. https://doi.org/10.3390/ijerph182010599