Risk Factors for Positivity to Shiga Toxin-Producing Escherichia coli and Salmonella enterica in Backyard Production Systems Animals from Metropolitana Region, Chile: A Threat to Public Health?
Abstract
:1. Introduction
1.1. Backyard Production Systems
1.2. Shiga Toxin-Producing E. coli and Salmonella enterica
1.3. Chilean Situation
2. Materials and Methods
2.1. Study Design and Sample Unit Determination
2.2. Epidemiological Data Collection
2.3. STEC and S. enterica Positivity Establishment
2.4. Risk Factor Determination
3. Results
3.1. Characterization of the Sampled BPS
3.2. Positivity to STEC and S. enterica
3.3. Risk Factors for STEC Positivity
3.4. Risk Factors for S. enterica Positivity
3.5. Risk Factors for STEC and S. enterica Positivity
4. Discussion
4.1. Economic Perspective of BPS in the Chilean Context
4.2. BPS Management Characterization
4.3. STEC and S. enterica Positivity in BPS
4.4. Risk Factors Associated with STEC and S. enterica Presentation in BPS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity measures for backyard poultry in developing countries: A systematic review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- FAO. Integrated Backyard Systems; FAO Animal Production and Health Paper; FAO: Rome, Italy, 2000. [Google Scholar]
- FAO. Biosecurity for Highly Pathogenic Avian Influenza; FAO Animal Production and Health Paper; FAO: Rome, Italy, 2008; p. 81. [Google Scholar]
- Manning, J.; Gole, V.; Chousalkar, K. Screening for Salmonella in backyard chickens. Prev. Vet. Med. 2015, 120, 241–245. [Google Scholar] [CrossRef]
- Behravesh, C.B.; Brinson, D.; Hopkins, B.A.; Gomez, T.M. Backyard Poultry Flocks and Salmonellosis: A Recurring, Yet Preventable Public Health Challenge. Clin. Infect. Dis. 2014, 58, 1432–1438. [Google Scholar] [CrossRef] [Green Version]
- Alegria-Moran, R.; Rivera, D.; Toledo, V.; Moreno-Switt, A.I.; Hamilton-West, C. First detection and characterization of Salmonella spp. in poultry and swine raised in backyard production systems in central Chile. Epidemiol. Infect. 2017, 145, 3180–3190. [Google Scholar] [CrossRef] [Green Version]
- Di Pillo, F.; Anríquez, G.; Alarcón, P.; Jimenez-Bluhm, P.; Galdames, P.; Nieto, V.; Schultz-Cherry, S.; Hamilton-West, C. Backyard poultry production in Chile: Animal health management and contribution to food access in an upper middle-income country. Prev. Vet. Med. 2019, 164, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Dahiya, S.P.; Ratwan, P. Backyard poultry farming in India: A tool for nutritional security and women empowerment. Biol. Rhythm Res. 2021, 52, 1476–1491. [Google Scholar] [CrossRef]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Correia-Gomes, C.; Sparks, N. Exploring the attitudes of backyard poultry keepers to health and biosecurity. Prev. Vet. Med. 2020, 174, 104812. [Google Scholar] [CrossRef]
- Bravo-Vasquez, N.; Di Pillo, F.; Lazo, A.; Jiménez-Bluhm, P.; Schultz-Cherry, S.; Hamilton-West, C. Presence of influenza viruses in backyard poultry and swine in El Yali wetland, Chile. Prev. Vet. Med. 2016, 134, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Neira, V.; Brito, B.; Mena, J.; Culhane, M.; Apel, M.I.; Max, V.; Perez, P.; Moreno, V.; Mathieu, C.; Johow, M.; et al. Epidemiological investigations of the introduction of porcine reproductive and respiratory syndrome virus in Chile, 2013–2015. PLoS ONE 2017, 12, e0181569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo-Vasquez, N.; Baumberger, C.; Jimenez-Bluhm, P.; Di Pillo, F.; Lazo, A.; Sanhueza, J.; Schultz-Cherry, S.; Hamilton-West, C. Risk factors and spatial relative risk assessment for influenza A virus in poultry and swine in backyard production systems of central Chile. Vet. Med. Sci. 2020, 6, 518–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanlon, K.E.; Miller, M.F.; Guillen, L.M.; Echeverry, A.; Dormedy, E.; Cemo, B.; Branham, L.A.; Sanders, S.; Brashears, M.M. Presence of Salmonella and Escherichia coli O157 on the hide, and presence of Salmonella, Escherichia coli O157 and Campylobacter in feces from small-ruminant (goat and lamb) samples collected in the United States, Bahamas and Mexico. Meat Sci. 2018, 135, 1–5. [Google Scholar] [CrossRef]
- Pires, S.M.; Desta, B.N.; Mughini-Gras, L.; Mmbaga, B.T.; Fayemi, O.E.; Salvador, E.M.; Gobena, T.; Majowicz, S.E.; Hald, T.; Hoejskov, P.S.; et al. Burden of foodborne diseases: Think global, act local. Curr. Opin. Food Sci. 2021, 39, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoon, Y. Etiological Agents Implicated in Foodborne Illness World Wide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on Major Food-Borne Zoonotic Bacterial Pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global Incidence of Human Shiga Toxin–Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Stanaway, J.D.; Parisi, A.; Sarkar, K.; Blacker, B.F.; Reiner, R.C.; Hay, S.I.; Nixon, M.R.; Dolecek, C.; James, S.L.; Mokdad, A.H.; et al. The global burden of non-typhoidal salmonella invasive disease: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Allocati, N.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Escherichia coli in Europe: An Overview. Int. J. Environ. Res. Public Health 2013, 10, 6235–6254. [Google Scholar] [CrossRef]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [Green Version]
- Clements, A.; Young, J.C.; Constantinou, N.; Frankel, G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 2012, 3, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Osman, K.M.; Hessain, A.M.; Abo-shama, U.H.; Girh, Z.M.; Kabli, S.A.; Hemeg, H.A.; Moussa, I.M. An alternative approach for evaluating the phenotypic virulence factors of pathogenic Escherichia coli. Saudi J. Biol. Sci. 2018, 25, 195–197. [Google Scholar] [CrossRef]
- Baranzoni, G.M.; Fratamico, P.M.; Gangiredla, J.; Patel, I.; Bagi, L.K.; Delannoy, S.; Fach, P.; Boccia, F.; Anastasio, A.; Pepe, T. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli. Front. Microbiol. 2016, 7, 574. [Google Scholar] [CrossRef] [Green Version]
- Issenhuth-Jeanjean, S.; Roggentin, P.; Mikoleit, M.; Guibourdenche, M.; de Pinna, E.; Nair, S.; Fields, P.I.; Weill, F.-X. Supplement 2008–2010 (no. 48) to the White–Kauffmann–Le Minor scheme. Res. Microbiol. 2014, 165, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Rivas, M.; Chinen, I.; Miliwebsky, E.; Masana, M. Risk Factors for Shiga Toxin-Producing Escherichia coli-Associated Human Diseases. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Crump John, A.; Sjölund-Karlsson, M.; Gordon Melita, A.; Parry Christopher, M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graziani, C.; Losasso, C.; Luzzi, I.; Ricci, A.; Scavia, G.; Pasquali, P. Chapter 5—Salmonella. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 133–169. [Google Scholar] [CrossRef]
- Bryan, A.; Youngster, I.; McAdam, A.J. Shiga Toxin Producing Escherichia coli. Clin. Lab. Med. 2015, 35, 247–272. [Google Scholar] [CrossRef] [PubMed]
- Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Gyles, C.L. Shiga toxin-producing Escherichia coli: An overview1. J. Anim. Sci. 2007, 85, E45–E62. [Google Scholar] [CrossRef]
- Marier, E.A.; Snow, L.C.; Floyd, T.; McLaren, I.M.; Bianchini, J.; Cook, A.J.C.; Davies, R.H. Abattoir based survey of Salmonella in finishing pigs in the United Kingdom 2006–2007. Prev. Vet. Med. 2014, 117, 542–553. [Google Scholar] [CrossRef]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, M.; Castillo-Ruiz, M.; Retamal, P. Salmonella enterica: Una revisión de la trilogía agente, hospedero y ambiente, y su trascendencia en Chile. Rev. Chil. Infectol. 2016, 33, 547–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, M.C.; Retamal, P.; Rojas-Aedo, J.F.; Fernández, J.; Fernández, A.; Lapierre, L. Multidrug-Resistant Outbreak-Associated Salmonella Strains in Irrigation Water from the Metropolitan Region, Chile. Zoonoses Public Health 2017, 64, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Persad Anil, K.; LeJeune Jefrey, T. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef]
- Frozi, J.B.; Domingues, J.R.; Ramires, L.M.; Corrêa da Rosa, J.M.; Sant’Anna da Costa Silva, A.L.; Martins, A.G. Survival of Shiga toxin-producing Escherichia coli O157:H7 in Minas frescal cheese. Food Sci. Technol. 2015, 35, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.R.A.; Silva, T.d.S.; Stella, A.E.; Conceição, F.R.; Reis, E.F.d.; Moreira, C.N. Detection of virulence factors and antimicrobial resistance patterns in shiga toxin-producing Escherichia coli isolates from sheep. Pesqui. Veterinária Bras. 2015, 35, 775–780. [Google Scholar] [CrossRef]
- Sanches, L.A.; da Silva Gomes, M.; Teixeira, R.H.F.; Cunha, M.P.V.; de Oliveira, M.G.X.; Vieira, M.A.M.; Gomes, T.A.T.; Knobl, T. Captive wild birds as reservoirs of enteropathogenic E. coli (EPEC) and Shiga-toxin producing E. coli (STEC). Braz. J. Microbiol. 2017, 48, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Luis, L.E.; Maturrano, L.; Hermelinda, R.G.; Víctor, Z.H.; Rosadio, R. Genotipificación, evaluación toxigénica in vitro y sensibilidad a antibióticos de cepas de Escherichia coli aisladas de casos diarreicos y fatales en alpacas neonatas. Braz. J. Microbiol. 2012, 23, 9. [Google Scholar] [CrossRef] [Green Version]
- Blanco Crivelli, X.; Bonino, M.P.; Von Wernich Castillo, P.; Navarro, A.; Degregorio, O.; Bentancor, A. Detection and Characterization of Enteropathogenic and Shiga Toxin-Producing Escherichia coli Strains in Rattus spp. from Buenos Aires. Front. Microbiol. 2018, 9, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leotta, G.; Suzuki, K.; Alvarez, F.; Nunez, L.; Silva, M.; Castro, L.; Faccioli, M.; Zarate, N.; Weiler, N.; Alvarez, M. Prevalence of Salmonella spp. in backyard chickens in Paraguay. Int. J. Poult. Sci. 2010, 9, 533–536. [Google Scholar] [CrossRef] [Green Version]
- Xavier, J.; Pascal, D.; Crespo, E.; Schell, H.L.; Trinidad, J.A.; Bueno, D.J. Seroprevalence of Salmonella and Mycoplasma infection in backyard chickens in the state of Entre Ríos in Argentina. Poult. Sci. 2011, 90, 746–751. [Google Scholar] [CrossRef]
- Alves Ferreira, M.R.; Freitas Filho, E.G.; Naves Pinto, J.F.; Dias, M.; Nunes Moreira, C.N. Isolation, prevalence, and risk factors for infection by shiga toxin-producing Escherichia coli (STEC) in dairy cattle. Trop. Anim. Health Prod. 2014, 46, 635–639. [Google Scholar] [CrossRef]
- Vidal, M.; Escobar, P.; Prado, V.; Hormazabal, J.C.; Vidal, R. Distribution of putative adhesins in Shiga toxin-producing Escherichia coli (STEC) strains isolated from different sources in Chile. Epidemiol. Infect. 2007, 135, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Gómez Vega, E. Identificación de Cepas de Salmonella spp. Resistentes a Antimicrobianos, y Factores de Riesgo para su Circulación, en Aves y Cerdos Mantenidos En Sistemas Productivos de Traspatio de la Región del Libertador General Bernardo O’Higgings, Chile. Master’s Thesis, Magister en Ciencias Animales y Veterinarias, Mención Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile, 2014. [Google Scholar]
- Salas Soto, R.A. Salmonella spp, Resistencia a Antimicrobianos y Caracterización de Medidas de Bioseguridad en Sistemas Productivos de Traspatio Vecinos a La Reserva Nacional El Yali. Master’s Thesis, Magister en Ciencias Animales y Veterinarias, Mención Medicina Preventiva Animal, Universidad de Chile, Santiago, Chile, 2016. [Google Scholar]
- Galarce, N.; Sánchez, F.; Fuenzalida, V.; Ramos, R.; Escobar, B.; Lapierre, L.; Paredes-Osses, E.; Arriagada, G.; Alegría-Morán, R.; Lincopán, N.; et al. Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Cattle and Swine in Chile. Front. Vet. Sci. 2020, 7, 367. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, R.; Martin, W.; Stryhn, H. Methods in Epidemiologic Research, 1st ed.; VER Inc.: Charlottetown, PE, Canada, 2012; p. 890. [Google Scholar]
- I.N.E. National Agricultural Census; INE: Santiago, Chile, 2007. [Google Scholar]
- Cebula, T.A.; Payne, W.L.; Feng, P. Simultaneous identification of strains of Escherichia coli serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J. Clin. Microbiol. 1995, 33, 248–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malorny, B.; Hoorfar, J.; Bunge, C.; Helmuth, R. Multicenter Validation of the Analytical Accuracy of Salmonella PCR: Towards an International Standard. Appl. Environ. Microbiol. 2003, 69, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Dohoo, R.; Martin, W.; Stryhn, H. Veterinary Epidemiologic Research, 2nd ed.; VER Inc.: Charlottetown, PE, Canada, 2009; p. 865. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S.; Rodney, S. Applied Logistic Regression, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Mehta, C.R.; Patel, N.R. Exact logistic regression: Theory and examples. Stat. Med. 1995, 14, 2143–2160. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W.; Hosmer, T.; Le Cessie, S.; Lemeshow, S. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 1997, 16, 965–980. [Google Scholar] [CrossRef]
- Pavoine, S.; Ricotta, C. A simple translation from indices of species diversity to indices of phylogenetic diversity. Ecol. Indic. 2019, 101, 552–561. [Google Scholar] [CrossRef]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- RStudio_Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2021. [Google Scholar]
- Pires, A.F.A.; Peterson, A.; Baron, J.N.; Adams, R.; Martínez-López, B.; Moore, D. Small-scale and backyard livestock owners needs assessment in the western United States. PLoS ONE 2019, 14, e0212372. [Google Scholar] [CrossRef]
- Habiyaremye, N.; Ochieng, J.; Heckelei, T. Economic analysis of integrated vegetable–poultry production systems in the Babati District of Tanzania. Agric. Food Secur. 2021, 10, 1. [Google Scholar] [CrossRef]
- Pollock, S.L.; Stephen, C.; Skuridina, N.; Kosatsky, T. Raising Chickens in City Backyards: The Public Health Role. J. Community Health 2012, 37, 734–742. [Google Scholar] [CrossRef]
- Espinosa, R.; Tago, D.; Treich, N. Infectious Diseases and Meat Production. Environ. Resour. Econ. 2020, 76, 1019–1044. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Bluhm, P.; Di Pillo, F.; Bahl, J.; Osorio, J.; Schultz-Cherry, S.; Hamilton-West, C. Circulation of influenza in backyard productive systems in central Chile and evidence of spillover from wild birds. Prev. Vet. Med. 2018, 153, 1–6. [Google Scholar] [CrossRef]
- Mariner, J.C.; Jones, B.A.; Hendrickx, S.; El Masry, I.; Jobre, Y.; Jost, C.C. Experiences in Participatory Surveillance and Community-based Reporting Systems for H5N1 Highly Pathogenic Avian Influenza: A Case Study Approach. EcoHealth 2014, 11, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Ameri, A.A.; Hendrickx, S.; Jones, B.; Mariner, J.; Mehta, P.; Pissang, C. Introduction to Participatory Epidemiology and Its Application to Highly Pathogenic Avian Influenza Participatory Disease Surveillance: A Manual for Participatory Disease Surveillance Practitioners; ILRI: Nairobu, Kenya, 2009. [Google Scholar]
- Di Pillo, F.; Jimenez-Bluhm, P.; Baumberger, C.; Marambio, V.; Galdames, P.; Monti, G.; Schultz-Cherry, S.; Hamilton-West, C. Movement Restriction and Increased Surveillance as Efficient Measures to Control the Spread of Highly Pathogenic Avian Influenza in Backyard Productive Systems in Central Chile. Front. Vet. Sci. 2020, 7, 424. [Google Scholar] [CrossRef]
- Schembri, N.; Hernandez-Jover, M.; Toribio, J.A.L.M.L.; Holyoake, P.K. On-farm characteristics and biosecurity protocols for small-scale swine producers in eastern Australia. Prev. Vet. Med. 2015, 118, 104–116. [Google Scholar] [CrossRef]
- McDonagh, A.; Leibler, J.H.; Mukherjee, J.; Thachil, A.; Goodman, L.B.; Riekofski, C.; Nee, A.; Smyth, K.; Forrester, J.; Rosenbaum, M.H. Frequent human-poultry interactions and low prevalence of Salmonella in backyard chicken flocks in Massachusetts. Zoonoses Public Health 2019, 66, 92–100. [Google Scholar] [CrossRef]
- Servicio Agrícola y Ganadero (SAG); Instituto Interamericano de Cooperación para la Agricultura (IICA); Ministerio de Agricultura (Chile). Perfil: Proyecto Nacional de Prevención de Influenza Aviar. Available online: https://repositorio.iica.int/handle/11324/9108 (accessed on 25 October 2018).
- Cornejo, J.; Pokrant, E.; Figueroa, F.; Riquelme, R.; Galdames, P.; Di Pillo, F.; Jimenez-Bluhm, P.; Hamilton-West, C. Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals. Animals 2020, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Suarez, D.L.; Pantin-Jackwood, M.J. Recombinant viral-vectored vaccines for the control of avian influenza in poultry. Vet. Microbiol. 2017, 206, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Bitsouni, V.; Lycett, S.; Opriessnig, T.; Doeschl-Wilson, A. Predicting vaccine effectiveness in livestock populations: A theoretical framework applied to PRRS virus infections in pigs. PLoS ONE 2019, 14, e0220738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, D.; Venkitanarayanan, K.; Kollanoor Johny, A. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018, 7, 167. [Google Scholar] [CrossRef] [Green Version]
- Pavez-Muñoz, E.; González, C.; Fernández-Sanhueza, B.; Sánchez, F.; Escobar, B.; Ramos, R.; Fuenzalida, V.; Galarce, N.; Arriagada, G.; Neira, V.; et al. Antimicrobial Usage Factors and Resistance Profiles of Shiga Toxin-Producing Escherichia coli in Backyard Production Systems From Central Chile. Front. Vet. Sci. 2021, 7. [Google Scholar] [CrossRef]
- Rivera, D.; Allel, K.; Dueñas, F.; Tardone, R.; Soza, P.; Hamilton-West, C.; Moreno-Switt, A.I. Screening the Presence of Non-Typhoidal Salmonella in Different Animal Systems and the Assessment of Antimicrobial Resistance. Animals 2021, 11, 1532. [Google Scholar] [CrossRef]
- Sánchez, F.; Fuenzalida, V.; Ramos, R.; Escobar, B.; Neira, V.; Borie, C.; Lapierre, L.; López, P.; Venegas, L.; Dettleff, P.; et al. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health 2021, 68, 226–238. [Google Scholar] [CrossRef]
- Shah, D.H.; Board, M.M.; Crespo, R.; Guard, J.; Paul, N.C.; Faux, C. The occurrence of Salmonella, extended-spectrum β-lactamase producing Escherichia coli and carbapenem resistant non-fermenting Gram-negative bacteria in a backyard poultry flock environment. Zoonoses Public Health 2020, 67, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Varga, C.; Guerin, M.T.; Brash, M.L.; Slavic, D.; Boerlin, P.; Susta, L. Antimicrobial resistance in fecal Escherichia coli and Salmonella enterica isolates: A two-year prospective study of small poultry flocks in Ontario, Canada. BMC Vet. Res. 2019, 15, 464. [Google Scholar] [CrossRef]
- Derksen, T.; Lampron, R.; Hauck, R.; Pitesky, M.; Gallardo, R.A. Biosecurity Assessment and Seroprevalence of Respiratory Diseases in Backyard Poultry Flocks Located Close to and Far from Commercial Premises. Avian Dis. 2017, 62, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Servicio Agrícola y Ganadero (SAG). Guía de Buenas Prácticas Sobre Bienestar Animal en los Diferentes Sistemas de Producción de Huevos. Available online: https://www.sag.gob.cl/sites/default/files/gbp-ba_produccion_huevos_oct-2018.pdf (accessed on 19 July 2020).
- Hussein, H.S.; Sakuma, T. Prevalence of Shiga Toxin-Producing Escherichia coli in Dairy Cattle and Their Products. J. Dairy Sci. 2005, 88, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Mughini-Gras, L.; van Pelt, W.; van der Voort, M.; Heck, M.; Friesema, I.; Franz, E. Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, The Netherlands (2010–2014). Zoonoses Public Health 2018, 65, e8–e22. [Google Scholar] [CrossRef]
- Gad, A.H.; Abo-Shama, U.H.; Harclerode, K.K.; Fakhr, M.K. Prevalence, Serotyping, Molecular Typing, and Antimicrobial Resistance of Salmonella Isolated From Conventional and Organic Retail Ground Poultry. Front. Microbiol. 2018, 9, 2653. [Google Scholar] [CrossRef]
- Vachon, M.S.; Khalid, M.; Tarr, G.A.M.; Hedberg, C.; Brown, J.A. Farm animal contact is associated with progression to Hemolytic uremic syndrome in patients with Shiga toxin-producing Escherichia coli—Indiana, 2012–2018. One Health 2020, 11, 100175. [Google Scholar] [CrossRef]
- Mulder, A.C.; van de Kassteele, J.; Heederik, D.; Pijnacker, R.; Mughini-Gras, L.; Franz, E. Spatial Effects of Livestock Farming on Human Infections With Shiga Toxin-Producing Escherichia coli O157 in Small but Densely Populated Regions: The Case of the Netherlands. GeoHealth 2020, 4, e2020GH000276. [Google Scholar] [CrossRef] [PubMed]
- Reperant, L.A.; Cornaglia, G.; Osterhaus, A. The Importance of Understanding the Human–Animal Interface. In One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases: The Concept and Examples of a One Health Approach; Mackenzie, J.S., Jeggo, M., Daszak, P., Richt, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 49–81. [Google Scholar] [CrossRef]
- Díaz-Sánchez, S.; Sánchez, S.; Herrera-León, S.; Porrero, C.; Blanco, J.; Dahbi, G.; Blanco, J.E.; Mora, A.; Mateo, R.; Hanning, I.; et al. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: Relationship with management practices and livestock influence. Vet. Microbiol. 2013, 163, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Ethèves, M.A.; Choisis, N.; Alvarez, S.; Dalleau, F.; Hascoat, J.; Gallard, V.; Cardinale, E. Risk factors for Salmonella enterica subsp. enterica persistence in broiler-chicken flocks on Reunion Island. Heliyon 2021, 7, e06278. [Google Scholar] [CrossRef] [PubMed]
- Servicio Agrícola y Ganadero (SAG). Actualización del Plan oficial de Control y Erradicación del Síndrome Respiratorio y Reproductivo Porcino en Chile. 2014. Available online: https://www.sag.gob.cl/sites/default/files/informe__prrs_a_semana_30-31-2014.pdf (accessed on 19 July 2020).
Province | N° BPS with Birds | N° BPS with Swine | Sample Size |
---|---|---|---|
Melipilla | 1910 | 202 | 30 |
Chacabuco | 426 | 78 | 11 |
Santiago | 244 | 61 | 9 |
Cordillera | 237 | 29 | 4 |
Talagante | 387 | 36 | 5 |
Maipo | 632 | 92 | 13 |
Total | 73 |
Species | N° BPS | % | AM 1 Animals/BPS | Min. | Max. | SD+ 2 |
---|---|---|---|---|---|---|
Birds | 40 | 47.06% | 59.98 | 7 | 524 | 123.51 |
Chickens only | 43 | 50.59% | 57.51 | 3 | 1000 | 120.92 |
Pigs | 18 | 21.17% | 6.30 | 1 | 22 | 3.65 |
Horses | 25 | 29.40% | 3.56 | 1 | 10 | 2.17 |
Sheep | 11 | 12.90% | 8.27 | 1 | 30 | 4.49 |
Goats | 5 | 5.80% | 2.50 | 1 | 4 | 0.72 |
Cows | 13 | 15.20% | 11.61 | 1 | 40 | 6.62 |
Rabbits | 4 | 4.70% | 7.50 | 1 | 15 | 3.30 |
Dogs | 60 | 70.60% | 3.92 | 1 | 20 | 3.74 |
Cats | 43 | 50.60% | 2.58 | 1 | 8 | 1.90 |
Birds | 40 | 47.06% | 59.98 | 7 | 524 | 123.51 |
Parameter | n | AF 1 Yes | RF+ 2 Yes | AF 1 No | RF+ 2 No |
---|---|---|---|---|---|
General handling characteristics | |||||
Consumption and/or sale of animal products | 85 | 80 | 0.94 | 5 | 0.06 |
Animal breeding at least 20 years | 85 | 51 | 0.60 | 29 | 0.34 |
Animal handling by one person | 85 | 59 | 0.69 | 22 | 0.26 |
Animals kept in mixed confinement (free-range during the day and confined during night) | 85 | 58 | 0.68 | 27 | 0.32 |
Seasonal variation in the number of animals kept | 85 | 35 | 0.41 | 50 | 0.59 |
Produce their own replacement animals | 85 | 62 | 0.73 | 21 | 0.25 |
Handle sick animals | 85 | 42 | 0.49 | 42 | 0.49 |
Receive veterinary assistance or diagnosis | 85 | 15 | 0.18 | 70 | 0.82 |
Exchanging embryonated eggs | 85 | 3 | 0.04 | 80 | 0.94 |
Debeaked chickens | 85 | 3 | 0.04 | 79 | 0.93 |
Biosecurity characteristics | |||||
Contact between visitors and BPS animals | 85 | 64 | 0.75 | 20 | 0.24 |
Animals had access to a non-potable water source | 85 | 40 | 0.47 | 45 | 0.53 |
Appropriate dead animal disposal | 85 | 40 | 0.47 | 44 | 0.52 |
BPS neighbors (surrounded by other BPS) | 85 | 42 | 0.49 | 40 | 0.47 |
Contact with wildlife animals | 85 | 69 | 0.81 | 15 | 0.18 |
Contact with neighboring BPS | 85 | 44 | 0.52 | 40 | 0.47 |
Contact between chickens and pigs | 8 | 5 | 0.63 | 3 | 0.37 |
Functional fences | 85 | 48 | 0.56 | 37 | 0.44 |
Footbath | 85 | 0 | 0 | 85 | 1 |
Pre-entry disinfection | 85 | 0 | 0 | 85 | 1 |
Post-stay disinfection | 85 | 0 | 0 | 85 | 1 |
Watercourse inside the BPS | 85 | 52 | 0.61 | 33 | 0.39 |
Nearby wetlands | 85 | 1 | 0.01 | 84 | 0.99 |
Neighbors with birds/pigs | 85 | 42 | 0.49 | 43 | 0.51 |
Proximity to intensive poultry/swine production | 85 | 9 | 0.11 | 76 | 0.89 |
Contact between BPS animals | 85 | 61 | 0.72 | 24 | 0.28 |
Indoor pets | 85 | 3 | 0.04 | 82 | 0.96 |
Contact between poultry and neighboring pets | 85 | 37 | 0.44 | 48 | 0.56 |
Pet access to animal waste | 85 | 77 | 0.91 | 8 | 0.09 |
Contact between BPS animals and sick people | 85 | 79 | 0.93 | 6 | 0.07 |
Relationship with government agricultural entities | |||||
Official veterinary service visits | 85 | 16 | 0.19 | 69 | 0.81 |
Official veterinary service sampling | 85 | 11 | 0.13 | 74 | 0.87 |
Official veterinary service results information | 85 | 3 | 0.04 | 82 | 0.96 |
Official veterinary service returns to BPS | 85 | 5 | 0.06 | 80 | 0.94 |
INDAP/PRODESAL users | 85 | 14 | 0.16 | 71 | 0.84 |
Province | N° BPS | N° BPS + S. enterica | Province Prevalence | N° BPS + STEC | Province Prevalence |
---|---|---|---|---|---|
Melipilla | 34 | 2 | 5.99% | 4 | 11.76% |
Talagante | 7 | - | - | - | - |
Cordillera | 5 | 1 | 20% | 3 | 60% |
Maipo | 16 | 1 | 6.25% | 1 | 6.25% |
Chacabuco | 13 | - | - | 2 | 15.38% |
Santiago | 10 | - | - | - | - |
Regional total | 85 | 4 | 4.71% | 10 | 11.76% |
Pathogen | Province | Code | Animal Specie | Stx1 | Stx2 |
---|---|---|---|---|---|
STEC | Melipilla | ME001 | Cattle | 1 | 1 |
Cattle | 1 | 1 | |||
Cattle | 1 | 1 | |||
Swine | 1 | 1 | |||
ME010 | Duck | 0 | 1 | ||
Duck | 0 | 1 | |||
Duck | 1 | 0 | |||
ME011 | Hens | 1 | 0 | ||
Sheep | 1 | 0 | |||
ME024 | Sheep | 1 | 0 | ||
Cordillera | CORD001 | Cattle | 0 | 1 | |
CORD003 | Sheep | 1 | 0 | ||
CORD004 | Sheep | 1 | 0 | ||
Goat | 1 | 0 | |||
Maipo | MAI009 | Hens | 0 | 1 | |
Chacabuco | CHAC003 | Sheep | 1 | 0 | |
Sheep | 1 | 0 | |||
Cattle | 1 | 0 | |||
CHAC010 | Goat | 1 | 0 | ||
Sheep | 1 | 0 | |||
S. enterica | Melipilla | ME023 | Hens | ||
Goose | |||||
ME033 | Hens | ||||
Cordillera | CORD002 | Hens | |||
Maipo | MAI013 | Hens |
Variable | Categories | p-Value | OR | 95% IC | |
---|---|---|---|---|---|
Lower | Upper | ||||
(Intercept) | 0.001 | 0.008 | 0 | 0.141 | |
Gini–Simpson index | 0.030 | 1.717 | 1.054 | 2.799 | |
Functional fences | No | reference | |||
Yes | 0.272 | 0.129 | 0.003 | 5.006 | |
Proximity to intensive poultry/swine production | No | reference | |||
Yes | 0.019 | 20.645 | 1.648 | 258.706 | |
Official veterinary service returns to BPS | No | reference | |||
Yes | 0.098 | 17.087 | 0.59 | 495.11 | |
Contact between poultry and neighboring pets | No | reference | |||
Yes | 0.219 | 4.41 | 0.415 | 46.88 | |
Interaction: Functional fences/Contact between poultry and neighboring pets | 0.747 | 0.53 | 0.011 | 24.902 |
Variable | Categories | p-Value | OR | 95% IC | |
---|---|---|---|---|---|
Lower | Upper | ||||
(Intercept) | 0.001 | 0.013 | 0.002 | 0.092 | |
Exchanges embryonated eggs | No | reference | |||
Yes | 0.021 | 39 | 1.745 | 871.724 | |
Presence of debeaked chickens | No | reference | |||
Yes | 0.001 | 156 | 6.979 | 3486.896 |
Variable | Categories | p-Value | OR | 95% IC | |
---|---|---|---|---|---|
Lower | Upper | ||||
(Intercept) | 0.079 | 0.172 | 0.024 | 1.229 | |
Gini–Simpson index | 0.030 | 1.544 | 1.044 | 2.284 | |
Type of confinement | Free | reference | |||
Mixed | 0.002 | 0.019 | 0.001 | 2.796 | |
Permanent | 0.403 | 0.466 | 0.078 | 2.796 | |
INDAP/PRODESAL users | No | reference | |||
Yes | 0.023 | 15.02 | 1.465 | 154.082 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavez-Muñoz, E.; Fernández-Sanhueza, B.; Urzúa-Encina, C.; Galarce, N.; Alegría-Morán, R. Risk Factors for Positivity to Shiga Toxin-Producing Escherichia coli and Salmonella enterica in Backyard Production Systems Animals from Metropolitana Region, Chile: A Threat to Public Health? Int. J. Environ. Res. Public Health 2021, 18, 10730. https://doi.org/10.3390/ijerph182010730
Pavez-Muñoz E, Fernández-Sanhueza B, Urzúa-Encina C, Galarce N, Alegría-Morán R. Risk Factors for Positivity to Shiga Toxin-Producing Escherichia coli and Salmonella enterica in Backyard Production Systems Animals from Metropolitana Region, Chile: A Threat to Public Health? International Journal of Environmental Research and Public Health. 2021; 18(20):10730. https://doi.org/10.3390/ijerph182010730
Chicago/Turabian StylePavez-Muñoz, Erika, Bastián Fernández-Sanhueza, Constanza Urzúa-Encina, Nicolás Galarce, and Raúl Alegría-Morán. 2021. "Risk Factors for Positivity to Shiga Toxin-Producing Escherichia coli and Salmonella enterica in Backyard Production Systems Animals from Metropolitana Region, Chile: A Threat to Public Health?" International Journal of Environmental Research and Public Health 18, no. 20: 10730. https://doi.org/10.3390/ijerph182010730
APA StylePavez-Muñoz, E., Fernández-Sanhueza, B., Urzúa-Encina, C., Galarce, N., & Alegría-Morán, R. (2021). Risk Factors for Positivity to Shiga Toxin-Producing Escherichia coli and Salmonella enterica in Backyard Production Systems Animals from Metropolitana Region, Chile: A Threat to Public Health? International Journal of Environmental Research and Public Health, 18(20), 10730. https://doi.org/10.3390/ijerph182010730