Trends in Airborne Chrysotile Asbestos Fibre Concentrations in Asbestos Cement Manufacturing Factories in Zimbabwe from 1996 to 2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Collection of Measurements
2.3. Method of Chrysotile Asbestos Fibre Measurements
2.4. Quality Assurance and Reliability of the Chrysotile Asbestos Fibre Exposure Data
2.5. Data Description and Classification of Measurements
2.6. Statistical Analysis
2.7. Ethics
3. Results
Observations
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer (IARC). IARC Monograph on Evaluation of Carcinogenic Risks to Human, Arsenic, Metals, Fibres and Dust: A Review of Human Carcinogens; IARC: Lyon, France; WHO: Geneva, Switzerland, 2012; Volume 100C, pp. 219–309. [Google Scholar]
- World Health Organization. Chrysotile Asbestos. 2014. Available online: http://www.who.int/ipcs/assessment/public_health/chemicals_phc (accessed on 9 February 2020).
- World Health Organization. International Programme on Chemical Safety. Chrysotile Asbestos; Environmental Health Criteria 203. UNEP, ILO, WHO and IPCS; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Agency for Toxic Substances and Diseases Registry (ATSDR). Asbestos—Production, Import, Use and Disposal. CDC. 2001. Available online: https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=30&tid=4 (accessed on 11 July 2018).
- Nelson, G.; WaterNaude, J. Epidemiology of Malignant Pleural Mesothelioma in Africa. In Malignant Pleural Mesothelioma: Present Status and Future Direction, 1st ed.; Mineo, T.C., Ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; pp. 95–113. [Google Scholar]
- Virta, R.L. Worldwide Asbestos Supply and Consumption Trends from 1900 through 2003: Circular 1298. 2006. Available online: http://pubs.usgs.gov/circ/2006/1298/c1298.pdf (accessed on 23 April 2018).
- Zimbabwe National Chrysotile Asbestos Task Force, Government of Zimbabwe. Zimbabwe Chrysotile Asbestos Position Paper; ZNCTF: Harare, Zimbabwe, 2014.
- Cullen, M.R.; Baloyi, S.B. Chrysotile asbestos and Health in Zimbabwe: Analysis of Mines and Millers compensated for Asbestos—Related Diseases since Independence (1980). Am. J. Ind. Med. 1991, 19, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Hagemeyer, O.; Otten, H.; Kraus, T. Asbestos consumption, asbestos exposure and related occupational diseases in Germany. Int. Arch. Occup. Environ. Health 2006, 79, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Creely, K.S.; Cowie, H.; Tongeren, M.V.; Kromhout, H.; Tickner, J.; Cherrie, J.W. Trends in Inhalation Exposure—A review of the data in published scientific literature. Ann. Occup. Hyg. 2007, 51, 665–678. Available online: https://academic.oup.com/annweh/article/51/8/665/204886 (accessed on 20 June 2020). [PubMed]
- Coble, J.B.; Lees, P.S.; Matanoski, G. Time trends in exposure measurements from OSHA compliance inspections of the pulp and paper industry. Appl. Occup. Environ. Hyg. 2001, 16, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.M. Mortality among long term employees of an Ontario asbestos-cement factory. Br. J. Ind. Med. 1983, 40, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albin, M.; Jakobsson, K.; Attewell, R.; Johansson, L.; Welinder, H. Mortality and cancer morbidity in cohorts of asbestos cement workers and referents. Br. J. Ind. Med. 1990, 47, 602–610. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1035245/pdf/brjindmed00045-0026.pdf (accessed on 13 November 2020). [CrossRef] [PubMed]
- Weiner, R.; Rees, D.; Lunga, F.J.P.; Felix, M.A. Third wave of asbestos related disease from secondary use of asbestos. A case report from industry. S. Afr. Med. J. 1994, 84, 158–160. [Google Scholar] [PubMed]
- Higashi, T.; Hori, H.; Sakurai, H.; Omae, K.; Tsuda, T.; Tanaka, I.; Satoh, T.; Hoshi, H. Work environment of plants manufacturing asbestos-containing products in Japan. Ann. Occup. Hyg. 1994, 38, 489–494. [Google Scholar] [PubMed]
- Albin, M.; Magnani, C.; Krstev, S.; Rapiti, E.; Shefer, I. Asbestos and cancer: An overview of current trends in Europe. Environ. Health Perspect. 1999, 107, 289–298. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566265/pdf/envhper00519-0069.pdf (accessed on 27 October 2020). [PubMed]
- Williams, P.; Paustenbach, D.; Balzer, J.L.; Mangold, C. Retrospective exposure assessment of airborne asbestos related to skilled craftsmen at a petroleum refinery in Beaumont, Texas (1940–2006). J. Toxicol. Environ. Health 2007, 70, 1076–1107. [Google Scholar] [CrossRef] [PubMed]
- American Conference of Governmental Industrial Hygienist (ACGIH). Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, 2014 ed.; ACGIH Publications: Cincinnati, OH, USA, 2014; pp. 3–4. [Google Scholar]
- Schenk, L. Setting Occupational Exposure Limits: Practices and Outcomes of Toxicological Risk Assessment. Ph.D. Thesis, Division of Philosophy, Department of Philosophy and the History of Technology, Royal Institute of Technology (KTH), Stockholm, Sweden. Available online: https://www.researchgate.net/publication/265044801_Setting_occupational_exposure_limits_Practices_and_outcomes_of_toxicological_risk_assessment/link/545350040cf26d5090a3a902/download (accessed on 24 November 2020).
- Pira, E.; Donato, F.; Maida, L.; Discalzi, G. Exposure to asbestos: Past, present and future. J. Thorac. Dis. 2018, 10, S237–S245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Government of Zimbabwe. Statutory Instrument 68 of 1990: Accident Prevention and Workers Compensation Scheme; Government of Zimbabwe: Harare, Zimbabwe, 1990.
- National Social Security Authority. Guidelines on Occupational Exposure Limits (OELs) for Chemical Substances and Dust; National Social Security Authority: Harare, Zimbabwe, 2017. [Google Scholar]
- Asbestos International Association. Reference Method for the Determination of Airborne Asbestos Fibre Concentrations at Workplaces by Light Microscopy (Membrane Filter Method); Asbestos International Association: Ontario, ON, Canada, 1982. [Google Scholar]
- Jones, A.D.; Clark, R. Evaluation of Asbestos Dust Measurement and Control at a Factory in Harare, Zimbabwe; Strategic Consulting Report: 629-00224; Institute of Occupational Medicine: Edinburgh, UK, 2008. [Google Scholar]
- Zilaout, H.; Houba, R.; Kromhout, H. Temporal trends in respirable dust and respirable quartz concentrations within the European industrial minerals sector over a 15-year period (2002–2016). Occup. Environ. Med. 2020, 77, 268–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.; Choi, S.; Ryu, K.; Park, J.; Paik, N. Trends in occupational asbestos exposure and asbestos consumption over recent decades in Korea. Int. J. Occup. Environ. Health 2008, 14, 18–24. Available online: https://www.researchgate.net/publication/5531085_Trends_in_Occupational_Asbestos_Exposure_and_Asbestos_Consumption_over_Recent_Decades_in_Korea/link/56b8d7e908ae0a89c12f8eb6/download (accessed on 12 June 2019). [CrossRef] [PubMed]
- Yoshizumi, K.; Hori, H.; Satoh, T.; Higashi, T. The trends in Airborne Asbestos Concentrations at Plants Manufacturing Asbestos-Containing Products in Japan. Ind. Health 2001, 39, 127–131. Available online: https://www.jstage.jst.go.jp/article/indhealth1963/39/2/392127/article (accessed on 5 December 2019). [CrossRef] [PubMed] [Green Version]
- Siriruttanapruk, S.; Taptagaporn, S. Asbestos in Thailand: Country Report. Available online: http://www.thaihealthconsumer.org/noasbestos/article/siriruttanapruk_en.pdf (accessed on 9 November 2020).
- Peters, S.; Vermeulen, R.; Portengen, L.; Olsson, A.; Kendzia, B.; Vincent, R.; Savary, B.; Lavoue, J.; Cavallo, D.; Cattaneo, A.; et al. SYN-JEM: A Quantitative Job Expoure Matrix for Five Lung Carcinogens. Ann. Occup. Hyg. 2016, 60, 795–811. Available online: https://academic.oup.com/annweh/article-abstract/60/7/795/2196/93 (accessed on 14 February 2018). [CrossRef] [PubMed] [Green Version]
- Schonfeld, S.J.; Kovalevskiy, E.V.; Feletto, E.; Bukhtiyarov, I.V.; Kashanskiy, S.V.; Moissonier, M.; Straif, K.; McCormack, V.A.; Shutz, J.; Kromhout, H. Temporal Trends in Airborne Dust Concentrations at a Large Chrysotile Mine and its Asbestos-enrichment Factories in the Russian Federation during 1951–2001. Ann. Work Expo. Health 2017, 61, 797–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Task/Operational Area | Description of Task |
---|---|
Saw Cutting operations | Operator cuts chrysotile asbestos cement sheets and facia boards to size. |
Fettling table operations | Scrapping of unwanted chrysotile asbestos cement matter on finished moulded goods such as ridges, garden ware, and polishing using sandpaper by operators. |
Kollergang operations | Operator opens ~50 kg chrysotile asbestos bags using a knife and loads the fibre into the process machine. |
Moulded goods table operations | Operators mould various goods under wet conditions, such as ridges, or garden ware goods such as flower vessels. |
Ground hard waste operations | Operator feeds chrysotile asbestos cement waste material into grinder machine for recycling back into process. |
Pipe section—lathe machining of chrysotile asbestos pipe joints | Operators operate lathe machines such as sewer lathe, Lang lathe, broad bend lathe, and Geminis lathe machines by machining joints so that they are ready for coupling pipes. |
Pipe section—lathe machining of full-length chrysotile asbestos sewer/water pipes. | Operator operates lathe machines—namely, Faben, Voith, and O&S lathe machines—to prepare full-length pipe for a joint, and polish joint with sandpaper. |
Pipe section—multi-cutter operations | Cutting full-length pipes into collars used for coupling pipes using a multi-cutter machine. |
Job/Task | N | Mean | SD | Range | % >0.1 f/mL * | |
---|---|---|---|---|---|---|
Min | Max | |||||
Cutting saw operator | (225) | 0.12 | 0.05 | 0.03 | 0.24 | 60.9 |
Fettling table operator | (126) | 0.12 | 0.02 | 0.05 | 0.19 | 76.2 |
Moulded goods operator | (192) | 0.10 | 0.04 | 0.03 | 0.20 | 46.4 |
Kollergang operator | (203) | 0.10 | 0.04 | 0.04 | 0.20 | 54.2 |
Ground hard waste operator | (168) | 0.12 | 0.04 | 0.02 | 0.22 | 63.7 |
Laundry room operator | (149) | 0.12 | 0.04 | 0.03 | 0.21 | 73.8 |
Overall factory | (1063) | 0.11 | 0.04 | 0.04 | 0.18 | 60.3 |
Job/Task | N | Mean | SD | Range | % >0.1 f/mL * | |
---|---|---|---|---|---|---|
Min | Max | |||||
Cutting saw operator | (113) | 0.13 | 0.04 | 0.01 | 0.24 | 75.2 |
Fettling table operator | (51) | 0.16 | 0.06 | 0.06 | 0.30 | 84.3 |
Kollergang operator | (111) | 0.11 | 0.04 | 0.03 | 0.24 | 60.4 |
Ground hard waste operator | (64) | 0.12 | 0.04 | 0.04 | 0.24 | 54.7 |
Pipe joints operator | (99) | 0.12 | 0.03 | 0.04 | 0.30 | 69.7 |
Full length pipe operator | (97) | 0.12 | 0.03 | 0.04 | 0.30 | 67.0 |
Multi-cutter operator | (64) | 0.12 | 0.03 | 0.05 | 0.20 | 81.3 |
Overall factory | (600) | 0.11 | 0.04 | 0.03 | 0.22 | 58.6 |
Job/Task | Time Period | N | Mean | SD | 95% CI | Range | ||
---|---|---|---|---|---|---|---|---|
LB | UB | Min | Max | |||||
Saw cutting operator | 1996–2000 | 60 | 0.19 | 0.01 | 0.19 | 0.19 | 0.16 | 0.24 |
2001–2008 | 88 | 0.13 | 0.02 | 0.12 | 0.13 | 0.08 | 0.18 | |
2009–2016 | 77 | 0.07 | 0.02 | 0.07 | 0.08 | 0.03 | 0.11 | |
Fettling table operator | 1996–2000 | 53 | 0.12 | 0.04 | 0.11 | 0.13 | 0.05 | 0.19 |
2001–2008 | 73 | 0.12 | 0.02 | 0.12 | 0.13 | 0.04 | 0.20 | |
2009–2016 | nil | |||||||
Moulded goods operator | 1996–2000 | 58 | 0.11 | 0.04 | 0.10 | 0.12 | 0.04 | 0.20 |
2001–2008 | 82 | 0.11 | 0.04 | 0.11 | 0.12 | 0.03 | 0.18 | |
2009–2016 | 52 | 0.05 | 0.01 | 0.05 | 0.06 | 0.03 | 0.08 | |
Kollergang operator | 1996–2000 | 58 | 0.13 | 0.03 | 0.12 | 0.14 | 0.05 | 0.20 |
2001–2008 | 81 | 0.12 | 0.02 | 0.11 | 0.12 | 0.04 | 0.16 | |
2009–2016 | 64 | 0.07 | 0.02 | 0.06 | 0.07 | 0.04 | 0.11 | |
Ground hard waste operator | 1996–2000 | 57 | 0.16 | 0.03 | 0.15 | 0.16 | 0.08 | 0.22 |
2001–2008 | 56 | 0.13 | 0.03 | 0.14 | 0.13 | 0.03 | 0.20 | |
2009–2016 | 55 | 0.07 | 0.02 | 0.07 | 0.08 | 0.02 | 0.17 | |
Laundry room operator | 1996–2000 | 47 | 0.13 | 0.03 | 0.12 | 0.14 | 0.06 | 0.20 |
2001–2008 | 87 | 0.13 | 0.02 | 0.12 | 0.13 | 0.06 | 0.21 | |
2009–2016 | 15 | 0.05 | 0.01 | 0.04 | 0.05 | 0.03 | 0.07 | |
Overall factory | 1996–2000 | 60 | 0.14 | 0.02 | 0.14 | 0.15 | 0.11 | 0.18 |
2001–2008 | 92 | 0.12 | 0.02 | 0.12 | 0.12 | 0.07 | 0.18 | |
2009–2016 | 80 | 0.06 | 0.01 | 0.06 | 0.07 | 0.04 | 0.12 |
Job/Task | Time Period | N | Mean | SD | 95% CI | Range | ||
---|---|---|---|---|---|---|---|---|
LB | UB | Min | Max | |||||
Cutting saw operator | 1996–2000 | 50 | 0.17 | 0.02 | 0.16 | 0.18 | 0.12 | 0.24 |
2001–2008 | 49 | 0.12 | 0.02 | 0.11 | 0.12 | 0.09 | 0.16 | |
2009–2016 | 14 | 0.06 | 0.02 | 0.05 | 0.07 | 0.01 | 0.08 | |
Fettling table operator | 1996–2000 | 40 | 0.17 | 0.06 | 0.16 | 0.19 | 0.07 | 0.30 |
2001–2008 | 11 | 0.12 | 0.03 | 0.10 | 0.14 | 0.06 | 0.15 | |
2009–2016 | ||||||||
Kollergang | 1996–2000 | 36 | 0.14 | 0.03 | 0.13 | 0.15 | 0.08 | 0.24 |
2001–2008 | 42 | 0.12 | 0.01 | 0.11 | 0.12 | 0.08 | 0.14 | |
2009–2016 | 33 | 0.07 | 0.03 | 0.06 | 0.08 | 0.03 | 0.18 | |
Ground hard waste | 1996–2000 | 44 | 0.13 | 0.04 | 0.11 | 0.14 | 0.07 | 0.24 |
2001–2008 | 15 | 0.11 | 0.04 | 0.10 | 0.11 | 0.08 | 0.13 | |
2009–2016 | 5 | 0.07 | 0.02 | 0.05 | 0.09 | 0.04 | 0.09 | |
Pipe joints | 1996–2000 | 44 | 0.13 | 0.04 | 0.12 | 0.14 | 0.06 | 0.30 |
2001–2008 | 46 | 0.11 | 0.01 | 0.11 | 0.12 | 0.08 | 0.15 | |
2009–2016 | 9 | 0.06 | 0.01 | 0.05 | 0.07 | 0.04 | 0.08 | |
Full length pipe operator | 1996–2000 | 43 | 0.13 | 0.04 | 0.12 | 0.14 | 0.06 | 0.27 |
2001–2008 | 45 | 0.11 | 0.01 | 0.11 | 0.11 | 0.07 | 0.14 | |
2009–2016 | 9 | 0.07 | 0.02 | 0.05 | 0.08 | 0.04 | 0.09 | |
Multi-cutter operator | 1996–2000 | 26 | 0.13 | 0.04 | 0.11 | 0.14 | 0.05 | 0.20 |
2001–2008 | 36 | 0.12 | 0.01 | 0.12 | 0.13 | 0.10 | 0.14 | |
2009–2016 | 2 | 0.07 | 0.03 | 0.02 | 0.32 | 0.05 | 0.20 | |
Overall factory | 1996–2000 | 51 | 0.14 | 0.03 | 0.13 | 0.15 | 0.09 | 0.22 |
2001–2008 | 50 | 0.11 | 0.01 | 0.12 | 0.11 | 0.09 | 0.15 | |
2009–2016 | 45 | 0.02 | 0.01 | 0.06 | 0.07 | 0.03 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutetwa, B.; Moyo, D.; Brouwer, D. Trends in Airborne Chrysotile Asbestos Fibre Concentrations in Asbestos Cement Manufacturing Factories in Zimbabwe from 1996 to 2016. Int. J. Environ. Res. Public Health 2021, 18, 10755. https://doi.org/10.3390/ijerph182010755
Mutetwa B, Moyo D, Brouwer D. Trends in Airborne Chrysotile Asbestos Fibre Concentrations in Asbestos Cement Manufacturing Factories in Zimbabwe from 1996 to 2016. International Journal of Environmental Research and Public Health. 2021; 18(20):10755. https://doi.org/10.3390/ijerph182010755
Chicago/Turabian StyleMutetwa, Benjamin, Dingani Moyo, and Derk Brouwer. 2021. "Trends in Airborne Chrysotile Asbestos Fibre Concentrations in Asbestos Cement Manufacturing Factories in Zimbabwe from 1996 to 2016" International Journal of Environmental Research and Public Health 18, no. 20: 10755. https://doi.org/10.3390/ijerph182010755
APA StyleMutetwa, B., Moyo, D., & Brouwer, D. (2021). Trends in Airborne Chrysotile Asbestos Fibre Concentrations in Asbestos Cement Manufacturing Factories in Zimbabwe from 1996 to 2016. International Journal of Environmental Research and Public Health, 18(20), 10755. https://doi.org/10.3390/ijerph182010755