Chromosome Aberrations in Lymphocytes of Patients Undergoing Radon Spa Therapy: An Explorative mFISH Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Healthy Volunteers
2.2. Handling of Blood Samples
2.3. Preparation and Staining of Chromosome Samples
2.4. Aberration Scoring
3. Results
3.1. Chromosome Aberrations in Lymphocytes of Patients and Healthy Donors
3.2. Complex Aberrations
3.3. Potentially Clonal Translocations
4. Discussion
4.1. Cytogenetic Effects of Radon Spa Therapy
4.2. Complex Aberrations
4.3. Aberration Yield in Individuals
4.4. Clonal Aberrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franke, A.; Reiner, L.; Pratzel, H.G.; Franke, T.; Resch, K.L. Long-term efficacy of radon spa therapy in rheumatoid arthritis--a randomized, sham-controlled study and follow-up. Rheumatology 2000, 39, 894–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenbach, A.; Kovacs, J.; Franke, A.; Jorgens, K.; Ammer, K. Radon therapy for the treatment of rheumatic diseases--review and meta-analysis of controlled clinical trials. Rheumatol. Int. 2005, 25, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewicz, Z.; Strzelczyk, J.J. Radon treatment controversy. Dose Response 2006, 4, 106–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K. One Century of Radon Therapy. Int. J. Low Radiat. 2004, 1, 334–357. [Google Scholar] [CrossRef]
- Franke, A.; Franke, T. Long-term benefits of radon spa therapy in rheumatic diseases: Results of the randomised, multi-centre IMuRa trial. Rheumatol. Int. 2013, 33, 2839–2850. [Google Scholar]
- Ruhle, P.F.; Klein, G.; Rung, T.; Tiep, P.H.; Fournier, C.; Fietkau, R.; Gaipl, U.S.; Frey, B. Impact of radon and combinatory radon/carbon dioxide spa on pain and hypertension: Results from the explorative RAD-ON01 study. Mod. Rheumatol. 2018, 29, 165–172. [Google Scholar] [CrossRef]
- Maier, A.; Wiedemann, J.; Rapp, F.; Papenfuss, F.; Rodel, F.; Hehlgans, S.; Gaipl, U.S.; Kraft, G.; Fournier, C.; Frey, B. Radon exposure-therapeutic effect and cancer risk. Int. J. Mol. Sci. 2020, 22, 316. [Google Scholar] [CrossRef]
- Paquet, F.; Bailey, M.R.; Leggett, R.W.; Lipsztein, J.; Marsh, J.; Fell, T.P.; Smith, T.; Nosske, D.; Eckerman, K.F.; Berkovski, V.; et al. ICRP Publication 137: Occupational intakes of radionuclides: Part 3. Ann. ICRP 2017, 46, 1–486. [Google Scholar] [CrossRef]
- Ajrouche, R.; Ielsch, G.; Clero, E.; Roudier, C.; Gay, D.; Guillevic, J.; Laurier, D.; Le Tertre, A. Quantitative health risk assessment of indoor radon: A systematic review. Radiat. Prot. Dosim. 2017, 177, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Tirmarche, M.; Harrison, J.D.; Laurier, D.; Paquet, F.; Blanchardon, E.; Marsh, J.W. ICRP Publication 115. Lung cancer risk from radon and progeny and statement on radon. Ann. ICRP 2010, 40, 1–64. [Google Scholar] [PubMed]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Robertson, A.; Allen, J.; Laney, R.; Curnow, A. The Cellular and Molecular Carcinogenic Effects of Radon Exposure: A Review. Int. J. Mol. Sci. 2013, 14, 14024–14063. [Google Scholar] [CrossRef] [Green Version]
- Sakoda, A.; Ishimori, Y.; Kawabe, A.; Katatoka, T.; Hanamoto, K.; Yamaoka, K. Physiologically based pharmacokinetic modeling of inhaled radon to calculate absorbed doses in mice, rats, and humans. J. Nuc. Sci. Techn. 2010, 47, 731–738. [Google Scholar] [CrossRef]
- Kendall, G.M.; Smith, T.J. Doses to organs and tissues from radon and its decay products. J. Radiol. Prot. 2002, 22, 389–406. [Google Scholar] [CrossRef]
- Khursheed, A. Doses to systemic tissues from radon gas. Radiat. Prot. Dosim. 2000, 88, 171–181. [Google Scholar] [CrossRef]
- Bonassi, S.; Norppa, H.; Ceppi, M.; Stromberg, U.; Vermeulen, R.; Znaor, A.; Cebulska-Wasilewska, A.; Fabianova, E.; Fucic, A.; Gundy, S.; et al. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: Results from a pooled cohort study of 22 358 subjects in 11 countries. Carcinogenesis 2008, 29, 1178–1183. [Google Scholar] [CrossRef] [Green Version]
- International Atomic Energy Agency (IAEA). Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies; IAEA-EPR: Vienna, Austria, 2011. [Google Scholar]
- Oestreicher, U.; Samaga, D.; Ainsbury, E.; Antunes, A.C.; Baeyens, A.; Barrios, L.; Beinke, C.; Beukes, P.; Blakely, W.F.; Cucu, A.; et al. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA). Int. J. Radiat. Biol. 2017, 93, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.M. Cytogenetic biomarkers of radiation exposure. Clin. Oncol. 2019, 31, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Ruhle, P.F.; Wunderlich, R.; Deloch, L.; Fournier, C.; Maier, A.; Klein, G.; Fietkau, R.; Gaipl, U.S.; Frey, B. Modulation of the peripheral immune system after low-dose radon spa therapy: Detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 2017, 50, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartel, C.; Nasonova, E.; Ritter, S.; Friedrich, T. Alpha-particle exposure induces mainly unstable complex chromosome aberrations which do not contribute to radiation-associated cytogenetic risk. Radiat. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Furusawa, Y.; Gotoh, E. A simple method for simultaneous interphase-metaphase chromosome analysis in biodosimetry. Int. J. Radiat. Biol. 1998, 74, 457–462. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Cytogenetic Analysis for Radiation Dose Assessment: A Manual; Technical Reports Series 405; IAEA: Vienna, Austria, 2001. [Google Scholar]
- Ritter, S.; Nasonova, E.; Scholz, M.; Kraft-Weyrather, W.; Kraft, G. Comparison of chromosomal damage induced by X-rays and Ar ions with an LET of 1840 keV/micrometer in G1 V79 cells. Int. J. Radiat. Biol. 1996, 69, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Hartel, C.; Sommer, S.; Nasonova, E.; Durante, M.; Fournier, C.; Lee, R.; Debus, J.; Schulz-Ertner, D.; Ritter, S. Chromosomal aberrations in peripheral blood lymphocytes of prostate cancer patients treated with IMRT and carbon ions. Radiother. Oncol. 2010, 95, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Cornforth, M.N. Analyzing radiation-induced complex chromosome rearrangements by combinatorial painting. Radiat. Res. 2001, 155, 643–659. [Google Scholar] [CrossRef]
- Hartel, C.; Nasonova, E.; Fuss, M.C.; Nikoghosyan, A.V.; Debus, J.; Ritter, S. Persistence of radiation-induced aberrations in patients after radiotherapy with C-ions and IMRT. Clin. Transl. Radiat. Oncol. 2018, 13, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewald, G.W.; Noonan, K.J.; Spurbeck, J.L.; Johnson, D.D. T-lymphocytes with 7;14 translocations: Frequency of occurrence, breakpoints, and clinical and biological significance. Am. J. Hum. Genet. 1986, 38, 520–532. [Google Scholar] [PubMed]
- Tawn, E.J. The non-random occurrence of exchanges involving chromosomes 7 and 14 in human lymphocytes: A prospective study of control individuals. Mutat. Res. 1988, 199, 215–220. [Google Scholar] [CrossRef]
- Hofmann, W.; Winkler-Heil, R.; Lettner, H.; Hubmer, A.; Gaisberger, M. Radon transfer from thermal water to human organs in radon therapy: Exhalation measurements and model simulations. Radiat. Environ. Biophys. 2019, 58, 513–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, Y.; Ohtaki, K.; Nakano, M.; Hamasaki, K.; Awa, A.A.; Lagarde, F. Nakamura, N. Clonally expanded T-cell populations in atomic bomb survivors do not show excess levels of chromosome instability. Radiat. Res. 2005, 164, 618–626. [Google Scholar] [CrossRef]
- Deetjen, P.; Falkenbach, A.; Harder, D.; Joeckel, H.; Kaul, A.; von Philipsborn, H. Radon als Heilmittel. Therapeutische Wirksamkeit, Biologischer Wirkungsmechanismus und Vergleichende Risikobewertung (Radon Therapy. Therapeutic Effects, Biological Mechanism, and Relative Risk Assessment); Verlag Dr. Kovac; RADIZ Radon-Dokumentations- und Informationszentrum Schlema e.V.: Hamburg, Germany, 2005. [Google Scholar]
- Tawn, E.J.; Whitehouse, C.A.; De Ruyck, K.; Hodgson, L.; Vandenbulcke, K.; Thierens, H. The characterization and transmissibility of chromosome aberrations induced in peripheral blood lymphocytes by in vitro alpha-particle radiation. Radiat. Res. 2007, 168, 666–674. [Google Scholar] [CrossRef]
- Anderson, R.M.; Marsden, S.J.; Wright, E.G.; Kadhim, M.A.; Goodhead, D.T.; Griffin, C.S. Complex chromosome aberrations in peripheral blood lymphocytes as a potential biomarker of exposure to high-LET alpha-particles. Int. J. Radiat. Biol. 2000, 76, 31–42. [Google Scholar]
- George, K.; Durante, M.; Wu, H.; Willingham, V.; Cucinotta, F.A. In vivo and in vitro measurements of complex-type chromosomal exchanges induced by heavy ions. Adv. Space Res. 2003, 31, 1525–1535. [Google Scholar] [CrossRef]
- Lee, R.; Sommer, S.; Hartel, C.; Nasonova, E.; Durante, M.; Ritter, S. Complex exchanges are responsible for the increased effectiveness of C-ions compared to X-rays at the first post-irradiation mitosis. Mutat. Res. 2010, 701, 52–59. [Google Scholar] [CrossRef]
- Durante, M.; George, K.; Wu, H.; Cucinotta, F.A. Karyotypes of human lymphocytes exposed to high-energy iron ions. Radiat. Res. 2002, 158, 581–590. [Google Scholar] [CrossRef]
- Hande, M.P.; Azizova, T.V.; Burak, L.E.; Khokhryakov, V.F.; Geard, C.R.; Brenner, D.J. Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: An mFISH study. Genes Chromosomes Cancer 2005, 44, 1–9. [Google Scholar] [CrossRef]
- Loucas, B.D.; Durante, M.; Bailey, S.M.; Cornforth, M.N. Chromosome damage in human cells by γ-rays, α-particles and heavy ions: Track interactions in basic dose-response relationships. Radiat. Res. 2013, 179, 9–20. [Google Scholar] [CrossRef]
- Anderson, R.M.; Marsden, S.J.; Paice, S.J.; Bristow, A.E.; Kadhim, M.A.; Griffin, C.S.; Goodhead, D.T. Transmissible and nontransmissible complex chromosome aberrations characterized by three-color and mFISH define a biomarker of exposure to high-LET alpha particles. Radiat. Res. 2003, 159, 40–48. [Google Scholar] [CrossRef]
- Anderson, R.M.; Tsepenko, V.V.; Gasteva, G.N.; Molokanov, A.A.; Sevan’kaev, A.V.; Goodhead, D.T. mFISH analysis reveals complexity of chromosome aberrations in individuals occupationally exposed to internal plutonium: A pilot study to assess the relevance of complex aberrations as biomarkers of exposure to high-LET alpha particles. Radiat. Res. 2005, 163, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigurdson, A.J.; Ha, M.; Hauptmann, M.; Bhatti, P.; Sram, R.J.; Beskid, O.; Tawn, E.J.; Whitehouse, C.A.; Lindholm, C.; Nakano, M.; et al. International study of factors affecting human chromosome translocations. Mutat. Res. 2008, 652, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roussel, C.; Witt, K.L.; Shaw, P.B.; Connor, T.H. Meta-analysis of chromosomal aberrations as a biomarker of exposure in healthcare workers occupationally exposed to antineoplastic drugs. Mutat. Res. 2019, 781, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Kinne, R.W.; Liehr, T.; Beensen, V.; Kunisch, E.; Zimmermann, T.; Holland, H.; Pfeiffer, R.; Stahl, H.D.; Lungershausen, W.; Hein, G.; et al. Mosaic chromosomal aberrations in synovial fibroblasts of patients with rheumatoid arthritis, osteoarthritis, and other inflammatory joint diseases. Arthritis Res. 2001, 3, 319–330. [Google Scholar] [CrossRef]
- Nakamura, N.; Nakano, M.; Kodama, Y.; Ohtaki, K.; Cologne, J.; Awa, A.A. Prediction of clonal chromosome aberration frequency in human blood lymphocytes. Radiat. Res. 2004, 161, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, M.; Kodama, Y.; Ohtaki, K.; Itoh, M.; Awa, A.A.; Cologne, J.; Kusunoki, Y.; Nakamura, N. Estimating the number of hematopoietic or lymphoid stem cells giving rise to clonal chromosome aberrations in blood T lymphocytes. Radiat. Res. 2004, 161, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Salassidis, K.; Schmid, E.; Peter, R.U.; Braselmann, H.; Bauchinger, M. Dicentric and translocation analysis for retrospective dose estimation in humans exposed to ionising radiation during the Chernobyl nuclear power plant accident. Mutat. Res. 1994, 311, 39–48. [Google Scholar] [CrossRef]
- Tucker, J.D.; Lee, D.A.; Ramsey, M.J.; Briner, J.; Olsen, L.; Moore, D.H. On the frequency of chromosome exchanges in a control population measured by chromosome painting. Mutat. Res. 1994, 313, 193–202. [Google Scholar] [CrossRef]
- Johnson, K.L.; Tucker, J.D.; Nath, J. Frequency, distribution and clonality of chromosome damage in human lymphocytes by multi-color FISH. Mutagenesis 1998, 13, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Lucas, J.N.; Deng, W.; Moore, D.; Hill, F.; Wade, M.; Lewis, A.; Sailes, F.; Kramer, C.; Hsieh, A.; Galvan, N. Background ionizing radiation plays a minor role in the production of chromosome translocations in a control population. Int. J. Radiat. Biol. 1999, 75, 819–827. [Google Scholar]
- Johnson, K.L.; Nath, J.; Pluth, J.M.; Tucker, J.D. The distribution of chromosome damage, non-reciprocal translocations and clonal aberrations in lymphocytes from Chernobyl clean-up workers. Mutat. Res. 1999, 439, 77–85. [Google Scholar] [CrossRef]
- Johnson, K.L.; Brenner, D.J.; Geard, C.R.; Nath, J.; Tucker, J.D. Chromosome aberrations of clonal origin in irradiated and unexposed individuals: Assessment and implications. Radiat. Res. 1999, 152, 1–5. [Google Scholar] [CrossRef]
- George, K.; Durante, M.; Willingham, V.; Cucinotta, F.A. Chromosome aberrations of clonal origin are present in astronauts’ blood lymphocytes. Cytogenet. Genome Res. 2004, 104, 245–251. [Google Scholar] [CrossRef]
- Gesk, S.; Martin-Subero, J.I.; Harder, L.; Luhmann, B.; Schlegelberger, B.; Calasanz, M.J.; Grote, W.; Siebert, R. Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia 2003, 17, 738–745. [Google Scholar] [CrossRef] [Green Version]
Subject | Sample | Cells Scored | Aberrant Cells (%) | Aberrations (Frequency) | Acentric Fragments (Frequency) | Translocations (Frequency) | Dicentrics (Frequency) | Complex Exchanges (Frequency) |
---|---|---|---|---|---|---|---|---|
Healthy donor 1 * | Control | 1827 | 22 (1.2 ± 0.3) | 26 (0.014 ± 0.003) | 7 (0.004 ± 0.001) | 8 b (0.004 ± 0.002) | 5 (0.003 ± 0.001) | 6 (0.003 ± 0.001) |
Healthy donor 2 | Control | 957 | 11 (1.1 ± 0.3) | 11 (0.011 ± 0.003) | 1 (0.001 ± 0.001) | 9 (0.009 ± 0.003) | 0 | 0 |
Patient 1 | Before | 318 | 15 (4.7 ± 1.2) | 17 (0.053 ± 0.013) | 3 (0.009 ± 0.005) | 10 (0.031 ± 0.010) | 3 (0.009 ± 0.005) | 1 (0.003 ± 0.003) |
6 weeks | 394 | 18 (4.6 ± 1.1) | 18 (0.046 ± 0.011) | 2 (0.005 ± 0.004) | 13 a,b (0.033 ± 0.010) | 0 | 3 (0.008 ± 0.004) | |
12 weeks | 331 | 10 (3.0 ± 0.9) | 11 (0.033 ± 0.010) | 2 (0.006 ± 0.004) | 8 (0.024 ± 0.008) | 0 | 1 (0.003 ± 0.003) | |
30 weeks | 288 | 11 (3.8 ± 1.1) | 13 (0.045 ± 0.012) | 0 | 8 a (0.027 ± 0.010) | 2 (0.007 ± 0.005) | 3 (0.010 ± 0.006) | |
Patient 2 | Before | 345 | 6 (1.7 ± 0.7) | 7 (0.020 ± 0.008) | 0 | 5 b (0.014 ± 0.006) | 1 (0.003 ± 0.003) | 1 (0.003 ± 0.003) |
6 weeks | 421 | 4 (0.9 ± 0.5) | 5 (0.012 ± 0.005) | 0 | 4 b (0.009 ± 0.005) | 0 | 1 (0.002 ± 0.002) | |
12 weeks | 255 | 3 (1.2 ± 0.7) | 3 (0.012 ± 0.007) | 0 | 3 c (0.012 ± 0.007) | 0 | 0 | |
30 weeks | 334 | 9 (2.7 ± 0.9) | 9 (0.027 ± 0.010) | 3 (0.009 ± 0.005) | 5 (0.015 ± 0.007) | 1 (0.003 ± 0.003) | 0 |
Complex | Complex Size | Trans- | |
---|---|---|---|
Nr | C/A/B | Missible | |
Healthy Donor 1 | 1 | 2/2/3 | N |
2 | 2/2/3 | Y | |
3 | 3/3/3 | Y | |
4 | 4/5/6 | N | |
5 | 5/5/5 | N | |
6 | 5/5/6 | N | |
Healthy Donor 2 | 0 | ||
Patient 1 | 1 | 2/2/3 | Y |
2 | 3/3/4 | Y | |
3 | 3/4/4 | N | |
4 | 4/4/5 | Y | |
5 | 4/4/5 | N | |
6* | 4/6/6 | N | |
7 | 4/6/12 | Y | |
8 | 5/6/8 | N | |
Patient 2 | 1 * | 2/2/3 | Y |
2 | 3/3/3 | Y | |
Healthy Donor 1 0.25 Gy alpha- particles (in vitro) | 1 | 2/2/3 | N |
2 | 2/2/3 | Y | |
3 | 3/3/4 | N | |
4 | 3/3/4 | N | |
5 | 3/4/5 | N | |
6 | 3/4/6 | N | |
7 | 4/4/4 | N | |
8 | 4/4/5 | N | |
9 | 4/4/6 | N | |
10 | 5/5/7 | N | |
11 | 5/7/7 | N | |
12 | 5/7/11 | N | |
13 | 6/6/9 | N | |
14 | 6/6/9 | N | |
15 | 6/7/9 | N | |
16 | 7/8/11 | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paz, N.; Hartel, C.; Nasonova, E.; Donaubauer, A.-J.; Frey, B.; Ritter, S. Chromosome Aberrations in Lymphocytes of Patients Undergoing Radon Spa Therapy: An Explorative mFISH Study. Int. J. Environ. Res. Public Health 2021, 18, 10757. https://doi.org/10.3390/ijerph182010757
Paz N, Hartel C, Nasonova E, Donaubauer A-J, Frey B, Ritter S. Chromosome Aberrations in Lymphocytes of Patients Undergoing Radon Spa Therapy: An Explorative mFISH Study. International Journal of Environmental Research and Public Health. 2021; 18(20):10757. https://doi.org/10.3390/ijerph182010757
Chicago/Turabian StylePaz, Nerea, Carola Hartel, Elena Nasonova, Anna-Jasmina Donaubauer, Benjamin Frey, and Sylvia Ritter. 2021. "Chromosome Aberrations in Lymphocytes of Patients Undergoing Radon Spa Therapy: An Explorative mFISH Study" International Journal of Environmental Research and Public Health 18, no. 20: 10757. https://doi.org/10.3390/ijerph182010757
APA StylePaz, N., Hartel, C., Nasonova, E., Donaubauer, A. -J., Frey, B., & Ritter, S. (2021). Chromosome Aberrations in Lymphocytes of Patients Undergoing Radon Spa Therapy: An Explorative mFISH Study. International Journal of Environmental Research and Public Health, 18(20), 10757. https://doi.org/10.3390/ijerph182010757