Towards a Parsimonious Pathway Model of Modifiable and Mediating Risk Factors Leading to Diabetes Risk
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Respondents
2.2. Sociodemographic Factors
2.3. Estimation of Lifestyle Risk
2.4. Estimation of Physiological Load
2.5. Estimation of Diabetes Risk
2.6. Structural Equation Modelling
2.7. Post-Hoc Analyses
3. Results
3.1. Sample Characteristics and Comparisons with the National Population
3.2. Model A
3.3. Model B
3.4. Comparisons with Alternative Models
3.5. Sociodemographic Covariates
4. Discussion
4.1. Components of Lifestyle Risk
4.2. Physiological Load as a Mediator of Diabetes Risk
4.3. Diabetes Risk
4.4. Applications and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
95% CI | 95% confidence intervals |
BIC | Bayesian Information Criterion |
BMI | Body Mass Index |
CFI | Comparative Fit Index |
CRP | C-reactive protein |
DALY | Disability-Adjusted Life Years |
DBP | Diastolic blood pressure |
HbA1c | Glycosylated haemoglobin |
HDL | High-density lipoprotein |
IFLS(4/5) | Indonesian Family Life Survey (Wave 4/Wave 5) |
IPAQ | International Physical Activity Questionnaire |
IQR | Interquartile range |
LR1 | Lifestyle Risk component 1 |
LR2 | Lifestyle Risk component 2 |
MET | Metabolic Equivalent of Task |
PCA | Principal component analysis |
RMSEA | Root mean squared error of approximation |
RPR | Resting pulse rate |
SBP | Systolic blood pressure |
SEM | Structural equation modelling |
SRMR | Standardized root mean squared residual |
TLI | Tucker-Lewis Index |
WHO | World Health Organisation |
References
- World Health Organization. Projections of Mortality and Causes of Death, 2016 to 2060. Available online: https://www.who.int/healthinfo/global_burden_disease/projections/en/ (accessed on 19 March 2021).
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, Regional, and National Burden and Trend of Diabetes in 195 Countries and Territories: An Analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Report on Diabetes. Available online: https://www.who.int/publications/i/item/9789241565257 (accessed on 14 December 2020).
- International Diabetes Federation. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Tuso, P. Prediabetes and Lifestyle Modification: Time to Prevent a Preventable Disease. Perm. J. 2014, 18, 88–93. [Google Scholar] [CrossRef]
- Monterrosa, A.E.; Haffner, S.M.; Stern, M.P.; Hazuda, H.P. Sex Difference in Lifestyle Factors Predictive of Diabetes in Mexican-Americans. Diabetes Care 1995, 18, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Persson, P.G.; Carlsson, S.; Svanstrom, L.; Ostenson, C.G.; Efendic, S.; Grill, V. Cigarette Smoking, Oral Moist Snuff Use and Glucose Intolerance. J. Intern. Med. 2000, 248, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Quatromoni, P.A.; Copenhafer, D.L.; D’Agostino, R.B.; Millen, B.E. Dietary Patterns Predict the Development of Overweight in Women. J. Am. Diet. Assoc. 2002, 102, 1239–1246. [Google Scholar] [CrossRef]
- Amalia, B.; Cadogan, S.L.; Prabandari, Y.S.; Filippidis, F.T. Socio-Demographic Inequalities in Cigarette Smoking in Indonesia, 2007 to 2014. Prev. Med. 2019, 123, 27–33. [Google Scholar] [CrossRef]
- Christiani, Y.; Byles, J.E.; Tavener, M.; Dugdale, P. Gender Inequalities in Noncommunicable Disease Risk Factors among Indonesian Urban Population. Asia-Pacific J. Public Health 2015, 28, 134–145. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2010. Available online: http://www.who.int/nmh/publications/ncd_report2010/en/ (accessed on 31 August 2020).
- de Rekeneire, N.; Peila, R.; Ding, J.; Colbert, L.H.; Visser, M.; Shorr, R.I.; Kritchevsky, S.B.; Kuller, L.H.; Strotmeyer, E.S.; Schwartz, A.V.; et al. Diabetes, Hyperglycemia, and Inflammation in Older Individuals: The Health, Aging and Body Composition Study. Diabetes Care 2006, 29, 1902–1908. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, J.P.; Thakur, J.S.; Jeet, G.; Jain, S. Structural Equation Modeling to Identify the Risk Factors of Diabetes in the Adult Population of North India. Trop. Med. Health 2018, 46, 23. [Google Scholar] [CrossRef] [Green Version]
- Lidfeldt, J.; Nerbrand, C.; Samsioe, G.; Agardh, C.D. Women Living Alone Have an Increased Risk to Develop Diabetes, Which Is Explained Mainly by Lifestyle Factors. Diabetes Care 2005, 28, 2531–2536. [Google Scholar] [CrossRef] [Green Version]
- Ng, R.; Sutradhar, R.; Yao, Z.; Wodchis, W.P.; Rosella, L.C. Smoking, Drinking, Diet and Physical Activity - Modifiable Lifestyle Risk Factors and Their Associations with Age to First Chronic Disease. Int. J. Epidemiol. 2020, 49, 113–130. [Google Scholar] [CrossRef]
- Bardenheier, B.H.; Bullard, K.M.; Caspersen, C.J.; Cheng, Y.J.; Gregg, E.W.; Geiss, L.S. Novel Use of Structural Equation Models to Examine Factors Associated with Prediabetes among Adults Aged 50 Years and Older: National Health and Nutrition Examination Survey 2001-2006. Diabetes Care 2013, 36, 2655–2662. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.S. The Epidemic of Obesity and Diabetes: Trends and Treatments. Texas Hear. Inst. J. 2011, 38, 142–144. [Google Scholar]
- Forrester, S.N.; Leoutsakos, J.-M.; Gallo, J.J.; Thorpe, R.J., Jr.; Seeman, T.E. Association between Allostatic Load and Health Behaviours: A Latent Class Approach. J. Epidemiol. Community Health 2019, 73, 340–345. [Google Scholar] [CrossRef]
- Gay, J.L.; Salinas, J.J.; Buchner, D.M.; Mirza, S.; Kohl, H.W.; Fisher-Hoch, S.P.; McCormick, J.B. Meeting Physical Activity Guidelines Is Associated with Lower Allostatic Load and Inflammation in Mexican Americans. J. Immigr. Minor. Health 2015, 17, 574–581. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Atlas on Cardiovascular Disease Prevention and Control. Available online: http://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/ (accessed on 9 September 2020).
- Paradis, A.M.; Godin, G.; Pérusse, L.; Vohl, M.C. Associations between Dietary Patterns and Obesity Phenotypes. Int. J. Obes. 2009, 33, 1419–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, M.B.; Hu, F.B. Primary Prevention of Diabetes: What Can Be Done and How Much Can Be Prevented? Annu. Rev. Public Health 2005, 26, 445–467. [Google Scholar] [CrossRef] [PubMed]
- Fogelholm, M. Physical Activity, Fitness and Fatness: Relations to Mortality, Morbidity and Disease Risk Factors. A Systematic Review. Obes. Rev. 2010, 11, 202–221. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.; Al-Mallah, M.; Keteyian, S.; Brawner, C.; Ehrman, J.; Sakr, S. Predicting Diabetes Mellitus Using SMOTE and Ensemble Machine Learning Approach: The Henry Ford ExercIse Testing (FIT) Project. PLoS ONE 2017, 12, e0179805. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.D.; Dhakal, C.K. Predicting Type 2 Diabetes Using Logistic Regression and Machine Learning Approaches. Int. J. Environ. Res. Public Health 2021, 18, 7346. [Google Scholar] [CrossRef]
- Strauss, J.; Witoelar, F.; Sikoki, B. The Fifth Wave of the Indonesia Family Life Survey: Overview and Field Report; RAND Labor and Population; WR-1143/1-NIA/NICHD; RAND Corporation: Laguna Hills, CA, USA, 2016. [Google Scholar] [CrossRef]
- Heo, M.; Kim, R.S.; Wylie-Rosett, J.; Allison, D.B.; Heymsfield, S.B.; Faith, M.S. Inverse Association between Fruit and Vegetable Intake and BMI Even after Controlling for Demographic, Socioeconomic and Lifestyle Factors. Obes. Facts 2011, 4, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Di Milia, L.; Vandelanotte, C.; Duncan, M.J. The Association between Short Sleep and Obesity after Controlling for Demographic, Lifestyle, Work and Health Related Factors. Sleep Med. 2013, 14, 319–323. [Google Scholar] [CrossRef]
- Finkelstein, E.A.; Chay, J.; Bajpai, S. The Economic Burden of Self-Reported and Undiagnosed Cardiovascular Diseases and Diabetes on Indonesian Households. PLoS ONE 2014, 9, 99572. [Google Scholar] [CrossRef]
- Ananta, A.; Arifin, E.N.; Hasbullah, M.S.; Handayani, N.B.; Pramono, W. Demography of Indonesia’s Ethnicity; Institute of Southeast Asian Studies: Singapore, 2015. [Google Scholar]
- Hussain, M.A.; Al Mamun, A.; Reid, C.; Huxley, R.R. Prevalence, Awareness, Treatment and Control of Hypertension in Indonesian Adults Aged ≥40 Years: Findings from the Indonesia Family Life Survey (IFLS). PLoS ONE 2016, 11, e0160922. [Google Scholar] [CrossRef] [Green Version]
- Blasio, A.D.; Donato, F.D.; Mazzocco, C. Automatic Report of the International Physical Activity Questionnaire. Available online: https://sites.google.com/site/theipaq/ (accessed on 18 May 2020).
- Baker, P.; Friel, S. Processed Foods and the Nutrition Transition: Evidence from Asia. Obes. Rev. 2014, 15, 564–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micha, R.; Shulkin, M.L.; Peñalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic Effects and Optimal Intakes of Foods and Nutrients for Risk of Cardiovascular Diseases and Diabetes: Systematic Reviews and Meta-Analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS ONE 2017, 12, e0175149. [Google Scholar] [CrossRef] [PubMed]
- Bollen, K.A.; Bauldry, S. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates. Psychol. Methods 2011, 16, 265–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotos-Prieto, M.; Bhupathiraju, S.N.; Falcón, L.M.; Gao, X.; Tucker, K.L.; Mattei, J. A Healthy Lifestyle Score Is Associated with Cardiometabolic and Neuroendocrine Risk Factors among Puerto Rican Adults. J. Nutr. 2015, 145, 1531–1540. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree Test For The Number Of Factors. Multivariate Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Franklin, S.B.; Gibson, D.J.; Robertson, P.A.; Pohlmann, J.T.; Fralish, J.S. Parallel Analysis: A Method for Determining Significant Principal Components. J. Veg. Sci. 1995, 6, 99–106. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Stellar, E. Stress and the Individual: Mechanisms Leading to Disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Stress, Adaptation, and Disease: Allostasis and Allostatic Load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- McEwen, B.S. Protective and Damaging Effects of Stress Mediators. N. Engl. J. Med. 1998, 338, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Bays, H.E.; Chapman, R.H.; Grandy, S. The Relationship of Body Mass Index to Diabetes Mellitus, Hypertension and Dyslipidaemia: Comparison of Data from Two National Surveys. Int. J. Clin. Pract. 2007, 61, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; ó Hartaigh, B.; Vatten, L.J. Resting Heart Rate and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis of Cohort Studies. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Tsumura, K.; Suematsu, C.; Endo, G.; Fujii, S.; Okada, K. High Normal Blood Pressure, Hypertension, and the Risk of Type 2 Diabetes in Japanese Men: The Osaka Health Survey. Diabetes Care 1999, 22, 1683–1687. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms Linking Obesity to Insulin Resistance and Type 2 Diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef]
- Wang, X.; Bao, W.; Liu, J.; Ouyang, Y.Y.; Wang, D.; Rong, S.; Xiao, X.; Shan, Z.L.; Zhang, Y.; Yao, P.; et al. Inflammatory Markers and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Care 2013, 36, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Gress, T.W.; Nieto, F.J.; Shahar, E.; Wofford, M.R.; Brancati, F.L. Hypertension and Antihypertensive Therapy as Risk Factors for Type 2 Diabetes Mellitus. N. Engl. J. Med. 2000, 342, 905–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herningtyas, E.H.; Hu, P.; Edenfield, M.; Strauss, J.; Crimmins, E.; Witoelar, F.; Yuan, Z.; Jung, K.K.; Thomas, D.; Sikoki, B. Dried Blood Spot User’s Guide for the Indonesia Family Life Survey, Wave 5; RAND Labor and Population; WR-1143/6-NIA/NICHD; RAND Corporation: Laguna Hills, CA, USA, 2017. [Google Scholar]
- Slopen, N.; Non, A.; Williams, D.R.; Roberts, A.L.; Albert, M.A. Childhood Adversity, Adult Neighborhood Context, and Cumulative Biological Risk for Chronic Diseases in Adulthood. Psychosom. Med. 2014, 76, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Nishida, C.; Barba, C.; Cavalli-Sforza, T.; Cutter, J.; Deurenberg, P.; Darnton-Hill, I.; Deurenberg-Yap, M.; Gill, T.; James, P.; Ko, G.; et al. Appropriate Body-Mass Index for Asian Populations and Its Implications for Policy and Intervention Strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Seccareccia, F.; Pannozzo, F.; Dima, F.; Minoprio, A.; Menditto, A.; Lo Noce, C.; Giampaoli, S. Heart Rate as a Predictor of Mortality: The MATISS Project. Am. J. Public Health 2001, 91, 1258–1263. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 Report. J. Am. Med. Assoc. 2003, 289, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. C-Reactive Protein: A Simple Test to Help Predict Risk of Heart Attack and Stroke. Circulation 2003, 108, e81–e85. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Edenfield, M.; Potter, A.; Kale, V.; Risbud, A.; Williams, S.; Lee, J.; Bloom, D.E.; Crimmins, E.; Seeman, T. Validation and Modification of Dried Blood Spot-Based Glycosylated Hemoglobin Assay for the Longitudinal Aging Study in India. Am. J. Hum. Biol. 2015, 27, 579–581. [Google Scholar] [CrossRef] [Green Version]
- Gunzler, D.; Chen, T.; Wu, P.; Zhang, H. Introduction to Mediation Analysis with Structural Equation Modeling. Shanghai Arch. Psychiatry 2013, 25, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Byrne, B.M. Choosing Structural Equation Modeling Computer Software: Snapshots of LISREL, EQS, AMOS, and Mplus. In R. Hoyle, Handbook of Structural Equation Modeling; The Guilford Press: New York, NY, USA, 2012. [Google Scholar]
- West, S.G.; Taylor, A.B.; Wu, W. Model Fit and Model Selection in Structural Equation Modeling. In R. Hoyle, Handbook of Structural Equation Modeling; The Guilford Press: New York, NY, USA, 2012. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 14; StataCorp LP: College Station, TX, USA, 2015. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2020. [Google Scholar]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research, Northwestern University, Evanston, Illinois, USA, Version 1.9.12. Comprehensive R Archive Network (CRAN), Northwestern University: Evanston, IL, USA, 2019. [Google Scholar]
- Dinno, A. Paran: Horn’s Test of Principal Components/Factors, Version 1.5.2. Comprehensive R Archive Network (CRAN), Portland State University: Portland, OR, USA, 2018. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- United Nations Statistics Division. Population by Sex and Urban/Rural Residence. Available online: http://data.un.org/Data.aspx?d=POP&f=tableCode%3A1 (accessed on 13 January 2021).
- Suryadinata, L.; Arifin, E.N.; Ananta, A. Indonesia’s Population: Ethnicity and Religion in a Changing Political Landscape; Institute of Southeast Asian Studies: Singapore, 2003. [Google Scholar]
- Statistics Indonesia-Badan Pusat Statistik-BPS; National Population and Family Planning Board-BKKBN/Indonesia; Kementerian Kesehatan-Kemenkes-Ministry of Health/Indonesia; ICF International. Indonesia Demographic and Health Survey 2012; BPS, BKKBN, Kemenkes, and ICF International: Jakarta, Indonesia, 2013. [Google Scholar]
- World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation (WHO/NMH/CHP/CPM/11.1). Available online: https://www.who.int/diabetes/publications/diagnosis_diabetes2011/en/ (accessed on 8 January 2021).
- The National Institute of Health Research and Development. National Report on Basic Health Research, RISKESDAS; Indonesia Ministry of Health: Jakarta, Indonesia, 2013. [Google Scholar]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour. Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 8 January 2021).
- Kaminsky, L.A.; Montoye, A.H.K. Physical Activity and Health: What Is the Best Dose? Am. Heart Assoc. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, J.P.; Thakur, J.S.; Jeet, G.; Chawla, S.; Jain, S.; Pal, A.; Prasad, R.; Saran, R. Prevalence and Risk Factors of Diabetes in a Large Community-Based Study in North India: Results from a STEPS Survey in Punjab, India. Diabetol. Metab. Syndr. 2017, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Roman-Urrestarazu, A.; Ali, F.M.H.; Reka, H.; Renwick, M.J.; Roman, G.D.; Mossialos, E. Structural Equation Model for Estimating Risk Factors in Type 2 Diabetes Mellitus in a Middle Eastern Setting: Evidence from the STEPS Qatar. BMJ Open Diabetes Res. Care 2016, 4, e000231. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.G. Simultaneous Statistical Inference, 2nd ed.; Springer Series in Statistics; Springer New York: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Leitzmann, M.; Tonstad, S.; Vatten, L.J. Physical Activity and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis. Eur. J. Epidemiol. 2015, 30, 529–542. [Google Scholar] [CrossRef]
- Mills, K.T.; Stefanescu, A.; He, J. The Global Epidemiology of Hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk Factors for Type 2 Diabetes Mellitus: An Exposure-Wide Umbrella Review of Meta-Analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar] [CrossRef]
- Willi, C.; Bodenmann, P.; Ghali, W.A.; Faris, P.D.; Cornuz, J. Active Smoking and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Am. Med. Assoc. 2007, 298, 2654–2664. [Google Scholar] [CrossRef] [PubMed]
- Jarrin, D.C.; Alvaro, P.K.; Bouchard, M.A.; Jarrin, S.D.; Drake, C.L.; Morin, C.M. Insomnia and Hypertension: A Systematic Review. Sleep Med. Rev. 2018, 41, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Buxton, O.M.; Marcelli, E. Short and Long Sleep Are Positively Associated with Obesity, Diabetes, Hypertension, and Cardiovascular Disease among Adults in the United States. Soc. Sci. Med. 2010, 71, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Van Cauter, E. Sleep Influences on Obesity, Insulin Resistance, and Risk of Type 2 Diabetes. Metabolism 2018, 84, 56–66. [Google Scholar] [CrossRef]
- Pengpid, S.; Peltzer, K. The Prevalence of Underweight, Overweight/Obesity and Their Related Lifestyle Factors in Indonesia, 2014–15. AIMS Public Health 2017, 4, 633–649. [Google Scholar] [CrossRef]
- Seixas, A.A.; Vallon, J.; Barnes-Grant, A.; Butler, M.; Langford, A.T.; Grandner, M.A.; Schneeberger, A.R.; Huthchinson, J.; Zizi, F.; Jean-Louis, G. Mediating Effects of Body Mass Index, Physical Activity, and Emotional Distress on the Relationship between Short Sleep and Cardiovascular Disease. Medicine (Baltim.) 2018, 97, e11939. [Google Scholar] [CrossRef]
- Fogelholm, M.; Kukkonen-Harjula, K. Does Physical Activity Prevent Weight Gain—A Systematic Review. Obes. Rev. 2000, 1, 95–111. [Google Scholar] [CrossRef]
- Reimers, A.; Knapp, G.; Reimers, C.-D. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef] [Green Version]
- Bakker, E.A.; Sui, X.; Brellenthin, A.G.; Lee, D. Physical Activity and Fitness for the Prevention of Hypertension. Curr. Opin. Cardiol. 2018, 33, 394–401. [Google Scholar] [CrossRef]
- Kasapis, C.; Thompson, P.D. The Effects of Physical Activity on Serum C-Reactive Protein and Inflammatory Markers: A Systematic Review. J. Am. Coll. Cardiol. 2005, 45, 1563–1569. [Google Scholar] [CrossRef] [Green Version]
- Juster, R.P.; McEwen, B.S.; Lupien, S.J. Allostatic Load Biomarkers of Chronic Stress and Impact on Health and Cognition. Neurosci. Biobehav. Rev. 2010, 35, 2–16. [Google Scholar] [CrossRef]
- Steptoe, A.; Hackett, R.A.; Lazzarino, A.I.; Bostock, S.; La Marca, R.; Carvalho, L.A.; Hamer, M. Disruption of Multisystem Responses to Stress in Type 2 Diabetes: Investigating the Dynamics of Allostatic Load. Proc. Natl. Acad. Sci. USA 2014, 111, 15693–15698. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, A.C.; Nixon Andreasson, A.; Wändell, P.E. Poor Self-Rated Health Is Not Associated with a High Total Allostatic Load in Type 2 Diabetic Patients - But High Blood Pressure Is. Diabetes Metab. 2011, 37, 446–451. [Google Scholar] [CrossRef]
- Seeman, T.; Epel, E.; Gruenewald, T.; Karlamangla, A.; McEwen, B.S. Socio-Economic Differentials in Peripheral Biology: Cumulative Allostatic Load. Ann. N. Y. Acad. Sci. 2010, 1186, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Poulter, N. Global Risk of Cardiovascular Disease. Heart 2003, 89 (Suppl. 2), ii2–ii5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazic, S.E. Why We Should Use Simpler Models If the Data Allow This: Relevance for ANOVA Designs in Experimental Biology. BMC Physiol. 2008, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soewondo, P.; Ferrario, A.; Tahapary, D.L. Challenges in Diabetes Management in Indonesia: A Literature Review. Global. Health 2013, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
IFLS5 Sample | IFLS4 Sample | |||||
---|---|---|---|---|---|---|
Characteristics | n (%) or Median (IQR) | Proportion of Sample beyond Clinical Threshold | n (%) or Median (IQR) | Proportion of Sample beyond Clinical Threshold | ||
Age, median (IQR) | 40.00 | (31.0, 56.0) | - | 55.00 | (49.0, 62.0) | - |
Sex, n (%) | ||||||
Male | 2078 | (53.0%) | - | 879 | (43.4%) | - |
Female | 1854 | (47.0%) | - | 1148 | (56.6%) | - |
Ethnicity, n (%) | ||||||
Javanese | 1853 | (47.6%) | - | 982 | (48.4%) | - |
Sundanese | 425 | (10.8%) | - | 228 | (11.2%) | - |
Others | 1654 | (41.6%) | - | 817 | (40.3%) | - |
Highest Education level, n (%) | ||||||
No education | 235 | (5.93%) | - | 360 | (17.8%) | - |
Elementary | 1360 | (34.6%) | - | 1139 | (56.2%) | - |
High school | 1810 | (46.1%) | - | 424 | (20.9%) | - |
College/University | 527 | (13.4%) | - | 104 | (5.13%) | - |
Lifestyle Risk indicators, median (IQR) | ||||||
Physical activity levels (MET h/w) | 31.54 | (8.25, 86.7) | - | 48.96 | (17.0, 113.0) | - |
Smoking (cigarettes smoked in a day) | 0.00 | (0.00, 10.0) | - | 0.00 | (0.00, 6.00) | - |
Consumption frequency of unhealthy food (days in a week) | 5.00 | (2.00, 7.00) | - | - | - | - |
Sleep duration (h) | 7.00 | (5.67, 8.00) | - | - | - | - |
Physiological Load indicators, median (IQR) | ||||||
BMI (kg/m2) | 22.56 | (19.9, 25.9) | 30.7% | 22.12 | (19.7, 25.4) | 26.9% |
Resting pulse rate (bpm) | 74.67 | (68.0, 82.3) | 9.58% | 75.33 | (69.3, 82.0) | 10.2% |
CRP (mg/L) | 0.75 | (0.263, 2.05) | 0.375% | 0.84 | (0.350, 1.99) | 0.00% |
Systolic blood pressure (mmHg) | 125.67 | (116, 138) | 22.9% | 136.00 | (124, 152) | 34.9% |
Diastolic blood pressure (mmHg) | 78.00 | (71.7, 85.7) | 14.9% | 80.17 | (73.8, 87.5) | 18.8% |
Diabetes Risk, median (IQR) | ||||||
HbA1c level (% level) | 5.45 | (5.10, 5.85) | 6.83% | - | - | - |
Lifestyle Risk Indicators (Model A) | LR1 | LR2 |
---|---|---|
Physical inactivity | −0.75 | 0.12 |
Smoking | 0.74 | 0.14 |
Consumption frequency of unhealthy food | −0.10 | 0.72 |
Insufficient sleep | 0.13 | 0.71 |
Lifestyle Risk Indicators (Model B) | LR1 | LR2 |
Physical inactivity | −0.75 | 0.66 |
Smoking | 0.75 | 0.66 |
Model A | Model B | ||||||||
---|---|---|---|---|---|---|---|---|---|
Standardized Estimate | p-Value | 95% CI | Standardized Estimate | p-Value | 95% CI | ||||
Direct effects on Diabetes Risk | |||||||||
LR1 | −0.012 | 0.461 | (−0.045, | 0.020) | 0.007 | 0.817 | (−0.054, | 0.069) | |
LR2 | 0.033 | <0.050 | (0.002, | 0.064) | 0.032 | 0.244 | (−0.022, | 0.086) | |
Indirect effects on Diabetes Risk via Physiological Load mediator | |||||||||
LR1 | −0.011 | <0.050 | (−0.019, | −0.004) | −0.003 | 0.633 | (−0.013, | 0.008) | |
LR2 | 0.009 | <0.050 | (0.003, | 0.016) | 0.010 | <0.050 | (0.001, | 0.020) | |
Model fit indices | RMSEA | 0.014 | 0.069 | ||||||
CFI | 1.000 | 0.988 | |||||||
TLI | 0.989 | 0.601 | |||||||
SRMR | 0.002 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, Y.-C.L.; Lee, V.S.Y.; Ho, M.-H.R.; Lin, G.J.; Thumboo, J. Towards a Parsimonious Pathway Model of Modifiable and Mediating Risk Factors Leading to Diabetes Risk. Int. J. Environ. Res. Public Health 2021, 18, 10907. https://doi.org/10.3390/ijerph182010907
Ho Y-CL, Lee VSY, Ho M-HR, Lin GJ, Thumboo J. Towards a Parsimonious Pathway Model of Modifiable and Mediating Risk Factors Leading to Diabetes Risk. International Journal of Environmental Research and Public Health. 2021; 18(20):10907. https://doi.org/10.3390/ijerph182010907
Chicago/Turabian StyleHo, Yi-Ching Lynn, Vivian Shu Yi Lee, Moon-Ho Ringo Ho, Gladis Jing Lin, and Julian Thumboo. 2021. "Towards a Parsimonious Pathway Model of Modifiable and Mediating Risk Factors Leading to Diabetes Risk" International Journal of Environmental Research and Public Health 18, no. 20: 10907. https://doi.org/10.3390/ijerph182010907
APA StyleHo, Y. -C. L., Lee, V. S. Y., Ho, M. -H. R., Lin, G. J., & Thumboo, J. (2021). Towards a Parsimonious Pathway Model of Modifiable and Mediating Risk Factors Leading to Diabetes Risk. International Journal of Environmental Research and Public Health, 18(20), 10907. https://doi.org/10.3390/ijerph182010907