Adult-Attention Deficit Hyperactive Disorder Symptoms Seem Not to Influence the Outcome of an Enhanced Agonist Opioid Treatment: A 30-Year Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Assessment
2.2.1. Clinical Global Evaluation (CGI) Rating Scale
2.2.2. Adult ADHD Self-Report Scale (ASRS)
2.2.3. Other Psychiatric Comorbidities
2.3. Data Analysis
3. Results
3.1. Cohort Characteristics
3.2. Demographic, Clinical and Treatment Outcome Differences between HUD Patients with and without ADHD Symptoms
4. Discussion
4.1. Epidemiology
4.2. Demographic, Clinical and Treatment Outcome Characteristics According to the Presence of ADHD Symptomatology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hesson, J.; Fowler, K. Prevalence and Correlates of Self-Reported ADD/ADHD in a Large National Sample of Canadian Adults. J. Atten. Disord. 2018, 22, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Adler, L.; Barkley, R.; Biederman, J.; Conners, C.K.; Demler, O.; Faraone, S.V.; Greenhill, L.L.; Howes, M.J.; Secnik, K.; et al. The Prevalence and Correlates of Adult ADHD in the United States: Results from the National Comorbidity Survey Replication. Am. J. Psychiatry 2006, 163, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Kooij, J.J.S.; Huss, M.; Asherson, P.; Akehurst, R.; Beusterien, K.; French, A.; Sasané, R.; Hodgkins, P. Distinguishing Comorbidity and Successful Management of Adult ADHD. J. Atten. Disord. 2012, 16, 3S–19S. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A. Distinguishing sluggish cognitive tempo from attention-deficit/hyperactivity disorder in adults. J. Abnorm. Psychol. 2012, 121, 978–990. [Google Scholar] [CrossRef]
- Mao, A.R.; Findling, R.L. Comorbidities in Adult Attention-Deficit/Hyperactivity Disorder: A Practical Guide to Diagnosis in Primary Care. Postgrad. Med. 2014, 126, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Biederman, J.; Mick, E. The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychol. Med. 2005, 36, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.G.; Mannuzza, S.; Olazagasti, M.A.R.; Roizen, E.; Hutchison, J.A.; Lashua, E.C.; Castellanos, F.X. Clinical and Functional Outcome of Childhood Attention-Deficit/Hyperactivity Disorder 33 Years Later. Arch. Gen. Psychiatry 2012, 69, 1295–1303. [Google Scholar] [CrossRef] [Green Version]
- Brookes, K.; Xu, X.; Chen, W.; Zhou, K.; Neale, B.; Lowe, N.; Aneey, R.; Franke, B.; Gill, M.; Ebstein, R.; et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: Association signals in DRD4, DAT1 and 16 other genes. Mol. Psychiatry 2006, 11, 934–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solberg, B.S.; Halmøy, A.; Engeland, A.; Igland, J.; Haavik, J.; Klungsøyr, K. Gender differences in psychiatric comorbidity: A population-based study of 40 000 adults with attention deficit hyperactivity disorder. Acta Psychiatr. Scand. 2018, 137, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Akiskal, H.S.; Ames, M.; Birnbaum, H.; Greenberg, P.; Hirschfeld, R.M.; Jin, R.; Merikangas, K.R.; Simon, G.E.; Wang, P.S. Prevalence and effects of mood disorders on work performance in a nationally representative sample of U.S. workers. Am. J. Psychiatry 2006, 163, 1561–1568. [Google Scholar] [CrossRef]
- Wilens, T.E.; Martelon, M.; Joshi, G.; Bateman, C.; Fried, R.; Petty, C.; Biederman, J. Does ADHD Predict Substance-Use Disorders? A 10-Year Follow-up Study of Young Adults With ADHD. J. Am. Acad. Child. Adolesc. Psychiatry 2011, 50, 543–553. [Google Scholar] [CrossRef] [Green Version]
- Young, J.T.; Carruthers, S.; Kaye, S.; Allsop, S.; Gilsenan, J.; Degenhardt, L.; Van De Glind, G.; Brink, W.V.D.; Preen, D. Comorbid attention deficit hyperactivity disorder and substance use disorder complexity and chronicity in treatment-seeking adults. Drug Alcohol Rev. 2015, 34, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Katzman, M.A.; Bilkey, T.S.; Chokka, P.R.; Fallu, A.; Klassen, L.J. Adult ADHD and comorbid disorders: Clinical implications of a dimensional approach. BMC Psychiatry 2017, 17, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, A.J.; Gelernter, J.; Chan, G.; Weiss, R.D.; Brady, K.T.; Farrer, L.; Kranzler, H.R. Correlates of co-occurring ADHD in drug-dependent subjects: Prevalence and features of substance dependence and psychiatric disorders. Addict. Behav. 2008, 33, 1199–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooij, J.J.S.; Rösler, M.; Philipsen, A.; Wächter, S.; Dejonckheere, J.; Van Der Kolk, A.; Van Agthoven, M.; Schäuble, B. Predictors and impact of non-adherence in adults with attention-deficit/hyperactivity disorder receiving OROS methylphenidate: Results from a randomized, placebo-controlled trial. BMC Psychiatry 2013, 13, 36. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Raga, J.; Szerman, N.; Knecht, C.; De Alvaro, R. Attention deficit hyperactivity disorder and dual disorders. Educational needs for an underdiagnosed condition. Int. J. Adolesc. Med. Health 2013, 25, 231–243. [Google Scholar] [CrossRef]
- Perugi, G.; Pallucchini, A.; Rizzato, S.; Pinzone, V.; De Rossi, P. Current and emerging pharmacotherapy for the treatment of adult attention deficit hyperactivity disorder (ADHD). Expert Opin. Pharmacother. 2019, 20, 1457–1470. [Google Scholar] [CrossRef]
- Khantzian, E.J.; Albanese, M.J. Self-medication, bipolar disorders, and stimulant dependence. J. Clin. Psychiatry 2009, 70, 935–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtmann, M.; Buchmann, A.F.; Esser, G.; Schmidt, M.H.; Banaschewski, T.; Laucht, M. The Child Behavior Checklist-Dysregulation Profile predicts substance use, suicidality, and functional impairment: A longitudinal analysis. J. Child. Psychol. Psychiatry 2011, 52, 139–147. [Google Scholar] [CrossRef]
- Schuckit, M.; Petrich, J.; Chiles, J. Hyperactivity: Diagnostic confusion. J. Nerv. Ment. Dis. 1978, 166, 79–87. [Google Scholar] [CrossRef]
- Eyre, S.L.; Rounsaville, B.J.; Kleber, H.D. History of Childhood Hyperactivity in a Clinic Population of Opiate Addicts. J. Nerv. Ment. Dis. 1982, 170, 522–529. [Google Scholar] [CrossRef]
- King, V.L.; Brooner, R.K.; Kidorf, M.S.; Stoller, K.B.; Mirsky, A.F. Attention Deficit Hyperactivity Disorder and Treatment Outcome in Opioid Abusers Entering Treatment. J. Nerv. Ment. Dis. 1999, 187, 487–495. [Google Scholar] [CrossRef]
- Kolpe, M.; Ba, G.A.C. Influence of Attention-Deficit/Hyperactivity Disorder Symptoms on Methadone Treatment Outcome. Am. J. Addict. 2007, 16, 46–48. [Google Scholar] [CrossRef]
- Manni, C.; Cipollone, G.; Pallucchini, A.; Maremmani, A.G.I.; Perugi, G.; Maremmani, I. Remarkable Reduction of Cocaine Use in Dual Disorder (Adult Attention Deficit Hyperactive Disorder/Cocaine Use Disorder) Patients Treated with Medications for ADHD. Int. J. Environ. Res. Public Health 2019, 16, 3911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dole, V.P.; Nyswander, M.E. A medical treatment for diacetylmorphine (heroin) addiction: A clinical trial with methadone hydrocloride. JAMA 1965, 193, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Dole, V.P.; Nyswander, M.E.; Warner, A. Successful treatment of 750 criminal addicts. JAMA 1968, 206, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, F.; Maremmani, A.G.I.; Maremmani, I. Nearly thirty years of experience of real-world long-term treatment with Agonist Opioids. Heroin Addict. Relat. Clin. Probl. 2020, 22, 41–48. [Google Scholar]
- Khantzian, E.J. The self-medication hypothesis of addictive disorders: Focus on heroin and cocaine dependence. Am. J. Psychiatry 1985, 142, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Khantzian, E.J. The Self-Medication Hypothesis of Substance Use Disorders: A Reconsideration and Recent Applications. Harv. Rev. Psychiatry 1997, 4, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Mariani, J.J.; Khantzian, E.J.; Levin, F.R. The self-medication hypothesis and psychostimulant treatment of cocaine dependence: An update. Am. J. Addict. 2013, 23, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spera, V.; Pallucchini, A.; Carli, M.; Maiello, M.; Maremmani, A.; Perugi, G.; Maremmani, I. Does Cannabis, Cocaine and Alcohol Use Impact Differently on Adult Attention Deficit/Hyperactivity Disorder Clinical Picture? J. Clin. Med. 2021, 10, 1481. [Google Scholar] [CrossRef]
- Spera, V.; Pallucchini, A.; Maiello, M.; Carli, M.; Maremmani, A.G.I.; Perugi, G.; Maremmani, I. Substance Use Disorder in Adult-Attention Deficit Hyperactive Disorder Patients: Patterns of Use and Related Clinical Features. Int. J. Environ. Res. Public Health 2020, 17, 3509. [Google Scholar] [CrossRef]
- Volkow, N.D.; Baler, R.D. NOW vs LATER brain circuits: Implications for obesity and addiction. Trends Neurosci. 2015, 38, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.J.; Greenwood, K.; Jackson, M.; Crowe, S.F. Cognitive Effects of Long-Term Benzodiazepine Use: A meta-analysis. CNS Drugs 2004, 18, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Deckersbach, T.; Moshier M.A., S.J.; Tuschen-Caffier, B.; Otto, M. Memory dysfunction in panic disorder: An investigation of the role of chronic benzodiazepine use. Depress. Anxiety 2011, 28, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Crowe, S.F.; Stranks, E.K. The Residual Medium and Long-term Cognitive Effects of Benzodiazepine Use: An Updated Meta-analysis. Arch. Clin. Neuropsychol. 2018, 33, 901–911. [Google Scholar] [CrossRef]
- Barker, M.J.; Greenwood, K.; Jackson, M.; Crowe, S.F. Persistence of cognitive effects after withdrawal from long-term benzodiazepine use: A meta-analysis. Arch. Clin. Neuropsychol. 2004, 19, 437–454. [Google Scholar] [CrossRef] [Green Version]
- Federico, A.; Mantovani, E.; Casari, R.; Bertoldi, A.; Lugoboni, F.; Tamburin, S. Adult attention-deficit/hyperactivity disorder symptoms, cognitive dysfunction and quality of life in high-dose use of benzodiazepine and Z-drug. J. Neural Transm. 2020, 128, 1109–1119. [Google Scholar] [CrossRef]
- Lugoboni, F.; Zamboni, L.; Mantovani, E.; Cibin, M.; Tamburin, S.; Gruppo InterSERT di Collaborazione Scientifica. Association between Adult Attention Deficit/Hyperactivity Disorder and Intravenous Misuse of Opioid and Benzodiazepine in Patients under Opioid Maintenance Treatment: A Cross-Sectional Multicentre Study. Eur. Addict. Res. 2020, 26, 263–273. [Google Scholar] [CrossRef]
- Maremmani, I.; Hill, D.; Scherbaum, N.; Auriacombe, M.; Bacciardi, S.; Benyamina, A.; Casella, P.; D’agnone, O.; Daulouede, J.-P.; Deruvo, G.; et al. Early-readmission after Agonist Opioid Treatment in five European countries. A drug addiction health policy challenge? Heroin Addict. Relat. Clin. Probl. 2021, 23, 69–79. [Google Scholar]
- Agarwal, R.; Goldenberg, M.; Perry, R.; Ishak, W.W. The quality of life of adults with attention deficit hyperactivity disorder: A systematic review. Innov. Clin. Neurosci. 2012, 9, 10–21. [Google Scholar] [PubMed]
- Mannuzza, S.; Klein, R.G.; Bessler, A.; Malloy, P.; LaPadula, M. Adult Outcome of Hyperactive Boys. Educational achievement, occupational rank, and psychiatric status. Arch. Gen. Psychiatry 1993, 50, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Tamm, L.; Trello-Rishel, K.; Riggs, P.; Nakonezny, P.A.; Acosta, M.; Bailey, G.; Winhusen, T. Predictors of treatment response in adolescents with comorbid substance use disorder and attention-deficit/hyperactivity disorder. J. Subst. Abus. Treat. 2013, 44, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, K.; Rounsaville, B.J. History and significance of childhood attention deficit disorder in treatment-seeking cocaine abusers. Compr. Psychiatry 1993, 34, 75–82. [Google Scholar] [CrossRef]
- Levin, F.R.; Evans, S.M.; Vosburg, S.K.; Horton, T.; Brooks, D.; Ng, J. Impact of attention-deficit hyperactivity disorder and other psychopathology on treatment retention among cocaine abusers in a therapeutic community. Addict. Behav. 2004, 29, 1875–1882. [Google Scholar] [CrossRef]
- Tang, Y.-L.; Hao, W. Improving drug addiction treatment in China. Addiction 2007, 102, 1057–1063. [Google Scholar] [CrossRef]
- Maremmani, I.; I Maremmani, A.G.; Rugani, F.; Rovai, L.; Pacini, M.; Bacciardi, S.; Deltito, J.; Dell’Osso, L.; Akiskal, H.S. Clinical presentations of substance abuse in bipolar heroin addicts at time of treatment entry. Ann. Gen. Psychiatry 2012, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, K.A.; Smith, M.; Guaderrama, M.M. Powerful behavioral interactions between methamphetamine and morphine. Pharmacol. Biochem. Behav. 2011, 99, 451–458. [Google Scholar] [CrossRef] [Green Version]
- DePaoli, A.M.; Hurley, K.M.; Yasada, K.; Reisine, T.; Bell, G. Distribution of κ Opioid Receptor mRNA in Adult Mouse Brain: An in Situ Hybridization Histochemistry Study. Mol. Cell. Neurosci. 1994, 5, 327–335. [Google Scholar] [CrossRef]
- Georges, F.; Normand, E.; Bloch, B.; Le Moine, C. Opioid receptor gene expression in the rat brain during ontogeny, with special reference to the mesostriatal system: An in situ hybridization study. Dev. Brain Res. 1998, 109, 187–199. [Google Scholar] [CrossRef]
- Liu-Chen, L.-Y. Agonist-induced regulation and trafficking of $kappa; opioid receptors. Life Sci. 2004, 75, 511–536. [Google Scholar] [CrossRef]
- Simonin, F.; Gaveriaux-Ruff, C.; Befort, K.; Matthes, H.; Lannes, B.; Micheletti, G.; Mattei, M.G.; Charron, G.; Bloch, B.; Kieffer, B. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc. Natl. Acad. Sci. USA 1995, 92, 7006–7010. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, K.; Raynor, K.; Kong, H.; Breder, C.D.; Takeda, J.; Reisine, T.; Bell, G.I. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc. Natl. Acad. Sci. USA 1993, 90, 6736–6740. [Google Scholar] [CrossRef] [Green Version]
- Bruchas, M.R.; Chavkin, C. Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology 2010, 210, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlezon, W.A.; Krystal, A.D. Kappa-Opioid Antagonists for Psychiatric Disorders: From Bench to Clinical Trials. Depress. Anxiety 2016, 33, 895–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlezon, W.A.; Thome, J.; Olson, V.G.; Lane-Ladd, S.B.; Brodkin, E.S.; Hiroi, N.; Duman, R.S.; Neve, R.L.; Nestler, E.J. Regulation of Cocaine Reward by CREB. Science 1998, 282, 2272–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoll, A.T.; Meloni, E.G.; Thomas, J.B.; Carroll, F.I.; Carlezon, W.A. Anxiolytic-Like Effects of κ-Opioid Receptor Antagonists in Models of Unlearned and Learned Fear in Rats. J. Pharmacol. Exp. Ther. 2007, 323, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Land, B.B.; Bruchas, M.R.; Lemos, J.; Xu, M.; Melief, E.J.; Chavkin, C. The Dysphoric Component of Stress Is Encoded by Activation of the Dynorphin -Opioid System. J. Neurosci. 2008, 28, 407–414. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, J.P.; Li, S.; Valdez, J.; Chavkin, T.; Chavkin, C. Social Defeat Stress-Induced Behavioral Responses are Mediated by the Endogenous Kappa Opioid System. Neuropsychopharmacology 2005, 31, 1241–1248. [Google Scholar] [CrossRef]
- Walker, B.M.; Koob, G.F. Pharmacological Evidence for a Motivational Role of κ-Opioid Systems in Ethanol Dependence. Neuropsychopharmacology 2007, 33, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Fuentealba, J.A.; Gysling, K.; Magendzo, K.; Andrés, M.E. Repeated administration of the selective kappa-opioid receptor agonist U-69593 increases stimulated dopamine extracellular levels in the rat nucleus accumbens. J. Neurosci. Res. 2006, 84, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Margolis, E.B.; Lock, H.; Chefer, V.I.; Shippenberg, T.S.; Hjelmstad, G.O.; Fields, H.L. opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc. Natl. Acad. Sci. USA 2006, 103, 2938–2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werling, L.L.; Brown, S.R.; Cox, B.M. Opioid receptor regulation of the release of norepinephrine in brain. Neuropharmacology 1987, 26, 987–996. [Google Scholar] [CrossRef]
- Mclaughlin, J.P.; Marton-Popovici, M.; Chavkin, C. Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J. Neurosci. 2003, 23, 5674–5683. [Google Scholar] [CrossRef] [PubMed]
- Creighton, C.J.; Ramabadran, K.; E Ciccone, P.; Liu, J.; Orsini, M.J.; Reitz, A.B. Synthesis and biological evaluation of the major metabolite of atomoxetine: Elucidation of a partial κ-opioid agonist effect. Bioorganic Med. Chem. Lett. 2004, 14, 4083–4085. [Google Scholar] [CrossRef] [PubMed]
- Fluegge, K. Atomoxetine, ADHD, and the ongoing debate about increased risk of suicidal behaviors: The understudied role of kappa opioid receptor agonism. Expert Opin. Drug Saf. 2016, 15, 1147. [Google Scholar] [CrossRef]
- Crawford, C.A.; Villafranca, S.W.; Cyr, M.C.; Farley, C.M.; Reichel, C.; Gheorghe, S.L.; Krall, C.M.; McDougall, S.A. Effects of early methylphenidate exposure on morphine- and sucrose-reinforced behaviors in adult rats: Relationship to dopamine D2 receptors. Brain Res. 2007, 1139, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Halladay, L.R.; Iñiguez, S.D.; Furqan, F.; Previte, M.C.; Chisum, A.M.; Crawford, C.A. Methylphenidate potentiates morphine-induced antinociception, hyperthermia, and locomotor activity in young adult rats. Pharmacol. Biochem. Behav. 2009, 92, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Wiley, M.D.; Poveromo, L.B.; Antapasis, J.; Herrera, C.M.; Guzmán, C.A.B. κ-Opioid System Regulates the Long-Lasting Behavioral Adaptations Induced by Early-Life Exposure to Methylphenidate. Neuropsychopharmacology 2008, 34, 1339–1350. [Google Scholar] [CrossRef]
- Gabilondo, A.M.; Meana, J.J.; Barturen, F.; Sastre, M.; García-Sevilla, J.A. μ-Opioid receptor and α2-adrenoceptor agonist binding sites in the postmortem brain of heroin addicts. Psychopharmacology 1994, 115, 135–140. [Google Scholar] [CrossRef]
- Wang, J.F.; Koopmans, H.S. Alterations of energy and substrate metabolism in rats with large and sustained changes in daily food intake. Am. J. Physiol. Integr. Comp. Physiol. 1995, 269 Pt. 2, R1475–R1480. [Google Scholar] [CrossRef]
- Kish, S.J.; Kalasinsky, K.S.; Derkach, P.; A Schmunk, G.; Guttman, M.; Ang, L.; Adams, V.; Furukawa, Y.; Haycock, J.W. Striatal Dopaminergic and Serotonergic Markers in Human Heroin Users. Neuropsychopharmacology 2001, 24, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Danos, P.; Van Roos, D.; Kasper, S.; Brömel, T.; Broich, K.; Krappel, C.; Solymosi, L.; Möller, H.-J. Enlarged cerebrospinal fluid spaces in opiate-dependent male patients: A stereological CT study. Neuropsychobiology 1998, 38, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danos, P.; Kasper, S.; Grünwald, F.; Klemm, E.; Krappel, C.; Broich, K.; Höflich, G.; Overbeck, B.; Biersack, H.; Möller, H. Pathological Regional Cerebral Blood Flow in Opiate-Dependent Patients during Withdrawal: A HMPAO-SPECT Study. Neuropsychobiology 1998, 37, 194–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerra, G.; Calbiani, B.; Zaimovic, A.; Sartori, R.; Ugolotti, G.; Ippolito, L.; Delsignore, R.; Rustichelli, P.; Fontanesi, B. Regional cerebral blood flow and comorbid diagnosis in abstinent opioid addicts. Psychiatry Res. Neuroimaging 1998, 83, 117–126. [Google Scholar] [CrossRef]
- Lyoo, I.K.; Pollack, M.H.; Silveri, M.M.; Ahn, K.H.; Diaz, C.I.; Hwang, J.; Kim, S.J.; Yurgelun-Todd, D.A.; Kaufman, M.; Renshaw, P.F. Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology 2005, 184, 139–144. [Google Scholar] [CrossRef]
- Rose, J.S.; Branchey, M.; Buydens-Branchey, L.; Stapleton, J.M.; Chasten, K.; Werrell, A.; Maayan, M.L. Cerebral perfusion in early and late opiate withdrawal: A technetium-99m-HMPAO SPECT study. Psychiatry Res. Neuroimaging 1996, 67, 39–47. [Google Scholar] [CrossRef]
- Pezawas, L.M.; Fischer, G.; Diamant, K.; Schneider, C.; Schindler, S.D.; Thurnher, M.; Plöchl, W.; Eder, H.; Kasper, S. Cerebral CT findings in male opioid-dependent patients: Stereological, planimetric and linear measurements. Psychiatry Res. Neuroimaging 1998, 83, 139–147. [Google Scholar] [CrossRef]
Total Sample N = 130 | Without A-ADHD Symptoms N = 35 | With A-ADHD Symptoms N = 95 | |||
---|---|---|---|---|---|
Median | Median | Median | z | p | |
Current age | 39.00 | 44.00 | 39.00 | −2.23 | 0.026 |
Length of observation years | 6.53 | 7.62 | 6.47 | 0.49 | 0.896 |
Severity of illness at baseline | 4.00 | 4.00 | 5.00 | −1.76 | 0.079 |
Severity of illness at endpoint | 3.00 | 3.00 | 3.00 | −1.87 | 0.061 |
Global improvement | 2.00 | 2.00 | 2.00 | −0.39 | 0.697 |
Efficacy index (Therapeutic effect/Side Effects) | 5.00 | 5.00 | 5.00 | −0.49 | 0.627 |
N (%) | N (%) | N (%) | χ2 | p | |
Gender (Male) | 107 (82.3) | 30 (85.7) | 77 (81.1) | 0.38 | 0.537 |
Marital Status (Single) | 102 (85.4) | 27 (77.1) | 84 (88.4) | 2.60 | 0.106 |
Education (High School) | 44 (33.8) | 16 (45.7) | 28 (29.5) | 3.01 | 0.083 |
Working | 5.39 | 0.220 | |||
Unemployed | 34 (26.2) | 5 (14.3) | 29 (30.5) | ||
Stably employed | 71 (60.8) | 26 (74.3) | 53 (55.8) | ||
Unstably employed | 11 (8.5) | 2 (5.7) | 9 (9.5) | ||
Welfare benefit | 5 (3.8) | 2 (5.7) | 3 (3.2) | 0.45 | 0.611 |
Living situation | 1.57 | 0.667 | |||
Origin family | 69 (60.8) | 17 (48.6) | 52 (54.7) | ||
Procreation family | 42 (32.3) | 11 (31.4) | 31 (32.6) | ||
Alone | 16 (12.3) | 6 (17.1) | 10 (10.5) | ||
Community | 3 (2.3) | 1 (2.9) | 2 (2.1) | ||
Co-substance use | 11.85 | 0.003 | |||
Only heroin | 44 (33.8) | 20 (57.1)a | 24 (25.5)b | ||
Predominant Stimulants-Alcohol | 46 (35.4) | 7 (20.0)a | 39 (41.1)b | ||
Predominant cannabinoids | 40 (30.8) | 8 (22.9)a | 32 (33.7)a | ||
Other lifetime psychiatric comorbidities | 52 (40.0) | 12 (34.3) | 40 (42.1) | 0.65 | 0.420 |
Agonist Opioid Medication | 0.75 | 0.386 | |||
Buprenorphine | 41 (31.5) | 9 (25.7) | 32 (33.7) | ||
Methadone | 89 (68.5) | 26 (74.3) | 63 (66.3) | ||
Medications used | |||||
Mood stabilizers | 11 (8.5%) | 2 (5.7) | 9 (9.5) | 0.46 | 0.726 |
Antidepressants | 23 (17.7) | 3 (8.6) | 20 (21.3) | 2.73 | 0.123 |
Major and minor sedatives | 42 (32.3) | 11 (31.4) | 31 (32.6) | 0.17 | 0.896 |
Good outcome | 99 (76.2) | 29 (82.9) | 70 (73.7) | 1.18 | 0.276 |
Treatment outcome | 4.52 | 0.322 | |||
Abandon | 26 (20.0) | 5 (14.3) | 21 (22.1) | ||
Completer | 7 (5.4) | 3 (8.6) | 4 (4.2) | ||
Still in treatment | 71 (54.6) | 23 (65.7) | 48 (50.5) | ||
Deceased | 5 (3.8) | 1 (2.9) | 4 (4.2) | ||
Transferred | 31 (16.2) | 3 (8.6) | 18 (18.9) |
Observed Patients | Terminal Events | |||
---|---|---|---|---|
Time Interval (Years) | HUD | HUD/ADHD | HUD | HUD/ADHD |
0–5 years | 35 | 95 | 5 | 16 |
6–10 years | 26 | 69 | 0 | 5 |
10–15 years | 6 | 28 | 1 | 1 |
15–20 years | 3 | 18 | 0 | 1 |
20–25 years and beyond | 2 | 15 | 0 | 1 |
95.0% CI | ||||
---|---|---|---|---|
HR | Lower | Upper | p | |
A-ADHD/HUD presence | 1.04 | 0.39 | 2.80 | 0.936 |
Male sex | 0.41 | 0.16 | 1.07 | 0.069 |
Living with a partner | 0.76 | 0.16 | 3.51 | 0.724 |
High Education (more than 8 years | 0.81 | 0.37 | 1.79 | 0.604 |
Treated with methadone | 0.83 | 0.35 | 1.96 | 0.665 |
Unemployed | 0.45 | 0.17 | 1.15 | 0.095 |
Only heroin predominant use | 1.00 | 0.671 | ||
Predominant Cocaine/Alcohol co-use | 0.96 | 0.35 | 2.59 | 0.928 |
Predominant Cannabinoid co-use | 1.45 | 0.52 | 4.06 | 0.481 |
Presence of another psychiatric comorbidity | 0.65 | 0.29 | 1.46 | 0.299 |
CGI1 baseline severity | 0.97 | 0.67 | 1.41 | 0.874 |
CGI endpoint efficacy index | 3.64 | 2.03 | 6.50 | <0.001 |
Age | 0.93 | 0.88 | 0.98 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maremmani, A.G.I.; Rocco, P.; Rocca, F.D.; Perugi, G.; Miccoli, M.; Maremmani, I. Adult-Attention Deficit Hyperactive Disorder Symptoms Seem Not to Influence the Outcome of an Enhanced Agonist Opioid Treatment: A 30-Year Follow-Up. Int. J. Environ. Res. Public Health 2021, 18, 10997. https://doi.org/10.3390/ijerph182010997
Maremmani AGI, Rocco P, Rocca FD, Perugi G, Miccoli M, Maremmani I. Adult-Attention Deficit Hyperactive Disorder Symptoms Seem Not to Influence the Outcome of an Enhanced Agonist Opioid Treatment: A 30-Year Follow-Up. International Journal of Environmental Research and Public Health. 2021; 18(20):10997. https://doi.org/10.3390/ijerph182010997
Chicago/Turabian StyleMaremmani, Angelo G. I., Pasqualina Rocco, Filippo Della Rocca, Giulio Perugi, Mario Miccoli, and Icro Maremmani. 2021. "Adult-Attention Deficit Hyperactive Disorder Symptoms Seem Not to Influence the Outcome of an Enhanced Agonist Opioid Treatment: A 30-Year Follow-Up" International Journal of Environmental Research and Public Health 18, no. 20: 10997. https://doi.org/10.3390/ijerph182010997
APA StyleMaremmani, A. G. I., Rocco, P., Rocca, F. D., Perugi, G., Miccoli, M., & Maremmani, I. (2021). Adult-Attention Deficit Hyperactive Disorder Symptoms Seem Not to Influence the Outcome of an Enhanced Agonist Opioid Treatment: A 30-Year Follow-Up. International Journal of Environmental Research and Public Health, 18(20), 10997. https://doi.org/10.3390/ijerph182010997