Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Synthesis
3. Results
3.1. Irrigation with Untreated Wastewater
3.2. Irrigation with Treated Wastewater
3.3. Effect of Other Environmental Factors
4. Discussion
4.1. Differences in Wastewater Treatment
4.2. Duration of Irrigation
4.3. Pre-Existing AMR in Soil
4.4. Analytic Methods and Detection Limits
4.5. Environmental Factors
4.6. Potential Human Health Risks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wallace, J.S. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Odegard, I.Y.R.; Voet, E. van der The future of food-Scenarios and the effect on natural resource use in agriculture in 2050. Ecol. Econ. 2014, 97, 51–59. [Google Scholar] [CrossRef]
- Bougnom, B.P.; Thiele-Bruhn, S.; Ricci, V.; Zongo, C.; Piddock, L.J.V. Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum β-lactamases (ESBLs). Sci. Total Environ. 2020, 698, 134201. [Google Scholar] [CrossRef]
- Saldias, C.; Speelman, S.; Huylenbroeck, G.V.; Vink, N. Understanding farmers’ preferences for wastewater reuse frameworks in agricultural irrigation: Lessons from a choice experiment in the western cape, South Africa. Water SA 2016, 42, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Li, Y. Using Reclaimed Water for Agricultural and Landscape Irrigation in China: A Review. Irrig. Drain. 2017, 66, 672–686. [Google Scholar] [CrossRef]
- Pop, C.-E.; Draga, S.; Măciucă, R.; Niță, R.; Crăciun, N.; Wolff, R. Bisphenol A Effects in Aqueous Environment on Lemna minor. Processes 2021, 9, 1512. [Google Scholar] [CrossRef]
- Dickin, S.K.; Schuster-Wallace, C.J.; Qadir, M.; Pizzacalla, K. A review of health risks and pathways for exposure to wastewater Use in Agriculture. Environ. Health Perspect. 2016, 124, 900–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Nnadozie, C.F.; Kumari, S.; Bux, F. Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Rev. Environ. Sci. Biotechnol. 2017, 16, 491–515. [Google Scholar] [CrossRef]
- Gatica, J.; Cytryn, E. Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environ. Sci. Pollut. Res. 2013, 20, 3529–3538. [Google Scholar] [CrossRef] [Green Version]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Sorinolu, A.J.; Tyagi, N.; Kumar, A.; Munir, M. Antibiotic resistance development and human health risks during wastewater reuse and biosolids application in agriculture. Chemosphere 2021, 265, 129032. [Google Scholar] [CrossRef] [PubMed]
- Ashbolt, N.J.; Amézquita, A.; Backhaus, T.; Borriello, P.; Brandt, K.K.; Collignon, P.; Coors, A.; Finley, R.; Gaze, W.H.; Heberer, T.; et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 2013, 121, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Piña, B.; Bayona, J.M.; Christou, A.; Fatta-Kassinos, D.; Guillon, E.; Lambropoulou, D.; Michael, C.; Polesel, F.; Sayen, S. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes-NEREUS COST Action ES1403 position paper. J. Environ. Chem. Eng. 2020, 8, 102131. [Google Scholar] [CrossRef]
- Oztekin, T.; Brown, L.C.; Holdsworth, P.M.; Kurunc, A.; Rector, D. Evaluating drainage design parameters forwastewater irrigation applications to minimize impact on surfacewaters. Appl. Eng. Agric. 1999, 99, 449–455. [Google Scholar] [CrossRef]
- Santos, L.H.M.L.M.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C.B.S.M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalkmann, P.; Broszat, M.; Siebe, C.; Willaschek, E.; Sakinc, T.; Huebner, J.; Amelung, W.; Grohmann, E.; Siemens, J. Accumulation of pharmaceuticals, enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. PLoS ONE 2012, 7, e45397. [Google Scholar] [CrossRef]
- Broszat, M.; Nacke, H.; Blasi, R.; Siebe, C.; Huebner, J.; Daniel, R.; Grohmanna, E. Wastewater irrigation increases the abundance of potentially harmful Gammaproteobacteria in soils in Mezquital Valley, Mexico. Appl. Environ. Microbiol. 2014, 80, 5282–5291. [Google Scholar] [CrossRef] [Green Version]
- Jechalke, S.; Broszat, M.; Lang, F.; Siebe, C.; Smalla, K.; Grohmann, E. Effects of 100 years wastewater irrigation on resistance genes, class 1 integrons and IncP-1 plasmids in Mexican soil. Front. Microbiol. 2015, 6, 163. [Google Scholar] [CrossRef] [Green Version]
- Aleem, A.; Isar, J.; Malik, A. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresour. Technol. 2003, 86, 7–13. [Google Scholar] [CrossRef]
- Ansari, M.I.; Grohmann, E.; Malik, A. Conjugative plasmids in multi-resistant bacterial isolates from Indian soil. J. Appl. Microbiol. 2008, 104, 1774–1781. [Google Scholar] [CrossRef] [PubMed]
- Shafiani, S.; Malik, A. Tolerance of pesticides and antibiotic resistance in bacteria isolated from wastewater-irrigated soil. World J. Microbiol. Biotechnol. 2003, 19, 897–901. [Google Scholar] [CrossRef]
- Palacios, O.A.; Contreras, C.A.; Muñoz-Castellanos, L.N.; González-Rangel, M.O.; Rubio-Arias, H.; Palacios-Espinosa, A.; Nevárez-Moorillón, G.V. Monitoring of indicator and multidrug resistant bacteria in agricultural soils under different irrigation patterns. Agric. Water Manag. 2017, 184, 19–27. [Google Scholar] [CrossRef]
- Lesser, L.E.; Mora, A.; Moreau, C.; Mahlknecht, J.; Hernández-Antonio, A.; Ramírez, A.I.; Barrios-Piña, H. Survey of 218 organic contaminants in groundwater derived from the world’s largest untreated wastewater irrigation system: Mezquital Valley, Mexico. Chemosphere 2018, 198, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Lüneberg, K.; Prado, B.; Broszat, M.; Dalkmann, P.; Díaz, D.; Huebner, J.; Amelung, W.; López-Vidal, Y.; Siemens, J.; Grohmann, E.; et al. Water flow paths are hotspots for the dissemination of antibiotic resistance in soil. Chemosphere 2018, 193, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Bahig, A.E.; Aly, E.A.; Khaled, A.A.; Amel, K.A. Isolation, characterization and application of bacterial population from agricultural soil at Sohag Province, Egypt. Malays. J. Microbiol. 2008, 4, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Chu, L.M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China. Sci. Total Environ. 2018, 624, 145–152. [Google Scholar] [CrossRef]
- Bougnom, B.P.; Thiele-Bruhn, S.; Ricci, V.; Zongo, C.; Piddock, L.J.V. High-throughput sequencing data and antibiotic resistance mechanisms of soil microbial communities in non-irrigated and irrigated soils with raw sewage in African cities. Data Brief 2019, 27, 104638. [Google Scholar] [CrossRef]
- Malik, A.; Aleem, A. Incidence of metal and antibiotic resistance in Pseudomonas spp. from the river water, agricultural soil irrigated with wastewater and groundwater. Environ. Monit. Assess. 2011, 178, 293–308. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Chen, P.; Ding, R.; Zhang, P.; Li, X. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China. Environ. Pollut. 2014, 193, 94–101. [Google Scholar] [CrossRef]
- Wang, F.H.; Qiao, M.; Su, J.Q.; Chen, Z.; Zhou, X.; Zhu, Y.G. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 2014, 48, 9079–9085. [Google Scholar] [CrossRef]
- Wang, F.H.; Qiao, M.; Lv, Z.E.; Guo, G.X.; Jia, Y.; Su, Y.H.; Zhu, Y.G. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. Environ. Pollut. 2014, 184, 247–253. [Google Scholar] [CrossRef]
- Han, X.M.; Hu, H.W.; Shi, X.Z.; Wang, J.T.; Han, L.L.; Chen, D.; He, J.Z. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. Environ. Pollut. 2016, 211, 48–57. [Google Scholar] [CrossRef]
- Palacios, O.A.; Serna, F.J.Z.-D.; de la Ballinas-Casarrubias, M.; Espino-Valdés, M.S.; Nevárez-Moorillón, G.V. Microbiological impact of the use of reclaimed wastewater in recreational parks. Int. J. Environ. Res. Public Health 2017, 14, 1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampouris, I.D.; Klümper, U.; Agrawal, S.; Orschler, L.; Cacace, D.; Kunze, S.; Berendonk, T.U. Treated wastewater irrigation promotes the spread of antibiotic resistance into subsoil pore-water. Environ. Int. 2021, 146, 106190. [Google Scholar] [CrossRef] [PubMed]
- Chigor, V.; Ibangha, I.A.; Chigor, C.; Titilawo, Y. Treated wastewater used in fresh produce irrigation in Nsukka, Southeast Nigeria is a reservoir of enterotoxigenic and multidrug-resistant Escherichia coli. Heliyon 2020, 6, e03780. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, F.; Matamoros, V.; Bayona, J.; Piña, B. Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices. Sci. Total Environ. 2019, 652, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, F.; Matamoros, V.; Bayona, J.; Elsinga, G.; Hornstra, L.M.; Piña, B. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes. Environ. Res. 2019, 170, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Negreanu, Y.; Pasternak, Z.; Jurkevitch, E.; Cytryn, E. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ. Sci. Technol. 2012, 46, 4800–4808. [Google Scholar] [CrossRef] [PubMed]
- Marano, R.B.M.; Zolti, A.; Jurkevitch, E.; Cytryn, E. Antibiotic resistance and class 1 integron gene dynamics along effluent, reclaimed wastewater irrigated soil, crop continua: Elucidating potential risks and ecological constraints. Water Res. 2019, 164, 114906. [Google Scholar] [CrossRef] [PubMed]
- Troiano, E.; Beneduce, L.; Gross, A.; Ronen, Z. Antibiotic-resistant bacteria in greywater and greywater-irrigated soils. Front. Microbiol. 2018, 9, 2666. [Google Scholar] [CrossRef] [PubMed]
- Mclain, J.E.T.; Williams, C.F. Development of Antibiotic Resistance in Bacteria of Soils Irrigated with Reclaimed Wastewater. In Proceedings of the 5th National Decennial Irrigation Conference, Phoenix, AZ, USA, 5–8 December 2010; pp. 1–10. [Google Scholar]
- Dcosta, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water scarcity and wastewater reuse in crop irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Collignon, P.; Beggs, J.J.; Walsh, T.R.; Gandra, S.; Laxminarayan, R. Articles Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet. Health 2018, 2, e398–e405. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Raynaud, X.; Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 2014, 9, e87217. [Google Scholar] [CrossRef] [Green Version]
- Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Front. Public Health 2018, 6, 337. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S.; et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Manaia, C.M. Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Trends Microbiol. 2017, 25, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keelara, S.; Scott, H.M.; Morrow, W.M.; Gebreyes, W.A.; Correa, M.; Nayak, R.; Stefanova, R.; Thakur, S. Longitudinal study of distributions of similar antimicrobial-resistant Salmonella serovars in pigs and their environment in two distinct swine production systems. Appl. Environ. Microbiol. 2013, 79, 5167–5178. [Google Scholar] [CrossRef] [Green Version]
- Pornsukarom, S.; Van Vliet, A.H.M.; Thakur, S. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genom. 2018, 19, 801. [Google Scholar] [CrossRef]
- Bougnom, B.P.; Piddock, L.J.V. Wastewater for Urban Agriculture: A Significant Factor in Dissemination of Antibiotic Resistance. Environ. Sci. Technol. 2017, 51, 5863–5864. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.P.; Woodford, N. Global spread of antibiotic resistance: The example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J. Med. Microbiol. 2013, 62, 499–513. [Google Scholar] [CrossRef]
- Wang, R.; Dorp, L.V.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef] [Green Version]
Author and Year | Location | WWI Site | WWI Duration | Comparison Site | Organism | AMR Mechanism Investigated | Reference |
---|---|---|---|---|---|---|---|
Aleem et al., 2003 | India | Field irrigated with untreated industrial wastewater mixed with domestic sewage | 10 years | Field irrigated with groundwater | Azotobacter chroococcum isolates | Resistance against: Amoxycillin, Cloxacillin, Co-trimoxazole, Doxycycline, Methicillin, Nitrofurantoin, Polymyxin-B, Rifampicin, Streptomycin, Sulphadiazine, Tetracycline | [22] |
Ansari et al., 2007 | India | Field irrigated with untreated industrial wastewater mixed with domestic sewage | >20 years | None | Bacterial isolates | Resistance against: Ampicillin, Chloramphenicol, Ciprofloxacin, Co-trimoxazole, Doxycycline, Gentamicin, Kanamycin, Nalidixic acid, Neomycin, Streptomycin, Tetracycline | [23] |
Bahig et al., 2008 | Egypt | Field irrigated with untreated wastewater | Not reported | Field irrigated with canal water | Bacterial isolates | Resistance against: Ampicillin, Tetracycline, Kanamycin | [28] |
Bougnom et al., 2019 | Burkina Faso, Cameroon | Field irrigated with untreated domestic wastewater mixed with hospital, agriculture, market and slaughterhouse waste | 20 years | Non-irrigated field | N/A a | ARGs encoding: Antibiotic inactivation enzymes, antibiotic target replacement, antibiotic target protection, efflux pumps | [3] |
Bougnom et al., 2020 | Same as above | Same as above | Same as above | Same as above | Same as above | Non-targeted ARGs and Enterobacteriaceae plasmid replicons | [30] |
Broszat et al., 2014 | Mexico | Field irrigated with untreated municipal wastewater | 8, 10, 85, and 100 years | Rain-fed field | Bacterial isolates | Resistance against: Ampicillin, Chloramphenicol, Erythromycin, Gentamicin, Kanamycin, Oxacillin, Streptomycin, Ciprofloxacin, Doxycycline, Tetracycline, Vancomycin, Sulfamethoxazole ARGs: Sulfonamide (sul) and fluoroquinolone (qnr) resistance genes | [20] |
Dalkmann et al., 2012 | Mexico | Field irrigated with untreated municipal wastewater | 1.5, 3, 6, 8, 85, and 100 years | Rain-fed field | N/A a | ARGs: Sulfonamide resistance genes (sul1, sul2), fluoroquinolone resistance genes (qnrA, qnrB, qnrS) | [19] |
Jechalke et al., 2015 | Mexico | Field irrigated with untreated municipal wastewater (65% domestic sewage, 20% service sector waste, 15% industrial waste) | 1.5, 3, 6, 8, 85, and 100 years | Rain-fed field | N/A a | ARGs: tetW, tetQ, aadA, qacE + qacEΔ1 Mobile genetic elements: intI1, IncP-1plasmids (korB) | [21] |
Lüneberg et al., 2017 | Mexico | Field irrigated with untreated wastewater | >80 years | Rain-fed field | N/Aa | ARGs: sul1, sul2, qnrB, qnrS | [27] |
Malik and Aleem 2011 | India | Field irrigated with untreated industrial wastewater mixed with domestic sewage | 10 years | Field irrigated with groundwater | Pseudomonas spp. isolates | Resistance against: Amoxycillin, Ampicillin, Chloramphenicol, Ciprofloxacin, Cloxacillin, Cotrimoxazole, Doxycycline, Erythromycin, Gentamicin, Kanamycin, Methicillin, Nalidixic acid, Neomycin, Nitrofurantoin, Polymyxin-B, Rifampicin, Streptomycin, Sulphadiazine, Tetracycline | [31] |
Palacios et al., 2017 | Mexico | (1) Field irrigated with water from river that receives untreated wastewater (2) Field irrigated with untreated wastewater from river until >10 years ago | Not reported | Rain-fed field | Bacterial isolates | Resistance against: Ampicillin, 24 additional antibiotics (6 for Gram-negative bacteria, 6 for Gram-positive bacteria, 12 for both) | [25] |
Pan and Chu 2018 | China | (1) Fields irrigated with untreated domestic wastewater (2) Fields irrigated with fishpond water | >20 years | Field with no cultivation | N/A a | ARGs: Tetracycline (tetA, tetB, tetC, tetE, tetM, tetO, tetS, tetX) and sulfonamide resistance genes (sul1, sul2, sul3) | [29] |
Shafiani and Malik 2013 | India | Field irrigated with untreated industrial wastewater mixed with domestic sewage | 10 years | None | Pseudomonas spp. isolates | Resistance against: Amoxycillin, Chloramphenicol, Cloxacillin, Doxycycline, Methicillin, Nalidixic acid, Tetracycline | [24] |
Author and Year | Location | WWI Site | WWI Duration | Comparison Site | Target Organism | AMR Mechanism Investigated | Reference |
---|---|---|---|---|---|---|---|
Cerqueira et al., 2019 | Spain | Field irrigated with water from channel with up to 92% treated effluent from 10 wastewater treatment plants | Not reported | Field irrigated with ground- and/or rainwater | N/A a | ARGs: sul1, blaTEM, blaOXA-58, blaCTX-M-32, mecA, qnrS1, tetM Mobile genetic elements: intl1 | [39] |
Cerqueira et al., 2019 | Spain | (1) Field irrigated with water from channel with up to 92% treated effluent from 10 wastewater treatment plants (2) Field irrigated with water from river that contains <18% treated effluent | Not reported | Field irrigated with groundwater | N/A a | ARGs: sul1, blaTEM, blaOXA-58, blaCTX-M-32, mecA, qnrS1, tetM Mobile genetic elements: intl1 | [40] |
Chen et al., 2014 | China | (1) Field irrigated with treated wastewater directly or from rivers that receive effluent (2) Field irrigated with untreated wastewater until 6–7 years ago, irrigated with ground- and/or rainwater since | Not reported | Non-irrigated field | Bacterial isolates DNA from soil | Resistance against: Oxytetracycline, Tetracycline, Sulfadiazine, Sulfamethoxazole ARGs: 13 tetracycline resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, tetS, tetQ, tetX), 3 sulfonamide resistance genes (sul1, sul2, sul3) | [32] |
Chigor et al., 2020 | Nigeria | Earthen pots irrigated with secondary treated wastewater | Practiced in the area for >30 years, earthen pots irrigated for 6 weeks | None | E. coli isolates | Resistance against: Amoxicillin, Ampicillin, Penicillin, Cloxacillin, Cefuroxime, Streptomycin, Rifampicin, Metronidazole, Sulfamethoxazole, Trimethoprim, Vancomycin, Erythromycin, Clarithromycin, Chloramphenicol, Ciprofloxacin, Norfloxacin, Tetracycline, Imipenem | [38] |
Han et al., 2016 | Australia | Urban park irrigated with tertiary treated wastewater | Not reported | (1) Urban park irrigated with potable water (2) Pristine soil from remote national parks | N/A a | 84 ARGs encoding resistance to aminoglycosides, Classes A, B, C and D beta-lactam, erythromycin, quinolones and fluoroquinolones, macrolide lincosamide streptogramin_b (MLS_b), multidrug, tetracycline, vancomycin Mobile genetic elements: intI1, tnpA gene of IS6 family transposons | [35] |
Kampouris et al., 2020 | Germany | Field irrigated with secondary treated wastewater, sometimes mixed with digested sludge | 50 years | (1) Period of irrigation compared to period without irrigation (2) Lab experiment where soils were irrigated with treated wastewater and freshwater | N/A a | ARGs: sul1, tetM, qnrS, blaOXA-58, blaCTX-M-32, blaTEM Mobile genetic elements: intI1 | [37] |
Marano et al., 2019 | Israel | Fields irrigated with secondary and tertiary treated wastewater | Not reported | (1) Field irrigated with surface-, ground- or desalinated water (2) Experimental orchard and lysimeters irrigated with tertiary treated wastewater vs. freshwater | N/A a | ARGs: blaGES. blaOXA2, blaOXA10, blaTEM, blaCTX-M-32, qnrS Mobile genetic elements: intl1 | [42] |
McLain and Williams 2010 | USA | Soil from water storage basin recharged with tertiary treated wastewater | >20 years | Soil from water storage basin recharged with groundwater | Enterococcus isolates | Resistance against: Tigecycline, Tetracycline, Chloramphenicol, Daptomycin, Streptomycin, Tylosin tartrate, Quinupristin/dalfopristin, Linezolid, Nitrofurantoin, Penicillin, Kanamycin, Erithromycin, Ciprofloxacin, Vancomycin, Lincomycin, Gentamicin | [44] |
Negreanu et al., 2012 | Israel | Fields irrigated with secondary treated wastewater | 6, 12, 15 years | Field irrigated with freshwater, including aquifer recharged with secondary treated wastewater | Bacterial isolates DNA from soil | Resistance against: Tetracycline, Ciprofloxacin, Erythromycin ARGs: sul1, sul2, ermB, ermF, tetO, qnrA | [41] |
Palacios et al., 2017 | Mexico | Recreational parks irrigated with tertiary treated wastewater | Not reported | Distance from WWTP | Bacterial isolates | Resistance against: Ampicillin, Riphampicin, Chloramphenicol, Ciprofloxacin, Gentamicin, Trimethoprim-sulphametoxazole | [36] |
Troiano et al., 2018 | Israel | Field irrigated with greywater treated by recirculating vertical flow constructed wetland | >7 years | Field irrigated with freshwater | Bacterial isolates | Resistance against: Tetracycline, Amoxicillin, Ciprofloxacin, Kanamycin ARGs: Beta-lactamase genes (blaTEM, blaCTXM-32, blaSHV, blaOXA-2, blaOXA10), tetracycline resistance genes (tet39, tetA, tetB tetM, tetQ, tetW) | [43] |
Wang et al., 2014 | China | Public parks irrigated with treated wastewater | Not reported | Pristine remote parks | N/A a | ARGs: 15 tetracycline resistance genes, 4 beta-lactamase genes, 3 quinolone resistance genes Mobile genetic elements: intl1 | [34] |
Wang et al., 2014 | China | Urban parks irrigated with treated wastewater in seven cities | 3–12 years | Urban parks not irrigated with reclaimed water in same cities | N/A a | ARGS: 285 different ARGs Mobile genetic elements: 9 transposase genes | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slobodiuk, S.; Niven, C.; Arthur, G.; Thakur, S.; Ercumen, A. Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 11046. https://doi.org/10.3390/ijerph182111046
Slobodiuk S, Niven C, Arthur G, Thakur S, Ercumen A. Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(21):11046. https://doi.org/10.3390/ijerph182111046
Chicago/Turabian StyleSlobodiuk, Stacy, Caitlin Niven, Greer Arthur, Siddhartha Thakur, and Ayse Ercumen. 2021. "Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 21: 11046. https://doi.org/10.3390/ijerph182111046
APA StyleSlobodiuk, S., Niven, C., Arthur, G., Thakur, S., & Ercumen, A. (2021). Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. International Journal of Environmental Research and Public Health, 18(21), 11046. https://doi.org/10.3390/ijerph182111046