The Impact of Meteorological Factors on Communicable Disease Incidence and Its Projection: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question Formulation
2.2. Data Sources and Search Strategy
2.3. Inclusion and Exclusion Criteria
2.4. Study Selection
2.5. Quality Assessment
2.6. Data Extraction and Synthesis
3. Results
3.1. Background of the Eligible Studies
3.2. Meteorological Factor Variables
3.3. Projection of Climate-Sensitive Communicable Diseases
3.4. Critical Appraisal of the Studies
4. Discussion
4.1. Relationship between Metreological Factors and Dengue
4.2. Relationship between Metreological Factors and Malaria
4.3. Relationship between Metreological Factors with Cholera and Leptospirosis
4.4. Projection of Selected Climate-Senstive Communicable Disease
4.5. Strenghts and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Portner, K.O.; Roberts, D.; Skea, J.; Shukla, P.R.; et al. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Ebi, K.; Guiot, J.; Payne, A.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems; IPCC Secretariat: Genebva, Switzerland, 2018. [Google Scholar]
- US Global Change Research Program. The Impact of Climate Change on Human Health in United States: A Scientific Assessment; Global Change Research Program: Washington, DC, USA, 2016. [Google Scholar]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Kurane, I. The Effect of Global Warming on Infectious Diseases. Osong Public Health Res. Perspect. 2010, 1, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, M.K.; Morin, C.W.; Comrie, A.C. An Analysis of the Potential Impact of Climate Change on Dengue Transmission in the Southeastern United States. Environ. Health Perspect. 2017, 125, 579–585. [Google Scholar] [CrossRef]
- Ebi, K.L.; Nealon, J. Dengue in a changing climate. Environ. Res. 2016, 151, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Babaie, J.; Barati, M.; Azizi, M.; Ephtekhari, A.; Sadat, S.J. A systematic evidence review of the effect of climate change on malaria in Iran. J. Parasit. Dis. 2018, 42, 331–340. [Google Scholar] [CrossRef]
- Caminade, C.; Kovats, S.; Rocklov, J.; Tompkins, A.M.; Morse, A.; Colón-González, F.D.J.; Stenlund, H.; Martens, P.; Lloyd, S.J. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. USA 2014, 111, 3286–3291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadgol, Z.; Mohammadi, H.; Kermani, M.; Badirzadeh, A.; Gholami, M. The effect of climate change on cholera disease: The road ahead using artificial neural network. PLoS ONE 2019, 14, e0224813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christaki, E.; Dimitriou, P.; Pantavou, K.; Nikolopoulos, G.K. The Impact of Climate Change on Cholera: A Review on the Global Status and Future Challenges. Atmosphere 2020, 11, 449. [Google Scholar] [CrossRef]
- Radi, M.F.M.; Hashim, J.H.; Jaafar, M.H.; Hod, R.; Ahmad, N.; Nawi, A.M.; Baloch, G.M.; Ismail, R.; Ayub, N.I.F. Leptospirosis Outbreak After the 2014 Major Flooding Event in Kelantan, Malaysia: A Spatial-Temporal Analysis. Am. J. Trop. Med. Hyg. 2018, 98, 1281–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadsuthi, S.; Chalvet-Monfray, K.; Wiratsudakul, A.; Modchang, C. The effects of flooding and weather conditions on leptospirosis transmission in Thailand. Sci. Rep. 2021, 11, 1486. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, A.C.; Solo-Gabriele, H.M.; Galletti, A.; Benzecry, B.; Malone, H.; Boguszewski, V.; Bird, J. Possible impacts of sea level rise on disease transmission and potential adaptation strategies, a review. J. Environ. Manag. 2018, 217, 951–968. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhan, J.; Chen, L.; Chen, H.; Cheng, S. Global, regional, and national dengue burden from 1990 to 2017: A systematic analysis based on the global burden of disease study 2017. EClinicalMedicine 2021, 32, 100712. [Google Scholar] [CrossRef]
- Torgerson, P.; Hagan, J.; Costa, F.; Calcagno, J.; Kane, M.; Martinez-Silveira, M.S.; Goris, M.G.A.; Stein, C.; Ko, A.; Abela-Ridder, B. Global Burden of Leptospirosis: Estimated in Terms of Disability Adjusted Life Years. PLoS Neglected Trop. Dis. 2015, 9, e0004122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Protecting Health from Climate Change: Connecting Science, Policy and People; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Abeygunawardena, P.; Vyas, Y.; Knill, P.; Foy, T.; Harrold, M.; Steele, P.; Tanner, T.; Hirsch, D.; Oosterman, M.; Rooimans, J.; et al. Poverty and Climate Change. Reducing the Vulnerability of the Poor through Adaptation; OECD: Paris, France, 2004. [Google Scholar]
- Hess, J.J.; Saha, S.; Schramm, P.J.; Conlon, K.C.; Uejio, C.K.; Luber, G. Projecting Climate-Related Disease Burden: A Guide for Health Departments; Climate and Health Technical Report Series, Climate and Health Program; Centers for Disease Control: Atlanta, GA, USA, 2016. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Moola, S.; Munn, Z.; Sears, K.; Sfetcu, R.; Currie, M.; Lisy, K.; Tufanaru, C.; Qureshi, R.; Mattis, P.; Mu, P. Conducting systematic reviews of association (etiology): The Joanna Briggs Institute’s approach. Int. J. Evid. Based Healthc. 2015, 13, 163–169. [Google Scholar] [CrossRef]
- Munn, Z.; Stern, C.; Aromataris, E.; Lockwood, C.; Jordan, Z. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med Res. Methodol. 2018, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Dufault, B.; Klar, N. The Quality of Modern Cross-Sectional Ecologic Studies: A Bibliometric Review. Am. J. Epidemiology 2011, 174, 1101–1107. [Google Scholar] [CrossRef]
- Adde, A.; Roucou, P.; Mangeas, M.; Ardillon, V.; Desenclos, J.-C.; Rousset, D.; Girod, R.; Briolant, S.; Quenel, P.; Flamand, C. Predicting Dengue Fever Outbreaks in French Guiana Using Climate Indicators. PLoS Negl. Trop. Dis. 2016, 10, e0004681. [Google Scholar] [CrossRef] [PubMed]
- Arcari, P.; Tapper, N.; Pfueller, S. Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap. J. Trop. Geogr. 2007, 28, 251–272. [Google Scholar] [CrossRef]
- Banu, S.; Hu, W.; Guo, Y.; Hurst, C.; Tong, S. Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environ. Int. 2014, 63, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Banu, S.; Guo, Y.; Hu, W.; Dale, P.E.; MacKenzie, J.S.; Mengersen, K.; Tong, S. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh. Sci. Rep. 2015, 5, 16105. [Google Scholar] [CrossRef] [Green Version]
- Cheong, Y.L.; Burkart, K.; Leitão, P.J.; Lakes, T. Assessing Weather Effects on Dengue Disease in Malaysia. Int. J. Environ. Res. Public Health 2013, 10, 6319–6334. [Google Scholar] [CrossRef]
- Colón-González, F.J.; Fezzi, C.; Lake, I.; Hunter, P. The Effects of Weather and Climate Change on Dengue. PLoS Negl. Trop. Dis. 2013, 7, e2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumpu, R.; Khamsemanan, N.; Nattee, C. The association between dengue incidences and provincial-level weather variables in Thailand from 2001 to 2014. PLoS ONE 2019, 14, e0226945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, T.-W.; Chaves, L.F.; Chen, P.-J. Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS ONE 2017, 12, e0178698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, J.L.; Diaz-Quijano, F.A.; Batista, A.C.; Giatti, L.L. Climatic variables associated with dengue incidence in a city of the Western Brazilian Amazon region. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hii, Y.L.; Rocklöv, J.; Ng, N.; Tang, C.S.; Pang, F.Y.; Sauerborn, R. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob. Health Action 2009, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iguchi, J.A.; Seposo, X.T.; Honda, Y. Meteorological factors affecting dengue incidence in Davao, Philippines. BMC Public Health 2018, 18, 629. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, G.; Lin, L. Research of Dengue Fever Prediction in San Juan, Puerto Rico Based on a KNN Regression Model. In Intelligent Data Engineering and Automated Learning—IDEAL 2017. Lecture Notes in Computer Science; Yin, H., Gao, Y., Chen, S., Wen, Y., Cai, G., Gu, T., Du, J., Tallón-Ballesteros, A.J., Zhang, M., Eds.; Springer: Cham. Switzerland, 2017; Volume 10585, pp. 146–153. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Wu, X.; Liu, J.; Ji, D.; Du, J. Modeling and projection of dengue fever cases in Guangzhou based on variation of weather factors. Sci. Total. Environ. 2017, 605–606, 867–873. [Google Scholar] [CrossRef]
- An, D.T.M.; Rocklöv, J. Epidemiology of dengue fever in Hanoi from 2002 to 2010 and its meteorological determinants. Glob. Health Action 2014, 7, 23074. [Google Scholar] [CrossRef]
- Noureldin, E.M.; Shaffer, L. Role of climatic factors in the incidence of dengue in Port Sudan City, Sudan. East Mediterr. Health J. 2019, 25, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.T.T.; Nguyen, C.T.; Pineda-Cortel, M.R.B. Time-series modelling of dengue incidence in the Mekong Delta region of Viet Nam using remote sensing data. West. Pac. Surveill. Response J. 2020, 11, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sirisena, P.; Noordeen, F.; Kurukulasuriya, H.; Romesh, T.A.; Fernando, L. Effect of Climatic Factors and Population Density on the Distribution of Dengue in Sri Lanka: A GIS Based Evaluation for Prediction of Outbreaks. PLoS ONE 2017, 12, e0166806. [Google Scholar] [CrossRef] [Green Version]
- Sharmin, S.; Glass, K.; Viennet, E.; Harley, D. Interaction of Mean Temperature and Daily Fluctuation Influences Dengue Incidence in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 2015, 9, e0003901. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.C.N.; Rusli, M.; Lestari, P. Climate Variability and Dengue Hemorrhagic Fever in Surabaya, East Java, Indonesia. Indian J. Public Heal. Res. Dev. 2020, 11, 131. [Google Scholar] [CrossRef]
- Tosepu, R.; Tantrakarnapa, K.; Nakhapakorn, K.; Worakhunpiset, S. Climate variability and dengue hemorrhagic fever in Southeast Sulawesi Province, Indonesia. Environ. Sci. Pollut. Res. Int. 2018, 25, 14944–14952. [Google Scholar] [CrossRef]
- Xiang, J.; Hansen, A.; Liu, Q.; Liu, X.; Tong, M.X.; Sun, Y.; Cameron, S.; Hanson-Easey, S.; Han, G.-S.; Williams, C.; et al. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environ. Res. 2017, 153, 17–26. [Google Scholar] [CrossRef]
- Xuan, L.T.T.; Van Hau, P.; Thu, D.T.; Toan, D.T.T. Estimates of meteorological variability in association with dengue cases in a coastal city in northern Vietnam: An ecological study. Glob. Health Action 2014, 7, 23119. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-Y.; Fu, X.; Lee, L.K.H.; Ma, S.; Goh, K.T.; Wong, J.; Habibullah, M.S.; Lee, G.K.K.; Lim, T.K.; Tambyah, P.A.; et al. Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore. PLoS Negl. Trop. Dis. 2014, 8, e2805. [Google Scholar] [CrossRef] [Green Version]
- Akinbobola, A.; Omotosho, J.B. Predicting Malaria occurrence in Southwest and North central Nigeria using Meteorological parameters. Int. J. Biometeorol. 2013, 57, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, G.P.; Dhimal, M.; Gurung, S.; Bhusal, C. Climate Change and Malaria in Jhapa District of Nepal: Emerging Evidences from Nepal. J. Health Manag. 2013, 15, 141–150. [Google Scholar] [CrossRef]
- Gao, H.-W.; Wang, L.-P.; Liang, S.; Liu, Y.-X.; Tong, S.-L.; Wang, J.-J.; Li, Y.-P.; Wang, X.-F.; Yang, H.; Ma, J.-Q.; et al. Change in Rainfall Drives Malaria Re-Emergence in Anhui Province, China. PLoS ONE 2012, 7, e43686. [Google Scholar] [CrossRef]
- Jones, A.E.; Wort, U.U.; Morse, A.P.; Hastings, I.M.; Gagnon, A.S. Climate prediction of El Niño malaria epidemics in north-west Tanzania. Malar. J. 2007, 6, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, J.; Noh, H.; Kim, S.; Singh, V.P.; Hong, S.J.; Kim, D.; Lee, K.; Kang, N.; Kim, H.S. Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea. Int. J. Environ. Res. Public Health 2014, 11, 10587–10605. [Google Scholar] [CrossRef]
- Ostovar, A.; Haghdoost, A.A.; Rahimiforoushani, A.; Raeisi, A.; Majdzadeh, R. Time Series Analysis of Meteorological Factors Influencing Malaria in South Eastern Iran. J. Arthropod Borne Dis. 2016, 10, 222–236. [Google Scholar] [PubMed]
- Rejeki, D.S.S.; Nurhayati, N.; Aji, B.; Murhandarwati, E.E.H.; Kusnanto, H. A Time Series Analysis: Weather Factors, Human Migration and Malaria Cases in Endemic Area of Purworejo, Indonesia, 2005–2014. Iran. J. Public Heal. 2018, 47, 499–509. [Google Scholar]
- Sehgal, M.; Ghosh, S. Exploring the Usefulness of Meteorological Data for Predicting Malaria Cases in Visakhapatnam, Andhra Pradesh. Weather Clim. Soc. 2020, 12, 323–330. [Google Scholar] [CrossRef]
- Wardrop, N.A.; Barnett, A.G.; Atkinson, J.-A.; Clements, A.C. Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan Province, China. Malar. J. 2013, 12, 452. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Hansen, A.; Liu, Q.; Tong, M.X.; Liu, X.; Sun, Y.; Cameron, S.; Hanson-Easey, S.; Han, G.S.; Williams, C.; et al. Association between malaria incidence and meteorological factors: A multi-location study in China, 2005–2012. Epidemiol. Infect. 2018, 146, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Chen, F.; Feng, Z.; Li, X.; Zhou, X.-H. The temporal lagged association between meteorological factors and malaria in 30 counties in south-west China: A multilevel distributed lag non-linear analysis. Malar. J. 2014, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Magny, G.C.; Murtugudde, R.; Sapiano, M.R.P.; Nizam, A.; Brown, C.W.; Busalacchi, A.J.; Yunus, M.G.; Nair, B.; Gil, A.I.; Calkins, J.; et al. Environmental signatures associated with cholera epidemics. Proc. Natl. Acad. Sci. USA 2008, 105, 17676–17681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyburn, R.; Kim, D.R.; Emch, M.; Khatib, A.; Von Seidlein, L.; Ali, M. Climate Variability and the Outbreaks of Cholera in Zanzibar, East Africa: A Time Series Analysis. Am. J. Trop. Med. Hyg. 2011, 84, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Dhewantara, P.W.; Hu, W.; Zhang, W.; Yin, W.-W.; Ding, F.; Mamun, A.; Magalhaes, R.S. Climate variability, satellite-derived physical environmental data and human leptospirosis: A retrospective ecological study in China. Environ. Res. 2019, 176, 108523. [Google Scholar] [CrossRef]
- Parham, P.E.; Christiansen-Jucht, C.L.; People, D.; Michael, E. Understanding and Modelling the Impact of Climate Change on Infectious Diseases—Progress and Future Challenges, Climate Change—Socioeconomic Effects; Kheradmand, J.B.H., Ed.; IntechOpen: London, UK, 2011. [Google Scholar]
- Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects 2018, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couret, J.; Benedict, M.Q. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae). BMC Ecol. 2014, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Beserra, E.B.; De Freitas, E.M.; De Souza, J.T.; Fernandes, C.R.M.; Santos, K.D. Life cycle of Aedes (Stegomyia) aegypti (Diptera, Culicidae) in water with different characteristics. Iheringia. Série Zool. 2009, 99, 281–285. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.A.P.A.; Santos, E.M.M.; Correia, J.C.; Albuquerque, C.M.R. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev. Bras. Entomol. 2010, 54, 4884–4893. [Google Scholar] [CrossRef] [Green Version]
- Hopp, M.J.; Foley, J.A. Global-Scale Relationships between Climate and the Dengue Fever Vector, Aedes Aegypti. Clim. Chang. 2001, 48, 441–463. [Google Scholar] [CrossRef]
- Thammapalo, S.; Chongsuwiwatwong, V.; McNeil, D.; Geater, A. The climatic factors influencing the occurrence of dengue hemorrhagic fever in Thailand. Southeast Asian J. Trop. Med. Public Health 2005, 36, 191–196. [Google Scholar]
- Alshehri, M.S.A. Dengue fever outburst and its relationship with climatic factors. World Appl. Sci. J. 2013, 22, 506–515. [Google Scholar] [CrossRef]
- McMichael, A.J.; Haines, J.A.; Slooff, R.; Sari Kovats, R.; World Health Organization. Climate Change and Human Health: An Assessment/Prepared by a Task Group on Behalf of the World Health Organization, the World Meteorological Association and the United Nations Environment Programme; World Health Organization: Geneva, Switzerland, 1996; pp. 74–78. Available online: https://apps.who.int/iris/handle/10665/62989 (accessed on 1 August 2021).
- Lau, C.L.; Smythe, L.D.; Craig, S.B.; Weinstein, P. Climate change, flooding, urbanisation and leptospirosis: Fuelling the fire? Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 631–638. [Google Scholar] [CrossRef]
- Fentahun, T.; Alemayehu, M. Leptospirosis and its Public Health Significance: A Review. Eur. J. Appl. Sci. 2012, 4, 238–244. [Google Scholar]
- Spickler, A.R.; Larson, K.L. Leptospirosis (Factsheet) Iowa State University 2013. Available online: http://www.cfsph.iastate.edu/Factsheets/pdfs/leptospirosis.pdf (accessed on 1 August 2021).
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2015; ISBN 9789291691432. [Google Scholar]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mweya, C.N.; Kimera, S.I.; Stanley, G.; Misinzo, G.; Mboera, L.E.G. Climate Change Influences Potential Distribution of Infected Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania. PLoS ONE 2016, 11, e0162649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzid, M.; Colón-González, F.J.; Lung, T.; Lake, I.R.; Hunter, P.R. Climate change and the emergence of vector-borne diseases in Europe: Case study of dengue fever. BMC Public Health 2014, 14, 781. [Google Scholar] [CrossRef] [Green Version]
- Semakula, H.M.; Song, G.; Achuu, S.P.; Shen, M.; Chen, J.; Mukwaya, P.I.; Oulu, M.; Mwendwa, P.M.; Abalo, J.; Zhang, S. Prediction of future malaria hotspots under climate change in sub-Saharan Africa. Clim. Chang. 2017, 143, 415–428. [Google Scholar] [CrossRef]
- Song, Y.; Ge, Y.; Wang, J.; Ren, Z.; Liao, Y.; Peng, J. Spatial distribution estimation of malaria in northern China and its scenarios in 2020, 2030, 2040 and 2050. Malar. J. 2016, 15, 345. [Google Scholar] [CrossRef] [Green Version]
- LaPorta, G.Z.; Linton, Y.-M.; Wilkerson, R.C.; Bergo, E.S.; Nagaki, S.S.; Sant’Ana, D.C.; Sallum, M.A.M. Malaria vectors in South America: Current and future scenarios. Parasites Vectors 2015, 8, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.; Wang, D.; Ma, A.; Hwang, J.; Bennett, A.; Sturrock, H.; Fan, J.; Zhang, W.; Yang, D.; Feng, X.; et al. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination. Sci. Rep. 2016, 6, 20604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khormi, H.M.; Kumar, L. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia. Geospat. Health 2016, 11, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanescu, L.; Bodale, I.; Florescu, S.-A.; Roman, C.; Acatrinei, D.; Miron, L. Climate Change Is Increasing the Risk of the Reemergence of Malaria in Romania. BioMed Res. Int. 2016, 2016, 8590519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; Intergovernmental Panel on Climate Change: New York, NY, USA, 2014. [Google Scholar]
- Betran, A.P.; Torloni, M.R.; Zhang, J.; Ye, J.; Mikolajczyk, R.; Deneux-Tharaux, C.; Oladapo, O.T.; Souza, J.P.; Tuncalp, O.; Vogel, J.P.; et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod Health 2015, 12, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes-Ramirez, J.; Naish, S.; Sly, P.D.; Jagals, P. Mortality and morbidity in populations in the vicinity of coal mining: A systematic review. BMC Public Health 2018, 18, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Frequencies |
---|---|
WHO geographical region | |
African Region (AFRO) | 4 (10.5%) |
Region of the Americas (PAHO) | 4 (10.5%) |
South-East Asia Region (SEARO) | 12 (32%) |
Eastern Mediterranean Region (EMRO) | 2 (5%) |
Western Pacific Region (WEPRO) | 16 (42%) |
Publication year | |
2005–2009 | 3 (8%) |
2010–2014 | 12 (31.5%) |
2015–2020 | 23 (60.5) |
Time frame | |
≤5 years | 4 (10.6%) |
6–10 years | 20 (52.6%) |
11–15 years | 6 (15.8%) |
16–20 years | 5 (13%) |
≥21 | 3 (8%) |
Health outcome (communicable disease) | |
Dengue | 23 (60.5%) |
Malaria | 11 (29%) |
Cholera | 3 (7.9%) |
Leptospirosis | 1 (2.6%) |
Author, Year | Study Region | Time Frame (Years) | Statistical Analysis & Climate Model | Association between Meteorological Factors with Communicable Disease Incidence | Target Outcome | Future Prediction | Adjustment for Confounding Factors | Cross Validation | Quality Score | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | Relative Humidity | Precipitation | Other Factors | |||||||||
Adde et al., 2016 [25] | French Guiana, region of France | 1991–2013 (22 years) | Time-lagged Spearman’s correlations, composite analysis, logistic binomial regression model | No significant correlation | No significant correlation | −VE | Not studied | DF outbreak | French Guiana would likely experience an outbreak (probability of 0.92) in 2016. | No adjustments | Validated | 10 |
Arcari et al., 2007 [26] | Indonesia | 1992–2001 (10 years) | Pearson correlation. Stepwise multiple regression analyses. | +VE | No significant correlation | +VE | Not studied | DI/DHF I | Not studied | No adjustments | Not mention | 12 |
Banu et al., 2014 [27] | Bangladesh (Dhaka) | 2000–2010 (11 years) | Spearman’s correlation. Poisson time series model combined with DLM | +VE | +VE | No significant correlation | Not studied | DI | If 1 °C T increase in 2100, an increase of 583 DF cases. If 2 °C T increase, increase of 2782 DF cases. If T increase by 3.3 °C, increase of 16,030 cases. | Adjusted | Validated | 12 |
Banu et al., 2015 [28] | Bangladesh | 2000–2012 (12 years) | Wavelet coherence analysis, DLMN, Poisson time series model | +VE (Nino3.4 & DMI) | +VE | No significant correlation | Not studied | DI | Not studied | Adjusted for temperature, rainfall, DMI and Nino 3.4 | Validated | 13 |
Cheong et al., 2013 [29] | Malaysia (Selangor, KL, and Putrajaya) | 2008–2010 (2 years) | Correlation analyses, Poisson GAM, DLNM | +VE | No significant correlation | +VE | −VE | DI | Not studied | Seasonal trends | Validated | 11 |
Colo’ n–Gonza’ lez et al., 2013 [30] | Mexico | 1985–2007 (22 years) | GAM Projected changes for the years 2030, 2050, and 2080 under three climate change scenarios (A1B, A2, and B1). | +VE | Not studied | No association | Not studied | DI | Mean annual DI may increase by about 12–18% by 2030, 22–31% by 2050, and 33–42% by 2080. | No adjustments | Validated | 10 |
Chumpu et al., 2019 [31] | Thailand | 2001–2014 (15 years) | Generalized linear models (Poisson regression, negative binomial regression, quasi likelihood Regression) ARIMA and SARIMA | +VE | No significant correlation | +/−VEdepending on province | +VE | DI | Not studied | Adjusted | Validated | 14 |
Chuang et al., 2017 [32] | Taiwan (South western) | 1998–2015 (8 years) | DLNM, Wavelet analysis | +VE | Not studied | +VE | Not studied | DI | Not studied | Adjusted | Validated | 11 |
Duarte et al., 2018 [33] | Rio Branco, Brazil | 2001–2012 (12 years) | Generalized autoregressive moving average models with negative binomial distribution | −VE | −VE | −VE | Not studied | DI | Not studied | Adjusted | Not mention | 13 |
Hii et al., 2009 [34] | Singapore | 2000–2007 (8 years) | Time series Poisson regression model | +VE | Not studied | −VE | Not studied | DI | Not studied | No adjustments | Validated | 10 |
Iguchi et al., 2018 [35] | Davao Region, Philippines | 2011–2015 (5 years) | A quasi-Poisson time series model coupled with DLNM. | −VE | Not studied | +VE | Not studied | DI | Not studied | Adjusted | Not mention | 11 |
Jiang et al., 2017 [36] | San Juan, Puerto Rico | 1990–2013 (23 years) | K-nearest neighbor (KNN) regression | +VE | +VE | No significant correlation | Not studied | DI | Regression prediction Error (RMSE) is 6.88 person/week. | No adjustments | Validated | 9 |
Li et al., 2017 [37] | Guangzhou, China | 1998–2014 (17 years) | Spearman rank coefficient and Pearson correlation coefficient. Generalized additive model (GAM) | +VE | +VE | +VE | +VE | DI | Under RCP 2.6, overall incidence of DF is low Under RCP 8.5, both the overall incidence and occurrence of high numbers of cases increase. | No adjustments | Validated | 8 |
Minn An & Rocklöv 2014 [38] | Vietnam (Hanoi) | 2002–2010 (9 years) | Stepwise multivariate linear regression analysis | +VE | +VE | +VE | Not studied | DI | Not studied | Bonferroni corrections | Validated | 8 |
Noureldin & Shaffer 2019 [39] | Sudan (Port Sudan) | 2008–2013 (6 years) | Wilcoxon rank sum test and multiple linear regression | +VE | +VE | +VE | Not studied | DI | No adjustments | Not mention | Not studied | 9 |
Pham et al., 2020 [40] | Vietnam (Mekong Delta region) | 2000–2016 (17 years) | ARIMA | +VE | Not studied | +VE | Not studied | DI | DF incidence mostly in rainy seasons | No adjustments | Validated | 14 |
Sirisena et al., 2017 [41] | Sri Lanka | 2009–2014 (6 years) | Spearman’s correlation | +VE | +VE | +VE | Not studied | DI | Not studied | No adjustments | Not mention | 12 |
Sharmin et al., 2015 [42] | Dhaka, Bangladesh | 2000–2009 (10 years) | Spearman’s rank correlation test. Negative binomial generalized linear model. | +VE | No significant correlation | +VE | Not studied | DI | Not studied | Adjusted | Not mention | 8 |
Tang et al., 2020 [43] | Indonesia (Surabaya, East Java) | 2009–2017 (9 years) | One-Sample Kolmogorov–Smirnov Test, Spearman non-parametric correlation test. | −VE | +VE | +VE | Not studied | DHF I | Not studied | No adjustments | Not mention | 8 |
Tosepu et al., 2017 [44] | Sulawesi, Indonesia | 2010–2015 (6 years) | Spearman and time-series Poisson multivariate regression. GEE with a Poisson distribution | +VE | −VE | −VE | Not studied | DHF I | Not studied | Adjusted | Not mention | 10 |
Xiang et al., 2017 [45] | Guangdong, China | 2005– 2014 (10 years) | DLNM, GEE with negative binominal distribution. | +VE | +VE | +VE | −VE | DI | Not studied | Adjusted | Not mention | 11 |
Xuan et al., 2014 [46] | Vietnam | 2008–2012. (5 years) | Poisson regression model | No association | +VE | +VE | Not studied | DI | Not studied | Adjusted | Not mention | 10 |
Xu et al., 2014 [47] | Singapore | 2001–2009 (9 years) | Spearman rank correlation analysis. Poisson regression combined with DLNM | +VE | Not significant | +VE | Not significant | DI | Not studied | Adjusted | Not mention | 12 |
Akinbobola & Omotosho 2011 [48] | Nigeria (Akure city) | 2001–2007 (7 years) | ARIMA | +VE | +VE | +VE | Not studied | MI | Not studied | Not adjusted | Not mention | 9 |
Bhandari et al., 2013 [49] | Nepal (Jhapa district) | 1999–2008 (10 years) | ARIMA | +VE | No significant correlation | +VE | Not studied | MI | Not studied | Not adjusted | Not mention | 8 |
Gao et al., 2012 [50] | China (Anhui province) | 1990–2009 (20 years) | Spearman correlations. Polynomial distributed lag (PDL) time-series regression | +VE | +VE | +VE | +VE with El Niñ o/Southern Oscillation | MI | Not studied | Adjusted | Validated | 12 |
Jones et al., 2007 [51] | North-west Tanzania | 1990–1999 (10 years) | Multiple linear regression analysis | +VE | No significant correlation | +VE | Not studied | MI | Not studied | Adjusted | Validated | 9 |
Kwak et al., 2014 [52] | Korea | 2001–2011 (11 years) | Spectral analysis. Brock–Dechert–Scheinkman (BDS) Statistic. Nonlinear Regression Analysis. PCA-Regression Analysis | +VE | +VE | +VE | Not studied | MI | Under RCP 4.5, malaria occurrence trend will gradually increase. Malaria occurrence will increase before the rainy season in summer (April and July). | Adjusted | Not mention | 12 |
Ostovar et al., 2016 [53] | Iran | 2003–2009 (7 years) | ARIMA models with Transfer Function. | +VE | −VE | No significant correlation | Not studied | MI | Not studied | Adjusted | Not mention | 9 |
Rejeki et al., 2018 [54] | Indonesia | 2005–2014 (10 years) | Poisson model, quasi–Poisson model, and negative binomial model | No significant association. | −VE | +VE | Not studied | MI | Not studied | Not adjusted | Not mention | 11 |
Sehgal et al., 2020 [55] | India (Andhra Pradesh) | 2014–2016 (3 years) | GLM with Poisson distribution. Quasi-Poisson method with GAM | +VE | −VE | +VE | Not studied | MI | Not studied | Adjusted | Not mention | 10 |
Wardrop et al., 2013 [56] | Yunnan Province, China | 1991–2006 (16 years) | Poisson regression with distributed lag non-linear | +VE | Not studied | +VE | Not studied | MI | Not studied | Adjusted | Not mention | 10 |
Xiang et al., 2018 [57] | Anhui, Henan, and Yunnan Provinces China | 2005–2012 (8 years) | Generalized estimating equation models with negative binominal distribution. | +VE | +VE | −VE | Not studied | MI | Not studied | Adjusted | Not mention | 13 |
Zhao et al., 2014 [58] | South-west China | 2004–2009 (6 years) | Multilevel Distributed Lag Non-linear Model(MDLNM) | +VE | +VE | +VE | Not studied | MI | Not studied | Adjusted | Not mention | 13 |
Asadgol et al., 2019 [11] | Iran | 1998–2016 (19 years) | Artificial Neural Networks (ANNs) | +VE | Not studied | −VE | Not studied | Cholera cases | Under RCP8.5, the cholera trend will increase by the year 2050. | Adjusted | Validated | 11 |
Magny et al., 2008 [59] | Kolkata, India, and Matlab, Bangladesh | 1998–2006 (9 years) | GLM with a Poisson distribution and a log link | No significant correlation | Not studied | +VE | +VE CHL anomaly | Cholera epidemic | Not studied | Adjusted | Validated | 12 |
Reyburn et al., 2011 [60] | Zanzibar, East Africa | 1997–2006 (10 years) | SARIMA | +VE | Not studied | +VE | No significant correlation with CHLano | Cholera cases | Not studied | Adjusted | Validated | 10 |
Dhewantara et al., 2019 [61] | China (Megla and Yunan county) | 2006–2016 (11 years) | Time series cross-correlation analysis | +VE | Not studied | +VE | Not studied | Leptospirosis notification | Not studied | Adjusted | Validated | 12 |
Temperature | Relative Humidity | Precipitation | Wind Properties | |
---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |
Dengue (23 studies) | ||||
Positive association | 17 (74) | 10 (43.5) | 16 (70) | 2 (8.7) |
Negative association | 3 (13) | 2 (8.7) | 3 (13) | 2 (8.7) |
Positive and negative association | 1 (4.3) | |||
Total | 20 | 12 | 20 | 4 |
Malaria (11 studies) | ||||
Positive association | 10 (91) | 5 (45.5) | 9 (81.8) | 0 |
Negative association | 0 | 3 (27.3) | 1 (9.1) | 0 |
Total | 10 | 8 | 10 | 0 |
Cholera (3 studies) | ||||
Positive association | 2 (66.7) | 0 | 2 (66.7) | 0 |
Negative association | 0 | 0 | 1 (33.3) | 0 |
Total | 2 | 0 | 3 | 0 |
Leptospirosis (1 study) | ||||
Positive association | 1 (100) | 0 | 1 (100) | 0 |
Negative association | 0 | 0 | 0 | 0 |
Total | 1 | 0 | 1 | 0 |
Grand total | 33 | 20 | 34 | 3 |
Author (Year) | Study Design and Focus | Statistical Methodology | Quality of Reporting | Score | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Size | Level of Data Aggregation | Level of Inference | Pre-Specification of Ecologic Units | Analytic Methodology | Validity of Statistical Inferences | Use of Covariates | Proper Adjustment for Covariates | Statement of Study Design | Justification of Study Design | Discussion of Cross-Level Bias and Limitations | Points | |
Adde et al., 2016 [25] | 2 | 2 | 1 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 10 |
Arcari et al., 2007 [26] | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 12 |
Banu et al., 2014 [27] | 2 | 3 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 1 | 12 |
Banu et al., 2015 [28] | 2 | 3 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 13 |
Cheong et al., 2013 [29] | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 11 |
Colo’n–Gonza’ lez et al., 2013 [30] | 2 | 2 | 1 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 10 |
Chumpu et al., 2019 [31] | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 14 |
Chuang et al., 2017 [32] | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 11 |
Duarte et al., 2018 [33] | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 13 |
Hii et al., 2009 [34] | 2 | 3 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 10 |
Iguchi et al., 2018 [35] | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 11 |
Jiang et al., 2017 [36] | 2 | 2 | 1 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 9 |
Li et al., 2017 [37] | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 8 |
Minn An & Rocklöv 2014 [38] | 1 | 1 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 1 | 8 |
Noureldin & Shaffer 2019 [39] | 1 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 1 | 1 | 9 |
Pham et al., 2020 [40] | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 14 |
Sirisena et al., 2017 [41] | 2 | 3 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 1 | 12 |
Sharmin et al., 2015 [42] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 8 |
Tang et al., 2020 [43] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 8 |
Tosepu et al., 2017 [44] | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 10 |
Xiang et al., 2017 [45] | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 11 |
Xuan et al., 2014 [46] | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 10 |
Xu et al., 2014 [47] | 2 | 3 | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 1 | 12 |
Akinbobola & Omotosho 2011 [48] | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 9 |
Bhandari et al., 2013 [49] | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 8 |
Gao et al., 2012 [50] | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 12 |
Jones et al., 2007 [51] | 1 | 2 | 1 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 9 |
Kwak et al., 2014 [52] | 2 | 3 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 1 | 12 |
Ostovar et al., 2016 [53] | 2 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | 1 | 9 |
Rejeki et al., 2018 [54] | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 1 | 1 | 11 |
Sehgal et al., 2020 [55] | 2 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 1 | 0 | 1 | 10 |
Wardrop et al., 2013 [56] | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 1 | 10 |
Xiang et al., 2018 [57] | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 13 |
Zhao et al., 2014 [58] | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 1 | 1 | 13 |
Asadgol et al., 2019 [11] | 2 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 11 |
Magny et al., 2008 [59] | 2 | 3 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 1 | 12 |
Reyburn et al., 2011 [60] | 2 | 1 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 1 | 1 | 10 |
Dhewantara et al., 2019 [61] | 2 | 2 | 1 | 0 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baharom, M.; Ahmad, N.; Hod, R.; Arsad, F.S.; Tangang, F. The Impact of Meteorological Factors on Communicable Disease Incidence and Its Projection: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 11117. https://doi.org/10.3390/ijerph182111117
Baharom M, Ahmad N, Hod R, Arsad FS, Tangang F. The Impact of Meteorological Factors on Communicable Disease Incidence and Its Projection: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(21):11117. https://doi.org/10.3390/ijerph182111117
Chicago/Turabian StyleBaharom, Mazni, Norfazilah Ahmad, Rozita Hod, Fadly Syah Arsad, and Fredolin Tangang. 2021. "The Impact of Meteorological Factors on Communicable Disease Incidence and Its Projection: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 21: 11117. https://doi.org/10.3390/ijerph182111117
APA StyleBaharom, M., Ahmad, N., Hod, R., Arsad, F. S., & Tangang, F. (2021). The Impact of Meteorological Factors on Communicable Disease Incidence and Its Projection: A Systematic Review. International Journal of Environmental Research and Public Health, 18(21), 11117. https://doi.org/10.3390/ijerph182111117