Development of a Computer Vision-Based Muscle Stimulation Method for Measuring Muscle Fatigue during Prolonged Low-Load Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Apparatus and Task
2.3. Stimulation Protocol
2.4. Experimental Procedure
2.5. Data Process and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van DieËn, J.H.; De Looze, M.P.; Hermans, V. Effects of Dynamic Office Chairs on Trunk Kinematics, Trunk Extensor EMG and Spinal Shrinkage. Ergonomics 2001, 44, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Beach, T.A.C.; Mooney, S.K.; Callaghan, J.P. The Effects of a Continuous Passive Motion Device on Myoelectric Activity of the Erector Spinae during Prolonged Sitting at a Computer Workstation. Work Read. Mass 2003, 20, 237–244. [Google Scholar]
- Laursen, B.; Jensen, B.R.; Garde, A.H.; Jørgensen, A.H. Effect of Mental and Physical Demands on Muscular Activity during the Use of a Computer Mouse and a Keyboard. Scand. J. Work. Environ. Health 2002, 28, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blangsted, A.K.; Søgaard, K.; Christensen, H.; Sjøgaard, G. The Effect of Physical and Psychosocial Loads on the Trapezius Muscle Activity during Computer Keying Tasks and Rest Periods. Eur. J. Appl. Physiol. 2004, 91, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Sjøgaard, G.; Kiens, B.; Jørgensen, K.; Saltin, B. Intramuscular Pressure, EMG and Blood Flow during Low-Level Prolonged Static Contraction in Man. Acta Physiol. Scand. 1986, 128, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Søgaard, K.; Blangsted, A.K.; Jørgensen, L.V.; Madeleine, P.; Sjøgaard, G. Evidence of Long Term Muscle Fatigue Following Prolonged Intermittent Contractions Based on Mechano- and Electromyograms. J. Electromyogr. Kinesiol. 2003, 13, 441–450. [Google Scholar] [CrossRef]
- McLean, L.; Goudy, N. Neuromuscular Response to Sustained Low-Level Muscle Activation: Within- and between-Synergist Substitution in the Triceps Surae Muscles. Eur. J. Appl. Physiol. 2004, 91, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Blangsted, A.K.; Sjøgaard, G.; Madeleine, P.; Olsen, H.B.; Søgaard, K. Voluntary Low-Force Contraction Elicits Prolonged Low-Frequency Fatigue and Changes in Surface Electromyography and Mechanomyography. J. Electromyogr. Kinesiol. 2005, 15, 138–148. [Google Scholar] [CrossRef]
- van Dieën, J.H.; Westebring-van der Putten, E.P.; Kingma, I.; de Looze, M.P. Low-Level Activity of the Trunk Extensor Muscles Causes Electromyographic Manifestations of Fatigue in Absence of Decreased Oxygenation. J. Electromyogr. Kinesiol. 2009, 19, 398–406. [Google Scholar] [CrossRef]
- Jia, B.; Nussbaum, M.A.; Agnew, M.J. A Stimulation Method to Assess the Contractile Status of the Lumbar Extensors in a Seated Posture: Assess the Contractile Status of the Lumbar Extensors. Hum. Factors Ergon. Manuf. Serv. Ind. 2015, 25, 674–684. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, K.; Fallentin, N.; Krogh-Lund, C.; Jensen, B. Electromyography and Fatigue during Prolonged, Low-Level Static Contractions. Eur. J. Appl. Physiol. 1988, 57, 316–321. [Google Scholar] [CrossRef]
- Öberg, T.; SANDSJö, L.; Kadefors, R.; Larsson, S.-E. Electromyographic Changes in Work-Related Myalgia of the Trapezius Muscle. Eur. J. Appl. Physiol. 1992, 65, 251–257. [Google Scholar] [CrossRef]
- Öberg, T.; SANDSJö, L.; Kadefors, R. Subjective and Objective Evaluation of Shoulder Muscle Fatigue. Ergonomics 1994, 37, 1323–1333. [Google Scholar] [CrossRef]
- Johnson, P.W.; Lehman, S.L.; Rempel, D.M. Measuring Low Frequency Fatigue with 2 Hertz Stimulation. I. Stimulus-Related Potentiation Effects. In Proceedings of the 17th International Conference of the Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–23 September 1995; IEEE: Montreal, QC, Canada; Volume 2, pp. 1207–1208. [Google Scholar] [CrossRef]
- Hill, A.V. The Heat of Activation and the Heat of Shortening in a Muscle Twitch. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1949, 136, 195–211. [Google Scholar] [CrossRef]
- Merton, P.A. Interaction between Muscle Fibres in a Twitch. J. Physiol. 1954, 124, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Binder-Macleod, S.A.; Snyder-Mackler, L. Muscle Fatigue: Clinical Implications for Fatigue Assessment and Neuromuscular Electrical Stimulation. Phys. Ther. 1993, 73, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.W.; Lehman, S.L.; Rempel, D.M. Measuring Low Frequency Fatigue with 2 Hertz Stimulation. II. Muscle Fatigue Results. In Proceedings of the 17th International Conference of the Engineering in Medicine and Biology Society, Montreal, QC, Canada, 20–23 September 1995; IEEE: Montreal, QC, Canada; Volume 2, pp. 1211–1212. [Google Scholar] [CrossRef]
- Edwards, R.H.; Hill, D.K.; Jones, D.A.; Merton, P.A. Fatigue of Long Duration in Human Skeletal Muscle after Exercise. J. Physiol. 1977, 272, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.W. The Development, Characterization and Implementation of a Technique to Measure Muscle Fatigue during Computer Use. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1988. [Google Scholar]
- Byström, S.; Kilbom, Å. Electrical Stimulation of Human Forearm Extensor Muscles as an Indicator of Handgrip Fatigue and Recovery. Eur. J. Appl. Physiol. 1991, 62, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.W.; Lehman, S.L.; Rempel, D.M. Measuring Muscle Fatigue during Computer Mouse Use. In Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, The Netherlands, 31 October–3 November 1996; IEEE: Amsterdam, The Netherlands, 1997; Volume 4, pp. 1454–1455. [Google Scholar] [CrossRef]
- Vanoncini, M.; Holderbaum, W.; Andrews, B.J. Investigations on the Biomechanics of the Human Trunk. In Proceedings of the 24th IASTED International Conference on Biomedical Engineering, Innsbruck, Austria, 15–17 February 2006; ACTA Press: Anaheim, CA, USA; pp. 137–142. [Google Scholar]
- Vanoncini, M.; Holderbaum, W.; Andrews, B. Development and Experimental Identification of a Biomechanical Model of the Trunk for Functional Electrical Stimulation Control in Paraplegia: Modeling the Human Trunk for Fes Control. Neuromodulation Technol. Neural Interface 2008, 11, 315–324. [Google Scholar] [CrossRef]
- Hou, Y.-Y.; Chiou, S.-Y.; Lin, M.-H. Real-Time Detection and Tracking for Moving Objects Based on Computer Vision Method. In Proceedings of the 2017 2nd International Conference on Control and Robotics Engineering (ICCRE), Bangkok, Thailand, 1–3 April 2017; IEEE: Bangkok, Thailand; pp. 213–217. [Google Scholar] [CrossRef]
- Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-Scale Video Classification with Convolutional Neural Networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: Columbus, OH, USA; pp. 1725–1732. [Google Scholar]
- Jalled, F. Face Recognition Machine Vision System Using Eigenfaces. arXiv 2017, arXiv:170502782. [Google Scholar]
- Poppe, R. Vision-Based Human Motion Analysis: An Overview. Comput. Vis. Image Underst. 2007, 108, 4–18. [Google Scholar] [CrossRef]
- Starbuck, R.; Seo, J.; Han, S.; Lee, S. A Stereo Vision-Based Approach to Marker-Less Motion Capture for On-Site Kinematic Modeling of Construction Worker Tasks. In Computing in Civil and Building Engineering (2014); American Society of Civil Engineers: Orlando, FL, USA, 2014; pp. 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.W.; Ahmed, A.; Hunter, A. Vision Analysis in Detecting Abnormal Breathing Activity in Application to Diagnosis of Obstructive Sleep Apnoea. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; IEEE: New York, NY, USA; pp. 4469–4473. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, G.; Durand, F.; Guttag, J. Detecting Pulse from Head Motions in Video. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; IEEE: Portland, OR, USA; pp. 3430–3437. [Google Scholar] [CrossRef] [Green Version]
- Irani, R.; Nasrollahi, K.; Moeslund, T.B. Contactless Measurement of Muscles Fatigue by Tracking Facial Feature Points in a Video. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; IEEE: Paris, France; pp. 4181–4185. [Google Scholar] [CrossRef] [Green Version]
- Haq, Z.A.; Hasan, Z. Eye-Blink Rate Detection for Fatigue Determination. In Proceedings of the 2016 1st India International Conference on Information Processing (IICIP), Delhi, India, 12–14 August 2016; IEEE: Delhi, India; pp. 1–5. [Google Scholar] [CrossRef]
- Fick, R. Handbuch Der Anatomie Und Mechanik Der Gelenke: T. Spezielle Gelenk-Und Muskelmechanik. In Handbuch der Anatomie des Menschen; G. Fischer: Schaffhausen, Switzerland, 1911; Volume 3. [Google Scholar]
- Wickham, J.B.; Brown, J.M.M. Muscles within Muscles: The Neuromotor Control of Intra-Muscular Segments. Eur. J. Appl. Physiol. 1998, 78, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Melis, E.H.; Richmond, F.J.R.; Scott, S.H. Morphometry OfMacaca Mulatta Forelimb. II. Fiber-Type Composition in Shoulder and Elbow Muscles. J. Morphol. 2002, 251, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, M.L.; Brown, J.M.M. Mechanomyographic Assessment of Contractile Properties within Seven Segments of the Human Deltoid Muscle. Eur. J. Appl. Physiol. 2007, 100, 35–44. [Google Scholar] [CrossRef]
- Inoue, S.; Tani, T.; Taniguchi, S.; Yamamoto, H. The Motor-Evoked Potentials Elicited From the Deltoid Muscle by Transcranial Magnetic Stimulation With a Standardized Facilitation: The Potential Diagnostic Utility for C5 Radiculopathy. Spine 2003, 28, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.L.; Parker, K. Neuromuscular Electrical Stimulation of the Muscles Surrounding the Shoulder. Phys. Ther. 1986, 66, 1930–1937. [Google Scholar] [CrossRef] [Green Version]
- Cram, J.R.; Rommen, D. Effects of Skin Preparation on Data Collected Using an EMG Muscle-Scanning Procedure. Biofeedback Self-Regul. 1989, 14, 75–82. [Google Scholar] [CrossRef]
- Rassier, D.E.; MacIntosh, B.R. Coexistence of Potentiation and Fatigue in Skeletal Muscle. Braz. J. Med. Biol. Res. 2000, 33, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Barcelona, Spain; pp. 2564–2571. [Google Scholar] [CrossRef]
- Rosten, E.; Porter, R.; Drummond, T. Faster and Better: A Machine Learning Approach to Corner Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the Alvey Vision Conference 1988, Manchester, UK, 31 August 1988; Alvey Vision Club: Manchester, UK; pp. 10–5244. [Google Scholar] [CrossRef]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features. In Computer Vision–ECCV 2010, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6314, pp. 778–792. ISBN 978-3-642-15560-4. [Google Scholar]
- Lv, Q.; Josephson, W.; Wang, Z.; Charikar, M.; Li, K. Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In Proceedings of the 33rd International Conference on Very Large Data Bases, Vienna, Austria, 1 September 2007; Association for Computing Machinery, Inc.: Vienna, Austria; pp. 950–961. [Google Scholar]
- Bostanci, E.; Kanwal, N.; Bostanci, B.; Guzel, M.S. A Fuzzy Brute Force Matching Method for Binary Image Features. arXiv 2017, arXiv:170406018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, B.; Kumbhar, A.N.; Tong, Y. Development of a Computer Vision-Based Muscle Stimulation Method for Measuring Muscle Fatigue during Prolonged Low-Load Exposure. Int. J. Environ. Res. Public Health 2021, 18, 11242. https://doi.org/10.3390/ijerph182111242
Jia B, Kumbhar AN, Tong Y. Development of a Computer Vision-Based Muscle Stimulation Method for Measuring Muscle Fatigue during Prolonged Low-Load Exposure. International Journal of Environmental Research and Public Health. 2021; 18(21):11242. https://doi.org/10.3390/ijerph182111242
Chicago/Turabian StyleJia, Bochen, Abhishek Nagesh Kumbhar, and Yourui Tong. 2021. "Development of a Computer Vision-Based Muscle Stimulation Method for Measuring Muscle Fatigue during Prolonged Low-Load Exposure" International Journal of Environmental Research and Public Health 18, no. 21: 11242. https://doi.org/10.3390/ijerph182111242
APA StyleJia, B., Kumbhar, A. N., & Tong, Y. (2021). Development of a Computer Vision-Based Muscle Stimulation Method for Measuring Muscle Fatigue during Prolonged Low-Load Exposure. International Journal of Environmental Research and Public Health, 18(21), 11242. https://doi.org/10.3390/ijerph182111242