Effects of Mobile Application Program (App)-Assisted Health Education on Preventive Behaviors and Cancer Literacy among Women with Cervical Intraepithelial Neoplasia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Health Education Tools
2.3. Instruments for the Assessment of Three Health Behavior-Related Domains and One Literacy Domain
2.3.1. Health Behavior Instrument
2.3.2. Health Behavior Change Instrument
2.3.3. Self-Efficacy of Health Behavior Instrument
2.3.4. CCa Literacy Instrument
2.4. Statistical Analysis
3. Results
3.1. Effects of Grouping by Propensity Score Matching
3.2. Effects of Health Education
3.3. Effects of a Mobile App-Assisted Education Model
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tollosa, D.N.; Holliday, E.; Hure, A.; Tavener, M.; James, E.L. Multiple health behaviors before and after a cancer diagnosis among women: A repeated cross-sectional analysis over 15 years. Cancer Med. 2020, 9, 3224–3233. [Google Scholar] [CrossRef] [PubMed]
- Ebu, N.I.; Amissah-Essel, S.; Asiedu, C.; Akaba, S.; Pereko, K.A. Impact of health education intervention on knowledge and perception of cervical cancer and screening for women in Ghana. BMC Public Health 2019, 19, 1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.H.; Lo, Y.J.; Kuo, K.M.; Lu, I.C.; Wu, H.; Hsieh, M.T.; Liu, I.T.; Lin, Y.C.; Lai, Y.C.; Huang, R.Y.; et al. Health literacy and cancer screening behaviors among community-dwelling female adults in Taiwan. Women Health 2021, 61, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Tiraki, Z.; Yılmaz, M. Cervical Cancer Knowledge, Self-Efficacy, and Health Literacy Levels of Married Women. J. Cancer Educ. 2018, 33, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Health Promotion Administration. Cervical Cancer Screen Registry System Annual Report, Republic of China, 2012–2019. Available online: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1322&pid=14145 (accessed on 30 October 2021).
- Health Promotion Administration. 2017 Universal Health Coverage Index Analysis. Available online: https://dep.mohw.gov.tw/DOS/cp-5081-55399-113.html (accessed on 30 October 2021).
- Moodley, J.; Constant, D.; Botha, M.H.; van der Merwe, F.H.; Edwards, A.; Momberg, M. Exploring the feasibility of using mobile phones to improve the management of clients with cervical cancer precursor lesions. BMC Womens Health 2019, 19, 2. [Google Scholar] [CrossRef]
- Rossman, A.H.; Reid, H.W.; Pieters, M.M.; Mizelle, C.; von Isenberg, M.; Ramanujam, N.; Huchko, M.J.; Vasudevan, L. Digital Health Strategies for Cervical Cancer Control in Low- and Middle-Income Countries: A Systematic Review of Current Implementations and Gaps in Research (Preprint). J. Med. Internet Res. 2020, 23, e23350. [Google Scholar] [CrossRef]
- Arviliana, R.; Afifah, A.N.; Eryando, T. Opportunity of Mobile Telemedicine Technology for Cervical Cancer Screening in Developing Countries: A Systematic Review. In Proceedings of the 6th International Conference on Public Health 2019, Solo, Indonesia, 23–24 October 2019. [Google Scholar] [CrossRef]
- Song, T.; Deng, N.; Cui, T.; Qian, S.; Liu, F.; Guan, Y.; Yu, P. Measuring Success of Patients’ Continuous Use of Mobile Health Services for Self-management of Chronic Conditions: Model Development and Validation. J. Med. Internet Res. 2021, 23, e26670. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, E.M.; Marvel, F.A.; Piasecki, R.J.; Martin, S.S.; Allen, J.K. User Engagement with Smartphone Apps and Cardiovascular Disease Risk Factor Outcomes: Systematic Review. JMIR Cardio 2021, 5, e18834. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Bellido, V.; Graner, M.; Altpeter, B.; Cicchetti, A.; Durand-Zaleski, I.; Kristensen, F.B. The Challenge of Sustainable Access to Telemonitoring Tools for People with Diabetes in Europe: Lessons from COVID-19 and Beyond. Diabetes Ther. 2021, 12, 2311–2327. [Google Scholar] [CrossRef]
- Eisenhauer, C.M.; Brito, F.; Kupzyk, K.; Yoder, A.; Almeida, F.; Beller, R.J.; Miller, J.; Hageman, P.A. Mobile health assisted self-monitoring is acceptable for supporting weight loss in rural men: A pragmatic randomized controlled feasibility trial. BMC Public Health 2021, 21, 1568. [Google Scholar] [CrossRef]
- Al-Arkee, S.; Mason, J.; A Lane, D.; Fabritz, L.; Chua, W.; Haque, M.S.; Jalal, Z. Mobile Apps to Improve Medication Adherence in Cardiovascular Disease: Systematic Review and Meta-analysis. J. Med. Internet Res. 2021, 23, e24190. [Google Scholar] [CrossRef]
- Collado-Borrell, R.; Escudero-Vilaplana, V.; Villanueva-Bueno, C.; Herranz-Alonso, A.; Sanjurjo-Saez, M. Features and Functionalities of Smartphone Apps Related to COVID-19: Systematic Search in App Stores and Content Analysis. J. Med. Internet Res. 2020, 22, e20334. [Google Scholar] [CrossRef]
- Forman-Hoffman, V.L.; Nelson, B.W.; Ranta, K.; Nazander, A.; Hilgert, O.; de Quevedo, J. Significant reduction in depressive symptoms among patients with moderately-severe to severe depressive symptoms after participation in a therapist-supported, evidence-based mobile health program delivered via a smartphone app. Internet Interv. 2021, 25, 100408. [Google Scholar] [CrossRef] [PubMed]
- Ream, E.; Hughes, A.E.; Cox, A.; Skarparis, K.; Richardson, A.; Pedersen, V.H.; Wiseman, T.; Forbes, A.; Bryant, A. Telephone interventions for symptom management in adults with cancer. Cochrane Database Syst. Rev. 2020, 6, CD007568. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.G.; Hargood, C.; Lin, S.X.; Dennison, L.; Joseph, J.; Hughes, S.; Michaelides, D.T.; Johnston, D.; Johnston, M.; Michie, S.; et al. Understanding Usage of a Hybrid Website and Smartphone App for Weight Management: A Mixed-Methods Study. J. Med. Internet Res. 2014, 16, e201. [Google Scholar] [CrossRef] [PubMed]
- Woods, L.S.; Duff, J.; Roehrer, E.; Walker, K.; Cummings, E.; Donnelly, S.; Cajita, M. Patients’ Experiences of Using a Consumer mHealth App for Self-Management of Heart Failure: Mixed-Methods Study. JMIR Hum. Factors 2019, 6, e13009. [Google Scholar] [CrossRef]
- Van Reijen, M.; Vriend, I.; van Mechelen, W.; Verhagen, E. Preventing recurrent ankle sprains: Is the use of an App more cost-effective than a printed Booklet? Results of a RCT. Scand. J. Med. Sci. Sports 2018, 28, 641–648. [Google Scholar] [CrossRef]
- Dale, L.P.; Suggs, L.S.; Dey, A.; Izquierdo, M.; Rizzoli, R.; Dias, A.; Shastri, S.S.; Sankaranarayanan, R.; Groesbeck, P.; Chowdhury, R.; et al. Be Healthy, Be Mobile: A Handbook on How to Implement. mCervical Cancer. 2018. Available online: https://apps.who.int/iris/handle/10665/274578?show=full (accessed on 30 October 2021).
- Sundberg, K.; Lindström, V.; Petersson, L.M.; Langius-Eklöf, A. Supporting health literacy using an interactive app for symptom management during radiotherapy for prostate cancer. Patient Educ. Couns. 2021, 104, 381–386. [Google Scholar] [CrossRef]
- Song, Q.F.; Yin, G.; Guo, X.; Lv, X.; Yu, K.; Liu, C. Effects of a Self-Management Program for Patients with Colorectal Cancer and a Colostomy: A Nonrandomized Clinical Trial. J. Wound Ostomy Cont. Nurs. 2021, 48, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.F.; Huang, R.C.; Yang, S.C.; Chou, C.; Chen, L.C. Evaluating the Effects of a Mobile Health App on Reducing Patient Care Needs and Improving Quality of Life After Oral Cancer Surgery: Quasiexperimental Study. JMIR mHealth uHealth 2020, 8, e18132. [Google Scholar] [CrossRef]
- Wright, T.C.; Cox, J.T.; Massad, L.S.; Carlson, J.; Twiggs, L.B.; Wilkinson, E.J. 2001 Consensus Guidelines for the management of women with cervical intraepithelial neoplasia. Am. J. Obstet. Gynecol. 2003, 189, 295–304. [Google Scholar] [CrossRef]
- Ince, U.; Aydin, O.; Peker, O. Clinical importance of “low-grade squamous intraepithelial lesion, cannot exclude high-grade squamous intraepithelial lesion (LSIL-H)” terminology for cervical smears 5-year analysis of the positive predictive value of LSIL-H compared with ASC-H, LSIL, and HSIL in the detection of high-grade cervical lesions with a review of the literature. Gynecol. Oncol. 2011, 121, 152–156. [Google Scholar] [CrossRef]
- Spreeuwenberg, M.D.; Bartak, A.; Croon, M.A.; Hagenaars, J.A.; Busschbach, J.J.; Andrea, H.; Twisk, J.; Stijnen, T. The multiple propensity score as control for bias in the comparison of more than two treatment arms: An introduction from a case study in mental health. Med. Care 2010, 48, 166–174. [Google Scholar] [CrossRef]
- Murphy, B.; Fraeman, K.H. A General SAS® Macro to Implement Optimal N:1 Propensity Score Matching Within a Maximum Radius. Available online: https://support.sas.com/resources/papers/proceedings17/0812-2017.pdf (accessed on 30 October 2021).
- Galvin, A.M.; Garg, A.; Matthes, S.; Thompson, E.L. Utilizing a Multidimensional Health Literacy Framework to Assess Cervical Cancer Screening Nonadherence. Health Educ. Behav. 2021, 48, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Jatho, A.; Bikaitwoha, M.E.; Mugisha, N.M. Socio-culturally mediated factors and lower level of education are the main influencers of functional cervical cancer literacy among women in Mayuge, Eastern Uganda. Ecancermedicalscience 2020, 14, 1004. [Google Scholar] [CrossRef] [Green Version]
- Moscicki, A.B.; Chang, C.; Vangala, S.; Zhou, X.; Elashoff, D.A.; Dehlendorf, C.; Sawaya, G.F.; Kuppermann, M.; Sawaya, G.F.; Duron, Y.; et al. Effect of 2 Interventions on Cervical Cancer Screening Guideline Adherence. Am. J. Prev. Med. 2021, 60, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Teitelman, A.M.; Kim, S.K.; Waas, R.; DeSenna, A.; Duncan, R. Development of the NowIKnow Mobile Application to Promote Completion of HPV Vaccine Series Among Young Adult Women. J. Obstet. Gynecol. Neonatal. Nurs. 2018, 47, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Willoughby, J.; Zhou, R. Associations of Health Literacy, Social Media Use, and Self-Efficacy with Health Information-Seeking Intentions Among Social Media Users in China: Cross-sectional Survey. J. Med. Internet Res. 2021, 23, e19134. [Google Scholar] [CrossRef] [PubMed]
- Calixte, R.; Rivera, A.; Oridota, O.; Beauchamp, W.; Camacho-Rivera, M. Social and Demographic Patterns of Health-Related Internet Use Among Adults in the United States: A Secondary Data Analysis of the Health Information National Trends Survey. Int. J. Environ. Res. Public Health 2020, 17, 6856. [Google Scholar] [CrossRef]
- Zhao, J.; Freeman, B.; Li, M. Can Mobile Phone Apps Influence People’s Health Behavior Change? An Evidence Review. J. Med. Internet Res. 2016, 18, e287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iribarren, S.J.; Akande, T.O.; Kamp, K.J.; Barry, D.; Kader, Y.G.; Suelzer, E. Effectiveness of Mobile Apps to Promote Health and Manage Disease: Systematic Review and Meta-analysis of Randomized Controlled Trials. JMIR mHealth uHealth 2021, 9, e21563. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.; Villagomez, A.C.; Krishnamurti, T. Comprehensively addressing postpartum maternal health: A content and image review of commercially available mobile health apps. BMC Pregnancy Childbirth 2021, 21, 311. [Google Scholar] [CrossRef]
- Oakley-Girvan, I.; Davis, S.W.; Kurian, A.; Rosas, L.G.; Daniels, J.; Palesh, O.G.; Mesia, R.J.; Kamal, A.H.; Longmire, M.; Divi, V. Development of a Mobile Health App (TOGETHERCare) to Reduce Cancer Care Partner Burden: Product Design Study. JMIR Form. Res. 2021, 5, e22608. [Google Scholar] [CrossRef] [PubMed]
- Resnick, D.; Schapira, M.M.; Smith, J.M.; Bautista, A.; Xu, C.; Jones, L.; Aysola, J. Promoting Collaborative Goal Setting for Cancer Prevention Among Primary Care Patients Through mHealth: Mixed Methods Evaluation of a New App. JMIR Form. Res. 2021, 5, e22510. [Google Scholar] [CrossRef]
- Upadhyay, V.A.; Landman, A.B.; Hassett, M.J. Landscape Analysis of Oncology Mobile Health Applications. JCO Clin. Cancer Inform. 2021, 5, 579–587. [Google Scholar] [CrossRef]
- Azlan, A.A.; Hamzah, M.R.; Tham, J.S.; Ayub, S.H.; Ahmad, A.L.; Mohamad, E. Associations between Health Literacy and Sociodemographic Factors: A Cross-Sectional Study in Malaysia Utilising the HLS-M-Q18. Int. J. Environ. Res. Public Health 2021, 18, 4860. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, N.; Perialathan, K.; Krishnan, M.; Juatan, N.; Ahmad, M.; Mien, T.Y.S.; Salleh, K.Z.; Isa, A.; Mohamed, S.S.; Hanit, N.H.A.; et al. Malaysian Health Literacy: Scorecard Performance from a National Survey. Int. J. Environ. Res. Public Health 2021, 18, 5813. [Google Scholar] [CrossRef]
- Svendsen, M.T.; Bak, C.K.; Sørensen, K.; Pelikan, J.; Riddersholm, S.J.; Skals, R.K.; Mortensen, R.N.; Maindal, H.T.; Bøggild, H.; Nielsen, G.; et al. Associations of health literacy with socioeconomic position, health risk behavior, and health status: A large national population-based survey among Danish adults. BMC Public Health 2020, 20, 565. [Google Scholar] [CrossRef]
- Hawkins, N.A.; Smith, T.; Zhao, L.; Rodriguez, J.; Berkowitz, Z.; Stein, K.D. Health-related behavior change after cancer: Results of the American cancer society’s studies of cancer survivors (SCS). J. Cancer Surviv. 2010, 4, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Simard, S.; Thewes, B.; Humphris, G.; Dixon, M.; Hayden, C.; Mireskandari, S.; Ozakinci, G. Fear of cancer recurrence in adult cancer survivors: A systematic review of quantitative studies. J. Cancer Surviv. 2013, 7, 300–322. [Google Scholar] [CrossRef]
- Belcher, S.; Low, C.; Posluszny, D.; Schear, R.; Kramer, R.; Donovan, H. Psychological Distress, Health Behaviors, and Benefit Finding in Survivors of Multiple Primary Cancers: Results From the 2010 Livestrong Survey. Oncol. Nurs. Forum 2017, 44, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, E.; Kim, Y.; Shaffer, K.M.; Cannady, R.S.; Carver, C.S. Fear of cancer recurrence promotes cancer screening behaviors among family caregivers of cancer survivors. Cancer 2020, 126, 1784–1792. [Google Scholar] [CrossRef]
- Hall, D.L.; Jimenez, R.B.; Perez, G.K.; Rabin, J.; Quain, K.; Yeh, G.Y.; Park, E.R.; Peppercorn, J.M. Fear of Cancer Recurrence: A Model Examination of Physical Symptoms, Emotional Distress, and Health Behavior Change. J. Oncol. Pract. 2019, 15, e787–e797. [Google Scholar] [CrossRef] [PubMed]
- Hladek, M.D.; Zhu, J.; Buta, B.J.; Szanton, S.L.; Bandeen-Roche, K.; Walston, J.D.; Xue, Q. Self-efficacy proxy predicts frailty incidence over time in non—Institutionalized older adults. J. Am. Geriatr. Soc. 2021. [Google Scholar] [CrossRef] [PubMed]
- Papadakos, J.; Barnsley, J.; Berta, W.; Rowlands, G.; Samoil, D.; Howell, D. The association of self-efficacy and health literacy to chemotherapy self-management behaviors and health service utilization. Support. Care Cancer. 2021, 1–11. [Google Scholar] [CrossRef]
- Herts, K.; Khaled, M.M.; Stanton, A.L. Correlates of self-efficacy for disease management in adolescent/young adult cancer survivors: A systematic review. Health Psychol. 2017, 36, 192–205. [Google Scholar] [CrossRef] [PubMed]
Variable | Group 1 (n = 43) | Group 2 (n = 45) | Group 3 (n = 44) | p-Value | |||
---|---|---|---|---|---|---|---|
n (%) | Mean ± SD | n (%) | Mean ± SD | n (%) | Mean ± SD | ||
Age | 47.1 ± 11.6 | 46.0 ± 13.2 | 47.4 ± 12.6 | 0.864 | |||
<35 y/o | 7 (16.3) | 7 (15.6) | 4 (9.1) | 0.949 | |||
35–49 y/o | 18 (41.9) | 18 (40.0) | 21 (47.7) | ||||
50–64 y/o | 15 (34.9) | 17 (37.8) | 15 (34.1) | ||||
>65 y/o | 3 (6.9) | 3 (6.7) | 4 (9.1) | ||||
Education level | |||||||
Illiterate | 1 (2.3) | 2 (4.4) | 1 (2.2) | 0.951 | |||
Primary and middle | 10 (23.3) | 14 (31.1) | 15 (34.1) | ||||
High school | 22 (51.2) | 18 (40.0) | 19 (43.2) | ||||
Bachelor | 9 (20.9) | 9 (20.0) | 7 (15.9) | ||||
Graduate | 1 (2.3) | 2 (4.4) | 2 (4.6) | ||||
Occupation | |||||||
Manager | 1 (2.3) | 1 (2.2) | 1 (2.3) | 0.925 | |||
Professional | 11 (25.6) | 8 (17.8) | 7 (15.9) | ||||
Technician | 5 (11.6) | 6 (13.3) | 3 (6.8) | ||||
Technical staff | 6 (14.0) | 7 (15.6) | 6 (13.6) | ||||
Semi-technical staff | 20 (46.6) | 23 (51.1) | 27 (61.4) | ||||
Socio-economic status | |||||||
I, II | 12 (27.9) | 12 (26.7) | 14 (31.8) | 0.596 | |||
III | 22 (51.2) | 24 (53.3) | 26 (59.1) | ||||
IV, V | 9 (20.9) | 9 (20.0) | 4 (9.1) | ||||
Marital status | |||||||
Single | 1 (2.3) | 4 (8.9) | 2 (4.5) | 0.790 | |||
Couple | 4 (9.3) | 5 (11.1) | 5 (11.4) | ||||
Married | 32 (74.4) | 27 (60.0) | 30 (63.2) | ||||
Body mass index | 23.4 ± 3.4 | 22.6 ± 3.0 | 23.8 ± 4.0 | 0.268 | |||
Underweight | 2 (4.7) | 3 (6.7) | 2 (4.6) | 0.827 | |||
Normal | 21 (48.8) | 27 (60.0) | 20 (45.5) | ||||
Overweight | 12 (27.9) | 8 (17.8) | 12 (27.3) | ||||
Obese I | 5 (11.6) | 6 (13.3) | 6 (13.6) | ||||
Obese II, III | 3 (7.0) | 1 (2.2) | 4 (9.1) | ||||
No. of chronic diseases | 0.4 ± 0.9 | 0.4 ± 0.7 | 0.5 ± 0.6 | 0.958 | |||
CCI index | 0.4 ± 0.9 | 0.4 ± 0.7 | 0.5 ± 0.6 | 0.816 | |||
Smoking everyday | |||||||
Never | 37 (86.0) | 38 (84.4) | 37 (84.1) | 0.510 | |||
Sometime | 0 (0.0) | 3 (6.7) | 2 (4.5) | ||||
Usually | 1 (2.3) | 0 (0.0) | 2 (4.5) | ||||
Always | 5 (11.6) | 4 (8.9) | 3 (6.8) | ||||
The most serious of CIN grade (cytology) during the study period | |||||||
Mild dysplasia (CIN I) | 13 (30.2) | 10 (22.2) | 14 (31.8) | 0.245 | |||
HSIL dysplasia | 13 (30.2) | 10 (22.2) | 16 (36.4) | ||||
Severe dysplasia | 17 (39.5) | 25 (55.6) | 14 (31.8) | ||||
The most serious of CIN grade (histology) during the study period | |||||||
CIN 0 | 4 (9.3) | 1 (2.2) | 2 (4.5) | 0.477 | |||
CIN 1 | 11 (25.6) | 9 (20.0) | 15 (34.1) | ||||
CIN 2 | 17 (39.5) | 20 (44.4) | 13 (29.5) | ||||
CIN 3+ | 11 (25.6) | 15 (33.3) | 14 (31.8) | ||||
Risk of HPV type | |||||||
No test | 6 (14.0) | 4 (8.9) | 6 (13.6)) | 0.505 | |||
None of HPV | 10 (23.3) | 5 (11.1)) | 8 (18.2) | ||||
lLw-risk HPV type | 5 (11.6) | 11 (24.5) | 10 (22.7) | ||||
High-risk HPV type | 18 (41.9) | 18 (40.0) | 14 (31.8) | ||||
Type 16 or 18 | 4 (51.2) | 7 (55.6) | 6 (13.6) | ||||
Surgery type | |||||||
No surgery | 13 (30.2) | 9 (20.0) | 9 (20.5) | 0.423 | |||
Conization | 2 (4.7) | 2 (4.4) | 3 (6.8) | ||||
CO2 laser | 6 (14.0) | 9 (20.0) | 6 (13.6) | ||||
LEEP | 22 (51.2) | 25 (55.6) | 26 (54.6) |
GLM Method Application | Measurement at Each Time | F-Value p-Value (GreenHouse -Geissrer Adjusted) | Post-Hoc (Tukey-Kramer) | |||
---|---|---|---|---|---|---|
TIME-1, Mean ± SD | TIME-2, Mean ± SD | TIME-3, Mean ± SD | ||||
Health behavior | 28.6 ± 7.0 | 28.5 ± 7.2 | 29.5 ± 6.2 | 0.8 | 0.442 | NS |
Health promotion | 7.8 ± 2.6 | 8.1 ± 2.8 | 8.1 ± 2.2 | 0.7 | 0.513 | NS |
Risk control | 10.4 ± 2.6 | 10.2 ± 2.7 | 10.1 ± 2.1 | 0.5 | 0.636 | NS |
Cancer prevention | 10.4 ± 5.0 | 10.2 ± 5.0 | 11.3 ± 4.8 | 1.9 | 0.15 | NS |
Attitude towards behavior change | 20.0 ± 15.5 | 25.6 ± 19.1 | 26.2 ± 16.8 | 6.5 | 0.002 ** | Time 1 < Time 2, 3 |
Health promotion | 4.3 ± 6.6 | 6.5 ± 7.9 | 6.8 ± 7.0 | 5.6 | 0.005 ** | Time 1 < Time 2, 3 |
Risk control | 6.3 ± 6.3 | 8.1 ± 8.8 | 7.7 ± 7.6 | 1.6 | 0.154 | NS |
Cancer prevention | 9.5 ± 7.0 | 11.1 ± 6.9 | 11.7 ± 7.3 | 4.1 | 0.018 * | Time 1 < Time 2, 3 |
Self-efficacy of behavior | 32.9 ± 7.4 | 32.3 ± 8.2 | 33.4 ± 5.8 | 0.4 | 0.547 | NS |
Health promotion | 15.2 ± 0.4 | 15.0 ± 0.4 | 15.1 ± 2.2 | 0.9 | 0.911 | NS |
Risk control | 10.3 ± 3.1 | 10.3 ± 2.9 | 11.1 ± 1.6 | 4.3 | 0.016 * | Time 1 < Time 2, 3 |
Cancer prevention | 7.3 ± 1.4 | 7.0 ± 1.7 | 7.2 ± 1.3 | 1.4 | 0.259 | NS |
CCa literacy | 6.6 ± 1.9 | 7.4 ± 1.5 | 7.4 ± 1.8 | 12.5 | <0.0001 *** | Time 1 < Time 2, 3 |
GLM Model | Mean ± SD (n = 132) | Interaction | Comparison of Different Tools | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time * Intervention | Time (1,2) * Intervention | Time (1,3) * Intervention | Tool (B) # vs. Tool (A) | Tool (B) # vs. Tool (A + B) | ||||||||||
F | p | F | p | F | p | Mean ± SD B | Mean ± SD A | F | p | Mean ± SD A+B | F | p | ||
Health behavior | 28.7 ± 0.4 | 1.0 | 0.366 | 0.5 | 0.487 | 0.5 | 0.588 | 29.2 ± 0.5 | 28.2 ± 0.7 | 1.2 | 0.270 | 28.7 ± 0.4 | 0.4 | 0.520 |
Health promotion | 8.1 ± 0.1 | 0.2 | 0.835 | 0.3 | 0.588 | 0.3 | 0.752 | 8.2 ± 0.25 | 7.9 ± 0.2 | 0.8 | 0.384 | 7.9 ± 0.2 | 0.8 | 0.366 |
Risk control | 10.2 ± 0.2 | 1.6 | 0.189 | 0.0 | 0.970 | 0.3 | 0.760 | 10.4 ± 0.2 | 9.9 ± 0.2 | 2.0 | 0.157 | 10.1 ± 0.2 | 0.7 | 0.391 |
Cancer prevention | 7.1 ± 0.3 | 0.5 | 0.603 | 0.5 | 0.476 | 0.7 | 0.511 | 10.6 ± 0.5 | 10.5 ± 0.5 | 0.2 | 0.674 | 10.6 ± 0.3 | 0.0 | 0.965 |
Attitude towards behavior change | 24.0 ± 1.4 | 2.7 | 0.070 | 0.0 | 0.867 | 3.2 | 0.043 * | 24.1 ± 1. 7 | 22.9 ± 13.5 | 2.3 | 0.081 | 24.6 ± 2.5 | 2.3 | 0.002 ** |
Health promotion | 5.8 ± 0.6 | 1.4 | 0.256 | 0.1 | 0.705 | 4.5 | 0.012 * | 5.8 ± 0.9 | 5.8 ± 1.0 | 2.7 | 0.045 * | 5.8 ± 0.7 | 2.8 | 0.005 ** |
Risk control | 7.5 ± 0.6 | 3.1 | 0.049 * | 0.0 | 0.294 | 2.8 | 0.064 | 7.1 ± 1.0 | 7.9 ± 1.1 | 2.2 | 0.087 | 7.6 ± 0.7 | 2.1 | 0.037 * |
Cancer prevention | 10.8 ± 0.6 | 1.9 | 0.178 | 0.0 | 0.919 | 2.2 | 0.145 | 10.8 ± 0.9 | 10.3 ± 1.0 | 0.8 | 0.482 | 10.8 ± 0.6 | 0.0 | 0.839 |
Self-efficacy of behavior | 32.9 ± 0.6 | 0.9 | 0.398 | 0.0 | 0.865 | 1.8 | 0.178 | 32.3 ± 1.0 | 33.0 ± 1.1 | 1.0 | 0.395 | 33.1 ± 0.7 | 0.7 | 0.550 |
Health promotion | 15.1 ± 0.4 | 1.4 | 0.262 | 0.1 | 0.790 | 2.7 | 0.106 | 15.1 ± 0.6 | 15.2 ± 0.6 | 1.3 | 0.264 | 15.2 ± 0.4 | 0.0 | 0.835 |
Risk control | 10.6 ± 0.2 | 0.3 | 0.781 | 0.0 | 0.940 | 0.0 | 0.863 | 10.3 ± 0.4 | 10.6 ± 0.4 | 0.4 | 0.773 | 10.7 ± 0.3 | 0.2 | 0.810 |
Cancer prevention | 7.2 ± 0.1 | 0.2 | 0.322 | 0.0 | 0.946 | 0.3 | 0.756 | 7.0 ± 0.2 | 7.3 ± 0.2 | 0.4 | 0.770 | 7.3 ± 0.1 | 0.3 | 0.610 |
CCa literacy | 7.2 ± 0.1 | 5.4 | 0.004 ** | 0.0 | 0.958 | 1.7 | 0.181 | 7.1 ± 0.02 | 7.4 ± 0.2 | 4.5 | 0.004 ** | 7.2 ± 0.2 | 1.1 | 0.353 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-H.; Huang, L.-H.; Chen, S.-H.; Shao, J.-H.; Lai, C.-H.; Yang, N.-P. Effects of Mobile Application Program (App)-Assisted Health Education on Preventive Behaviors and Cancer Literacy among Women with Cervical Intraepithelial Neoplasia. Int. J. Environ. Res. Public Health 2021, 18, 11603. https://doi.org/10.3390/ijerph182111603
Lee Y-H, Huang L-H, Chen S-H, Shao J-H, Lai C-H, Yang N-P. Effects of Mobile Application Program (App)-Assisted Health Education on Preventive Behaviors and Cancer Literacy among Women with Cervical Intraepithelial Neoplasia. International Journal of Environmental Research and Public Health. 2021; 18(21):11603. https://doi.org/10.3390/ijerph182111603
Chicago/Turabian StyleLee, Yi-Hui, Lian-Hua Huang, Su-Hui Chen, Jung-Hua Shao, Chyong-Huey Lai, and Nan-Ping Yang. 2021. "Effects of Mobile Application Program (App)-Assisted Health Education on Preventive Behaviors and Cancer Literacy among Women with Cervical Intraepithelial Neoplasia" International Journal of Environmental Research and Public Health 18, no. 21: 11603. https://doi.org/10.3390/ijerph182111603
APA StyleLee, Y. -H., Huang, L. -H., Chen, S. -H., Shao, J. -H., Lai, C. -H., & Yang, N. -P. (2021). Effects of Mobile Application Program (App)-Assisted Health Education on Preventive Behaviors and Cancer Literacy among Women with Cervical Intraepithelial Neoplasia. International Journal of Environmental Research and Public Health, 18(21), 11603. https://doi.org/10.3390/ijerph182111603