Factors Associated with Smartphone Addiction Tendency in Korean Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants and Data Collection
2.3. Measurements
2.3.1. Sociodemographic Characteristics
2.3.2. Personal Factors
2.3.3. Environmental Factors
2.3.4. Smartphone Addiction Tendency
2.4. Data Analysis
3. Results
3.1. Prevalence of Smartphone Addiction Tendency in Adolescents
3.2. Differences in Demographic Characteristics According to Smartphone Addiction Tendency
3.3. Differences in Personal and Environmental Factors According to Smartphone Addiction Tendency
3.4. Correlations among Personal Factors, and Environmental Factors
3.5. Factors Associated with Smartphone Addiction Tendency
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korean Information Society Agency. 2020 Smartphone Overdependence Survey. Available online: https://www.msit.go.kr/publicinfo/view.do?sCode=user&mPid=62&mId=63&publictSeqNo=443&publictListSeqNo=7&formMode=R&referKey=443,7 (accessed on 10 June 2021).
- Haug, S.; Castro, R.P.; Kwon, M.; Filler, A.; Kowatsch, T.; Schaub, M.P. Smartphone use and Smartphone Addiction among Young People in Switzerland. J. Behav. Addict. 2015, 4, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Fernandez, O.; Honrubia-Serrano, M.L.; Freixa-Blanxart, M.; Gibson, W. Prevalence of Problematic Mobile Phone Use in British Adolescents. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korean Information Society Agency. Development of Korean Smartphone Addiction Proneness Scale for Youth and Adults; Korean Information Society Agency: Seoul, Korea, 2011.
- Cha, S.-S.; Seo, B.-K. Smartphone Use and Smartphone Addiction in Middle School Students in Korea: Prevalence, Social Networking Service, and Game Use. Health Psychol. Open 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J.; Maurage, P.; Lopez-Fernandez, O.; Kuss, D.J.; Griffiths, M.D. Can Disordered Mobile Phone Use be Considered a Behavioral Addiction? An Update on Current Evidence and a Comprehensive Model for Future Research. Curr. Addict. Rep. 2015, 2, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-G.; Park, J.; Kim, H.-T.; Pan, Z.; Lee, Y.; McIntyre, R.S. The Relationship between Smartphone Addiction and Symptoms of Depression, Anxiety, and Attention-Deficit/Hyperactivity in South Korean Adolescents. Ann. Gen. Psychiatry 2019, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.C.; Wu, L.H.; Lam, H.Y.; Lam, L.K.; Nip, P.Y.; Ng, C.M.; Leung, K.C.; Leung, S.F. The Relationships between Mobile Phone Use and Depressive Symptoms, Bodily Pain, and Daytime Sleepiness in Hong Kong Secondary School Students. Addict. Behav. 2020, 101, 105975. [Google Scholar] [CrossRef] [PubMed]
- Tegtmeier, P. A Scoping Review on Smart Mobile Devices and Physical Strain. Work 2018, 59, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Um, Y.-J.; Choi, Y.-J.; Yoo, S.Y. Relationships Between Smartphone Dependency and Aggression Among Middle School Students: Mediating and Moderating Effects of Ego-Resilience, Parenting Behaviour, and Peer Attachment. Int. J. Environ. Res. Public Health 2019, 16, 3534. [Google Scholar] [CrossRef] [Green Version]
- Crowley, P.J.; Madeleine, P.; Vuillerme, N. Effects of Mobile Phone Use during Walking: A Review. Crit. Rev. Phys. Rehabil. Med. 2016, 28, 101–119. [Google Scholar] [CrossRef]
- Sansone, R.A.; Sansone, L.A. Cell Phone: The Psychosocial Risks. Innov. Clin. Neurosci. 2013, 10, 33–37. [Google Scholar]
- Sawyer, S.M.; Afifi, R.A.; Bearinger, L.H.; Blakemore, S.-J.; Dick, B.; Ezeh, A.C.; Patton, G.C. Adolescence: A Foundation for Future Health. Lancet 2012, 379, 1630–1640. [Google Scholar] [CrossRef]
- Kaya, B. School Students’ Smartphone Addiction in Predicting the Identity Function. Addict. Turk. J. Addict. 2021, 8, 139–145. [Google Scholar] [CrossRef]
- Gregory, A.M.; Caspi, A.; Moffitt, T.E.; Koenen, K.; Eley, T.C.; Poulton, R. Juvenile Mental Health Histories of Adults with Anxiety Disorders. Am. J. Psychiatry 2007, 164, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, Z.; Saiphoo, A. The Association between Smartphone Use, Stress, and Anxiety: A Meta-Analytic Review. Stress Health 2018, 34, 347–358. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J. A Structural Equation Model on Korean Adolescents’ Excessive Use of Smartphones. Asian Nurs. Res. 2018, 12, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Fischer-Grote, L.; Kothgassner, O.D.; Felnhofer, A. Risk Factors for Problematic Smartphone use in Children and Adolescents: A Review of Existing Literature. Neuropsychiatrie 2019, 33, 179–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessor, R.; Turbin, M.S.; Costa, F.M.; Dong, Q.; Zhang, H.; Wang, C. Adolescent Problem Behavior in China and the United States: A Cross-National Study of Psychosocial Protective Factors. J. Res. Adolesc. 2003, 13, 329–360. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Choi, E. Academic Stress and Internet Addiction from General Strain Theory Framework. Comput. Hum. Behav. 2015, 49, 282–287. [Google Scholar] [CrossRef]
- Bronfenbrenner, U. Ecological Models of Human Development; Elsevier Science: New York, NY, USA, 1994; pp. 1643–1647. [Google Scholar]
- Jia, J.; Li, D.; Li, X.; Zhou, Y.; Wang, Y.; Sun, W. Psychological Security and Deviant Peer Affiliation as Mediators Between Teacher-Student Relationship and Adolescent Internet Addiction. Comput. Hum. Behav. 2017, 73, 345–352. [Google Scholar] [CrossRef]
- Aldridge, J.M.; McChesney, K. The Relationships Between School Climate and Adolescent Mental Health and Wellbeing: A Systematic Literature Review. Int. J. Educ. Res. 2018, 88, 121–145. [Google Scholar] [CrossRef]
- Wang, W.; Li, D.; Li, X.; Wang, Y.; Sun, W.; Zhao, L.; Qiu, L. Parent-Adolescent Relationship and Adolescent Internet Addiction: A Moderated Mediation Model. Addict. Behav. 2018, 84, 171–177. [Google Scholar] [CrossRef]
- Liu, Q.-Q.; Yang, X.-J.; Hu, Y.-T.; Zhang, C.-Y. Peer Victimization, Self-Compassion, Gender and Adolescent Mobile Phone Addiction: Unique and Interactive Effects. Child. Youth Serv. Rev. 2020, 118, 105397. [Google Scholar] [CrossRef]
- Casper, D.M.; Card, N.A. Overt and Relational Victimization: A Meta-Analytic Review of Their Overlap and Associations with Social-Psychological Adjustment. Child Dev. 2017, 88, 466–483. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, J.; Zhang, W. Reciprocal Longitudinal Relations between Peer Victimization and Mobile Phone Addiction: The Ex-Planatory Mechanism of Adolescent Depression. J. Adolesc. 2021, 89, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Robertson, T.W.; Yan, Z.; Rapoza, K.A. Is Resilience a Protective Factor of Internet Addiction? Comput. Hum. Behav. 2018, 78, 255–260. [Google Scholar] [CrossRef]
- Lei, H.; Li, S.; Chiu, M.M.; Lu, M. Social Support and Internet Addiction Among Mainland Chinese Teenagers and Young Adults: A Meta-Analysis. Comput. Hum. Behav. 2018, 85, 200–209. [Google Scholar] [CrossRef]
- Zolkoski, S.M.; Bullock, L.M. Resilience in Children and Youth: A Review. Child. Youth Serv. Rev. 2012, 34, 2295–2303. [Google Scholar] [CrossRef]
- McPherson, K.E.; Kerr, S.; McGee, E.; Morgan, A.; Cheater, F.M.; McLean, J.; Egan, J. The Association Between Social Capital and Mental Health and Behavioural Problems in Children and Adolescents: An Integrative Systematic Review. BMC Psychol. 2014, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- McLeroy, K.; Bibeau, D.; Steckler, A.; Glanz, K. An Ecological Perspective on Health Promotion Programs. Heal. Educ. Q. 1988, 15, 351–377. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.J.; Kwon, S.J. Korean Version of the 14-Item Resilience Scale (RS-14) for University Students: A Validity and Reliability Study. J. Korean Acad. Psychiatr. Ment. Health. Nurs. 2014, 23, 226–232. [Google Scholar] [CrossRef]
- Wagnild, G.M. The Resilience Scale User’s Guide for the US English Version of the Resilience Scale and the 14-Item Reselience Scale (RS-14); The Resilience Center: Worden, MT, USA, 2009. [Google Scholar]
- Park, S.H.; Kim, H.H. The Relationship between Academic Stress and Learned Helplessness in Elementary and Middle School Students. Korean J. Youth Stud. 2008, 15, 159–182. [Google Scholar]
- Nolten, P.W. Conceptualization and Measurement of Social Support: The Development of the Student Social Support Scale. Ph.D. Thesis, University of Wisconsin–Madison, Madison, WI, USA, 1994. [Google Scholar]
- Kim, J.H. A Study on the Social Support System Affecting Youth School Adaptation. Master’s Thesis, Ewha Women University, Seoul, Korea, 1998. [Google Scholar]
- Kim, M.S. Development of Measures of Social Support for Children. J. Korean Fam. Assoc. 1998, 33, 37–47. [Google Scholar]
- Kim, J.Y. Families and Daily Life Facts of Korean Adolescents; Yonsei University: Seoul, Korea, 2015. [Google Scholar]
- Kim, D.; Lee, Y.; Lee, J.; Nam, J.K.; Chung, Y. Development of Korean Smartphone Addiction Proneness Scale for Youth. PLoS ONE 2014, 9, e97920. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: Pearson New International Edition; Pearson Education: Edinburgh, UK, 2014; p. 196. [Google Scholar]
- Lin, Y.; Liu, Q. Perceived Subjective Social Status and Smartphone Addiction Tendency among Chinese Adolescents: A Sequential Mediation Model. Child. Youth Serv. Rev. 2020, 116, 105222. [Google Scholar] [CrossRef]
- Quon, E.C.; McGrath, J.J. Subjective Socioeconomic Status and Adolescent Health: A Meta-Analysis. Health Psychol. 2014, 33, 433–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, M.J.; Lee, E.Y.; Kim, K. Objective and Subjective Socioeconomic Position and Current Smoking among Korean Adolescents. Asian Pac. J. Cancer Prev. 2014, 15, 8877–8881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, N.R. Impacts of Socioeconomic Environments of Parents and the Satisfaction of Leisure Time of the Youth: Focused on Analyses of the Time-Use Survey. Ewha J. Soc. Sci. 2021, 37, 33–63. [Google Scholar]
- Wang, J.-L.; Rost, D.H.; Qiao, R.-J.; Monk, R. Academic Stress and Smartphone Dependence among Chinese Adolescents: A Moderated Mediation Model. Child. Youth Serv. Rev. 2020, 118, 105029. [Google Scholar] [CrossRef]
- Kardefelt-Winther, D.A. Conceptual and Methodological Critique of Internet Addiction Research: Towards a Model of Compensatory Internet Use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.; Yun, H. Relationships between Adolescent Smartphone Usage Patterns, Achievement Goals, and Academic Achievement. Asia Pac. Educ. Rev. 2021, 1–11. [Google Scholar] [CrossRef]
- Bae, S.-M. The Relationship between the Type of Smartphone Use and Smartphone Dependence of Korean Adolescents: National Survey Study. Child. Youth Serv. Rev. 2017, 81, 207–211. [Google Scholar] [CrossRef]
- Mo, P.; Chan, V.W.; Chan, S.W.; Lau, J.T. The Role of Social Support on Emotion Dysregulation and Internet Addiction Among Chinese Adolescents: A Structural Equation Model. Addict. Behav. 2018, 82, 86–93. [Google Scholar] [CrossRef]
- Wang, P.; Lei, L.; Wang, X.; Nie, J.; Chu, X.; Jin, S. The Exacerbating Role of Perceived Social Support and the “Buffering” Role of Depression in the Relation between Sensation Seeking and Adolescent Smartphone Addiction. Pers. Individ. Differ. 2018, 130, 129–134. [Google Scholar] [CrossRef]
- Zimmerman, M.A. Resiliency Theory: A Strengths-Based Approach to Research and Practice for Adolescent Health. Health Educ. Behav. 2013, 40, 381–383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ding, Q.; Wang, Z. Why Parental Phubbing is at Risk for Adolescent Mobile Phone Addiction: A Serial Mediating Model. Child. Youth Serv. Rev. 2021, 121, 105873. [Google Scholar] [CrossRef]
- Martínez-Ferrer, B.; Moreno, D.; Musitu, G. Are Adolescents Engaged in the Problematic Use of Social Networking Sites More Involved in Peer Aggression and Victimization? Front. Psychol. 2018, 9, 801. [Google Scholar] [CrossRef]
- Gardella, J.H.; Fisher, B.W.; Teurbe-Tolon, A.R. A Systematic Review and Meta-Analysis of Cyber-Victimization and Educational Outcomes for Adolescents. Rev. Educ. Res. 2017, 87, 283–308. [Google Scholar] [CrossRef]
- Kawachi, I.; Subramanian, S.V.; Kim, D. Social Capital and Health; Springer: New York, NY, USA, 2008; pp. 1–26. [Google Scholar]
SA Tendency Group | Normal Group | Total | t | |
---|---|---|---|---|
(n = 90) | (n = 412) | (n = 502) | ||
n (%) or Mean ± SD | n (%) or Mean ± SD | n (%) or Mean ± SD | ||
SA tendency group | 90 (17.9) | 412 (82.1) | ||
High risk group | 37 (7.4) | |||
Latent risk group | 53 (10.5) | |||
Smartphone addiction proneness scale score | ||||
Total scores | 41.33 ± 5.68 | 29.06 ± 6.20 | 31.26 ± 7.72 | 18.24 *** |
Difficulty in daily living | 14.37 ± 3.08 | 10.51 ± 2.66 | 11.21 ± 3.11 | 12.04 *** |
Virtual life orientation | 4.64 ± 1.23 | 3.11 ± 0.98 | 3.38 ± 1.18 | 11.02 *** |
Withdrawal | 11.62 ± 2.21 | 7.64 ± 2.02 | 8.35 ± 2.56 | 16.59 *** |
Tolerance | 11.92 ± 2.28 | 8.68 ± 2.23 | 9.26 ± 2.56 | 12.39 *** |
Variables | Categories | Total | SA Tendency Group | Normal Group | χ2 or t |
---|---|---|---|---|---|
(n = 502) | (n = 90) | (n = 412) | |||
n (%) or | n (%) or | n (%) or | |||
Mean ± SD | Mean ± SD | Mean ± SD | |||
Sex | Male | 227 (45.2) | 34 (37.8) | 193 (46.8) | 2.45 |
Female | 275 (54.8) | 56 (62.2) | 219 (53.2) | ||
Age (year) | 13.00 ± 0.80 | 13.17 ± 0.89 | 12.96 ± 0.77 | −2.23 * | |
Type of school system | Co-education school | 303 (60.4) | 65 (72.2) | 238 (57.8) | 8.52 * |
Boys’ school | 78 (15.5) | 6 (6.7) | 72 (17.5) | ||
Girls’ school | 121 (24.1) | 19 (21.1) | 102 (24.8) | ||
Structure of family | Intact family | 422 (84.1) | 72 (80.0) | 350 (85.0) | 1.35 |
Single parent | 80 (15.9) | 18 (20.0) | 62 (15.0) | ||
Parents working status | Both parents working | 303 (60.4) | 55 (61.1) | 248 (60.2) | 0.03 |
Single parent working/Other | 199 (39.6) | 35 (38.9) | 164 (39.8) | ||
Subjective economic level | Low | 29 (5.8) | 11 (12.2) | 18 (4.4) | 10.02 ** |
Medium | 349 (69.5) | 63 (70.0) | 286 (69.4) | ||
High | 124 (24.7) | 16 (17.8) | 108 (26.2) | ||
Subjective health status | Unhealthy | 73 (14.5) | 24 (26.7) | 49 (11.9) | 12.97 *** |
Healthy | 429 (85.5) | 66 (73.3) | 363 (88.1) |
Variables | Categories | Total | SA Tendency Group | Normal Group | χ2 or t |
---|---|---|---|---|---|
(n = 502) | (n = 90) | (n = 412) | |||
n (%) or Mean ± SD | n (%) or Mean ± SD | n (%) or Mean ± SD | |||
Personal factors | |||||
Resilience | 4.89 ± 1.01 | 4.52 ± 1.08 | 4.98 ± 0.97 | 3.95 *** | |
Academic stress | 2.44 ± 0.76 | 2.78 ± 0.80 | 2.37 ± 0.73 | −4.70 *** | |
Environmental factors | |||||
Parental support | 3.93 ± 0.76 | 3.58 ± 0.91 | 4.01 ± 0.70 | 4.25 *** | |
Teacher support | 3.65 ± 0.70 | 3.58 ± 0.82 | 3.66 ± 0.67 | 0.85 | |
Friend support | 3.91 ± 0.74 | 3.72 ± 0.89 | 3.95 ± 0.70 | 2.38 * | |
Bullying victimization | No | 460 (91.6) | 75 (83.3) | 385 (93.4) | 9.85 ** |
Yes | 42 (8.4) | 15 (16.7) | 27 (6.6) |
Resilience | Academic Stress | Parental Support | Teacher Support | Friend Support | |
---|---|---|---|---|---|
Resilience | 1 | ||||
Academic stress | −0.31 *** | 1 | |||
Parental support | 0.48 *** | −0.31 *** | 1 | ||
Teacher support | 0.32 *** | −0.23 *** | 0.33 *** | 1 | |
Friend support | 0.45 *** | −0.19 *** | 0.41 *** | 0.29 *** | 1 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Age (year) | 1.233 | 0.917–1.658 | 1.116 | 0.820–1.519 | 1.148 | 0.839–1.569 |
Type of school system | 1.626 | 0.962–2.748 | 1.785 | 1.041–3.062 * | 1.592 | 0.914–2.773 |
(Co-education, ref. = boys’, girls’) | ||||||
Subjective economic level | 3.059 | 1.336–7.004 ** | 2.680 | 1.125−6.383 * | 2.514 | 1.038−6.090 * |
(low, ref. = medium, high) | ||||||
Subjective health status | 2.241 | 1.264−3.976 ** | 1.805 | 0.992−3.283 * | 1.801 | 0.985−3.295 |
(unhealthy, ref. = healthy) | ||||||
Resilience | 0.780 | 0.605−1.004 | 0.852 | 0.639−1.135 | ||
Academic stress | 1.840 | 1.302−2.599 ** | 1.636 | 1.147−2.335 ** | ||
Parental support | 0.622 | 0.431−0.899 * | ||||
Friend support | 1.094 | 0.750−1.596 | ||||
Bullying victimization | 2.347 | 1.101−5.004 * | ||||
(yes, ref. = no) | ||||||
χ2 (p) | 24.564 (<0.001) | 45.981 (<0.001) | 57.202 (<0.001) | |||
Hosmer & Lemeshow χ2 (p) | 1.498 (0.960) | 9.376 (0.312) | 6.967 (0.540) | |||
Nagelkerke’s R2 | 0.078 | 0.144 | 0.198 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H. Factors Associated with Smartphone Addiction Tendency in Korean Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 11668. https://doi.org/10.3390/ijerph182111668
Kim J-H. Factors Associated with Smartphone Addiction Tendency in Korean Adolescents. International Journal of Environmental Research and Public Health. 2021; 18(21):11668. https://doi.org/10.3390/ijerph182111668
Chicago/Turabian StyleKim, Ji-Hye. 2021. "Factors Associated with Smartphone Addiction Tendency in Korean Adolescents" International Journal of Environmental Research and Public Health 18, no. 21: 11668. https://doi.org/10.3390/ijerph182111668
APA StyleKim, J. -H. (2021). Factors Associated with Smartphone Addiction Tendency in Korean Adolescents. International Journal of Environmental Research and Public Health, 18(21), 11668. https://doi.org/10.3390/ijerph182111668