Predictors of Problematic Social Media Use in a Nationally Representative Sample of Adolescents in Luxembourg
Abstract
:1. Introduction
1.1. Definition of Problematic Social Media Use
1.2. Theoretical Framework
1.3. Predictors of Problematic Social Media Use
2. Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Media Use Factors
2.2.2. Well-Being Factors
2.2.3. Social Support Factors
2.2.4. Sociodemographic Factors
2.3. Data Analysis
3. Results
3.1. Descriptive Statistics
3.2. Hierarchical Regression
4. Discussion
4.1. Sociodemographic Factors and PSMU
4.2. Social Support and PSMU
4.3. Well-Being and PSMU
4.4. Media Use and PSMU
4.4.1. Limitations and Contributions
4.4.2. Theoretical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smahel, D.; Machackova, H.; Mascheroni, G.; Dedkova, L.; Staksrud, E.; Ólafsson, K.; Livingstone, S.; Hasebrink, U. EU Kids Online 2020: Survey Results from 19 Countries. Available online: https://childhub.org/en/child-protection-online-library/eu-kids-online-2020 (accessed on 12 June 2021).
- Kırcaburun, K.; Kokkinos, C.; Demetrovics, Z.; Király, O.; Griffiths, M.D.; Çolak, T.S. Problematic online behaviors among adolescents and emerging adults: Associations between cyberbullying perpetration, problematic social media use, and psychosocial factors. Int. J. Ment. Health Addict. 2019, 17, 891–908. [Google Scholar] [CrossRef] [Green Version]
- Orben, A. Teenagers, screens and social media: A narrative review of reviews and key studies. Soc. Psychiatry Psychiatr. Epidemiol. 2020, 55, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schønning, V.; Aarø, L.E.; Skogen, J.C. Central themes, core concepts and knowledge gaps concerning social media use, and mental health and well-being among adolescents: A protocol of a scoping review of published literature. BMJ Open 2020, 10, e031105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkenburg, P.M.; Peter, J. The Differential Susceptibility to Media Effects Model. J. Commun. 2013, 63, 221–243. [Google Scholar] [CrossRef]
- Valkenburg, P.M.; Piotrowski, J.T. Plugged In: How Media Attract and Affect Youth; Yale University Press: New Haven, CT, USA, 2017. [Google Scholar]
- Guinta, M.R.; John, R.M. Social media and adolescent health. Pediatr. Nurs. 2018, 44, 196–201. [Google Scholar]
- Valkenburg, P.M.; Peter, J. Online communication among adolescents: An integrated model of its attraction, opportunities, and risks. J. Adolesc. Health 2011, 48, 121–127. [Google Scholar] [CrossRef]
- Eijnden, R.V.D.; Geurts, S.; ter Bogt, T.; van der Rijst, V.; Koning, I. Social Media Use and Adolescents’ Sleep: A Longitudinal Study on the Protective Role of Parental Rules Regarding Internet Use before Sleep. Int. J. Environ. Res. Public Health 2021, 18, 1346. [Google Scholar] [CrossRef] [PubMed]
- Keles, B.; McCrae, N.; Grealish, A. A systematic review: The influence of social media on depression, anxiety and psychological distress in adolescents. Int. J. Adolesc. Youth 2020, 25, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, J.T.; Valkenburg, P.M. Finding Orchids in a Field of Dandelions. Am. Behav. Sci. 2015, 59, 1776–1789. [Google Scholar] [CrossRef] [Green Version]
- Schivinski, B.; Brzozowska-Woś, M.; Stansbury, E.; Satel, J.; Montag, C.; Pontes, H.M. Exploring the role of social media use motives, psychological well-being, self-esteem, and affect in problematic social media use. Front. Psychol. 2020, 11, 617140. [Google Scholar] [CrossRef]
- Stockdale, L.A.; Coyne, S.M. Bored and online: Reasons for using social media, problematic social networking site use, and behavioral outcomes across the transition from adolescence to emerging adulthood. J. Adolesc. 2020, 79, 173–183. [Google Scholar] [CrossRef] [PubMed]
- van Duin, C.; Heinz, A.; Willems, H.E. The influence of well-being, social support, media use and sociodemographic factors on problematic social media sue among Luxembourgish adolescents. Cogent Med. 2020, 7, 34. [Google Scholar]
- Bronfenbrenner, U. Toward an experimental ecology of human development. Am. Psychol. 1977, 32, 513–531. [Google Scholar] [CrossRef]
- Hussain, Z.; Starcevic, V. Problematic social networking site use: A brief review of recent research methods and the way forward. Curr. Opin. Psychol. 2020, 36, 89–95. [Google Scholar] [CrossRef]
- Bányai, F.; Zsila, Á.; Király, O.; Maraz, A.; Elekes, Z.; Griffiths, M.D.; Andreassen, C.S.; Demetrovics, Z. Problematic Social Media Use: Results from a Large-Scale Nationally Representative Adolescent Sample. PLoS ONE 2017, 12, e0169839. [Google Scholar] [CrossRef]
- Boer, M.; Van den Eijnden, R.J.; Boniel-Nissim, M.; Wong, S.-L.; Inchley, J.C.; Badura, P.; Craig, W.M.; Gobina, I.; Kleszczewska, D.; Klanšček, H.J.; et al. Adolescents’ Intense and Problematic Social Media Use and Their Well-Being in 29 Countries. J. Adolesc. Health 2020, 66, S89–S99. [Google Scholar] [CrossRef]
- Paakkari, L.; Tynjälä, J.; Lahti, H.; Ojala, K.; Lyyra, N. Problematic social media use and health among adolescents. Int. J. Environ. Res. Public Health 2021, 18, 1885. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2014. [Google Scholar]
- Eijnden, R.J.V.D.; Lemmens, J.S.; Valkenburg, P.M. The Social Media Disorder Scale. Comput. Hum. Behav. 2016, 61, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Longstreet, P.; Brooks, S. Life satisfaction: A key to managing internet & social media addiction. Technol. Soc. 2017, 50, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Katz, E.; Blumler, J.G.; Gurevitch, M. Uses and Gratifications Research. Public Opin. Q. 1973, 37, 509–523. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Anderson, C.A.; Bushman, B.J. Human aggression. Annu. Rev. Psychol. 2002, 53, 27–51. [Google Scholar] [CrossRef]
- McHale, S.M.; Dotterer, A.; Kim, J.-Y. An Ecological Perspective on the Media and Youth Development. Am. Behav. Sci. 2009, 52, 1186–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, R.; Engbersen, G.; Faber, M. The Use of Online Media in Migration Networks. Popul. Space Place 2015, 22, 539–551. [Google Scholar] [CrossRef]
- Statistics Portal Grand Duchy of Luxembourg. Population by Nationalities in Detail 2011–2020. Available online: statistiques.public.lu (accessed on 12 June 2021).
- Boniel-Nissim, M.; Sasson, H. Bullying victimization and poor relationships with parents as risk factors of problematic internet use in adolescence. Comput. Hum. Behav. 2018, 88, 176–183. [Google Scholar] [CrossRef]
- Gámez-Guadix, M.; Orue, I.; Smith, P.K.; Calvete, E. Longitudinal and reciprocal relations of cyberbullying with depression, substance use, and problematic internet use among adolescents. J. Adolesc. Health 2013, 53, 446–452. [Google Scholar] [CrossRef]
- van Rooij, T.; Ferguson, C.J.; Van de Mheen, D.; Schoenmakers, T.M. Time to abandon Internet Addiction? Predicting problematic internet, game and social media use from psychosocial well-being and applicaiton use. Clin. Neuropsychiatry 2017, 14, 113–121. [Google Scholar]
- Savci, M.; Tekin, A.; Elhai, J.D. Prediction of problematic social media use (PSU) using machine learning approaches. Curr. Psychol. 2020, 64, 1–10. [Google Scholar] [CrossRef]
- Kircaburun, K.; Alhabash, S.; Tosuntas, S.B.; Griffiths, M.D. Uses and gratifications of problematic social media use among university students: A Simultaneous examination of the big five of personality traits, social media platforms, and social media use motives. Int. J. Ment. Health Addict. 2020, 18, 525–547. [Google Scholar] [CrossRef] [Green Version]
- Caplan, S.E. Preference for online social interaction: A theory of problematic internet use and psychosocial well-being. Commun. Res. 2003, 30, 625–648. [Google Scholar] [CrossRef]
- Caplan, S. Theory and measurement of generalized problematic Internet use: A two-step approach. Comput. Hum. Behav. 2010, 26, 1089–1097. [Google Scholar] [CrossRef]
- Moretta, T.; Buodo, G. Modeling Problematic Facebook Use: Highlighting the role of mood regulation and preference for online social interaction. Addict. Behav. 2018, 87, 214–221. [Google Scholar] [CrossRef]
- Mascheroni, G.; Olafsson, K. Net Children Go Mobile: Risks and Opportunities, 2nd ed.; Educatt: Milano, Italy, 2014. [Google Scholar]
- Valkenburg, P.M.; Peter, J. Preadolescents’ and adolescents’ online communication and their closeness to friends. Dev. Psychol. 2007, 43, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Zubaida, S.D.; Cantril, H. The Pattern of Human Concerns. Br. J. Sociol. 1967, 18, 212. [Google Scholar] [CrossRef]
- Haugland, S.; Wold, B. Subjective health complaints in adolescence—Reliability and validity of survey methods. J. Adolesc. 2001, 24, 611–624. [Google Scholar] [CrossRef] [Green Version]
- Dahlem, N.W.; Zimet, G.D.; Walker, R.R. The Multidimensional Scale of Perceived Social Support: A confirmation study. J. Clin. Psychol. 1991, 47, 756–761. [Google Scholar] [CrossRef]
- Zimet, G.D.; Dahlem, N.W.; Zimet, S.G.; Farley, G.K. The multidimensional scale of perceived social support. J. Pers. Assess. 1988, 52, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Inchley, J.; Currie, D.; Cosma, A.; Samdal, O. Health Behaviour in School-Aged Children (HBSC) Study Protocol: Background, Methodology and Mandatroy Items for the 2017/18 Survey; CAHRU: St. Andrews, UK, 2018. [Google Scholar]
- Olweus, D. The Olweus Bully / Victim Questionnaire; University of Bergen: Bergen, Norway, 1986. [Google Scholar]
- Olweus, D. Revised Olweus Bully/Victim Questionnaire; University of Bergen: Bergen, Norway, 1996. [Google Scholar]
- Torsheim, T.; the FAS Development Study Group; Cavallo, F.; Levin, K.A.; Schnohr, C.; Mazur, J.; Niclasen, B.; Currie, C. Psychometric Validation of the Revised Family Affluence Scale: A Latent Variable Approach. Child Indic. Res. 2016, 9, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Kern, M.R.; Heinz, A.; Stevens, G.W.; Walsh, S.D.; Willems, H. ”What’s a normal weight?"—Origin and receiving country influences on weight-status assessment among 1.5 and 2nd generation immigrant adolescents in Europe. Soc. Sci. Med. 2020, 264, 113306. [Google Scholar] [CrossRef] [PubMed]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; SAGE Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Pontes, H.M.; Taylor, M.; Stavropoulos, V. Beyond “Facebook Addiction”: The Role of Cognitive-Related Factors and Psychiatric Distress in Social Networking Site Addiction. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Wartberg, L.; Thomasius, R.; Paschke, K. The relevance of emotion regulation, procrastination, and perceived stress for problematic social media use in a representative sample of children and adolescents. Comput. Hum. Behav. 2021, 121, 106788. [Google Scholar] [CrossRef]
- Lahti, H.; Lyyra, N.; Hietajärvi, L.; Villberg, J.; Paakkari, L. Profiles of internet use and health in adolescence: A person-oriented approach. Int. J. Environ. Res. Public Health 2021, 18, 6972. [Google Scholar] [CrossRef]
- Puukko, K.; Hietajärvi, L.; Maksniemi, E.; Alho, K.; Salmela-Aro, K. Social media use and depressive symptoms—A longitudinal study from early to late adolescence. Int. J. Environ. Res. Public Health 2020, 17, 5921. [Google Scholar] [CrossRef] [PubMed]
- Leung, L. Loneliness, social support, and preference for online social interaction: The mediating effects of identity experimentation online among children and adolescents. Chin. J. Commun. 2011, 4, 381–399. [Google Scholar] [CrossRef]
- Gámez-Guadix, M.; Villa-George, F.I.; Calvete, E. Measurement and analysis of the cognitive-behavioral model of generalized problematic Internet use among Mexican adolescents. J. Adolesc. 2012, 35, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Guadix, M.; Borrajo, E.; Almendros, C. Risky online behaviors among adolescents: Longitudinal relations among problematic Internet use, cyberbullying perpetration, and meeting strangers online. J. Behav. Addict. 2016, 5, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Richard, S.; Lazarus, P.; Folkman, S.P. Stress, Appraisal, and Coping; Springer Publishing Company: New York, NY, USA, 1984. [Google Scholar]
- Lachmann, B.; Sariyska, R.; Kannen, C.; Cooper, A.; Montag, C. Life satisfaction and problematic Internet use: Evidence for gender specific effects. Psychiatry Res. 2016, 238, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, P.; Antony, M.G.; Sykes, B. Predictors of Problematic Social Media Use: Personality and Life-Position Indicators. Psychol. Rep. 2021, 124, 1110–1133. [Google Scholar] [CrossRef] [PubMed]
- Davis, R. A cognitive-behavioral model of pathological Internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Caplan, S.E. Relations Among Loneliness, Social Anxiety, and Problematic Internet Use. CyberPsychol. Behav. 2007, 10, 234–242. [Google Scholar] [CrossRef]
- Gámez-Guadix, M.; Orue, I.; Calvete, E. Evaluation of the cognitive-behavioral model of generalized and problematic Internet use in Spanish adolescents. Psicothema 2013, 25, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laconi, S.; Kaliszewska-Czeremska, K.; Gnisci, A.; Sergi, I.; Barke, A.; Jeromin, F.; Groth, J.; Gamez-Guadix, M.; Özcan, N.K.; Demetrovics, Z.; et al. Cross-cultural study of Problematic Internet Use in nine European countries. Comput. Hum. Behav. 2018, 84, 430–440. [Google Scholar] [CrossRef] [Green Version]
Variable | Statistics |
---|---|
Gender | Girl = 4348 (50.1%) Boy = 4328 (49.9%) |
Age | 11–18 age range, = 14.38, σ = 2.16 |
Family affluence | 0–1 range, = 0.50, σ = 0.28 |
Migration background | Native = 2487 (28.8%) 1st generation immigrant = 1915 (22.2%) 2nd generation immigrant = 4232 (49.0%) |
Parent support | 1–7 range, = 5.71, σ = 1.61 |
Peer support | 1–7 range, = 5.65, σ = 1.57 |
Teacher support | 1–5 range, = 2.46, σ = 0.92 |
Cyberbully victimization | 1–5 range, = 1.13, σ = 0.50 |
Cyberbully perpetration | 1–5 range, = 1.16, σ = 0.56 |
Psychological stress | 0–16 range, = 6.87, σ = 2.97 |
Life satisfaction | 0–10 range, = 7.56, σ = 1.81 |
Psychosomatic complaints | 0–32 range, = 10.01, σ = 6.3 |
Preference for online social interaction | 1–5 range, = 2.06, σ = 1.10 |
Intensity of electronic media communication | 1–5 range, = 2.96, σ = 0.92 |
PSMU | 0–9 range, = 1.92, σ = 1.95 Problematic use = 415 (5.9%) Non-problematic use = 6642 (94.1%) |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
B | β | B | β | B | β | B | β | |
Step 1: Sociodemographic factors | ||||||||
Gender (reference = boy) | 0.407 | 0.106 *** | 0.375 | 0.098 *** | 0.126 | 0.033* | 0.184 | 0.048 *** |
Age | −0.069 | −0.076 *** | −0.094 | −0.104 *** | −0.101 | −0.112 *** | −0.111 | −0.122 *** |
Family affluence | −0.251 | −0.037 ** | −0.153 | −0.022 | −0.061 | −0.009 | −0.093 | −0.014 |
1st generation migrant | 0.564 | 0.119 *** | 0.508 | 0.107 *** | 0.490 | 0.103 *** | 0.438 | 0.093 *** |
2nd generation migrant | 0.404 | 0.105 *** | 0.348 | 0.091 *** | 0.329 | 0.086 *** | 0.283 | 0.074 *** |
Step 2: Social support factors | ||||||||
Parent support | −0.149 | −0.121 *** | −0.059 | −0.048 ** | −0.043 | −0.035 * | ||
Peer support | −0.015 | −0.011 | 0.017 | 0.013 | −0.034 | −0.026 * | ||
Teacher support | 0.154 | 0.071 *** | 0.049 | 0.023 | 0.052 | 0.024 | ||
Cyberbully victimization | 0.343 | 0.090 *** | 0.219 | 0.057 *** | 0.129 | 0.034 ** | ||
Cyberbully perpetration | 0.577 | 0.134 *** | 0.553 | 0.129 *** | 0.482 | 0.112 *** | ||
Step 3: Well-being factors | ||||||||
Stress | 0.095 | 0.147 *** | 0.082 | 0.127 *** | ||||
Life satisfaction | 0.001 | 0.001 | 0.001 | 0.001 | ||||
Psychosomatic complaints | 0.052 | 0.168 *** | 0.043 | 0.138 *** | ||||
Step 4: Media use factors | ||||||||
Preference for online social interaction | 0.357 | 0.206 *** | ||||||
Intensity of electronic media communication | 0.330 | 0.153 *** | ||||||
F | 40.16 *** | 84.5 *** | 126.9 *** | 261.3 *** | ||||
R | 0.183 | 0.315 | 0.394 | 0.474 | ||||
Adjusted R2 | 0.033 | 0.098 | 0.153 | 0.223 | ||||
∆R2 | 0.033 | 0.066 | 0.056 | 0.070 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Duin, C.; Heinz, A.; Willems, H. Predictors of Problematic Social Media Use in a Nationally Representative Sample of Adolescents in Luxembourg. Int. J. Environ. Res. Public Health 2021, 18, 11878. https://doi.org/10.3390/ijerph182211878
van Duin C, Heinz A, Willems H. Predictors of Problematic Social Media Use in a Nationally Representative Sample of Adolescents in Luxembourg. International Journal of Environmental Research and Public Health. 2021; 18(22):11878. https://doi.org/10.3390/ijerph182211878
Chicago/Turabian Stylevan Duin, Claire, Andreas Heinz, and Helmut Willems. 2021. "Predictors of Problematic Social Media Use in a Nationally Representative Sample of Adolescents in Luxembourg" International Journal of Environmental Research and Public Health 18, no. 22: 11878. https://doi.org/10.3390/ijerph182211878
APA Stylevan Duin, C., Heinz, A., & Willems, H. (2021). Predictors of Problematic Social Media Use in a Nationally Representative Sample of Adolescents in Luxembourg. International Journal of Environmental Research and Public Health, 18(22), 11878. https://doi.org/10.3390/ijerph182211878