Lower Extremity Flexibility Profile in Basketball Players: Gender Differences and Injury Risk Identification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Study
2.2. Basketball Players Sample
2.3. Examiners
2.4. Interview Survey
2.5. Method of Assessment
2.6. Statistical Analysis of the Data
3. Results
4. Discussion
Practical Application
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weppler, C.; Magnusson, S. Increasing muscle extensibility: A matter of increasing length or modifying sensation? Phys. Ther. 2010, 90, 438–449. [Google Scholar] [CrossRef]
- Ben, M.; Harvey, L.A. Regular stretch does not increase muscle extensibility: A randomized controlled trial. Scand. J. Med. Sci. Sports 2010, 20, 136–144. [Google Scholar] [CrossRef]
- Tabary, J.; Tabary, C.; Tardieu, C.; Tardieu, G.; Goldspink, G. Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. J. Physiol. 1972, 224, 231–244. [Google Scholar] [CrossRef]
- Goldspink, G.; Tabary, C.; Tabary, J.; Tardieu, C.; Tardieu, G. Effect of denervation on the adaptation of sarcomere number and muscle extensibility to the functional length of the muscle. J. Physiol. 1974, 236, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Alter, M. Los Estiramientos; Paidotribo: Barcelona, Spain, 2004. [Google Scholar]
- Holt, L.; Pelham, T.; Holt, J. Flexibility: A Concise Guide to Conditioning, Performance Enhancement, Injury Prevention, and Rehabilitation; Cooper, G., Herrera, J.E., Eds.; Springer Science & Business Media: Secaucus, NJ, USA, 2009; ISBN 978-1-60327-105-9. [Google Scholar]
- Kim, W.; Shin, D. Correlations Between Hip Extension Range of Motion, Hip Extension Asymmetry, and Compensatory Lumbar Movement in Patients with Nonspecific Chronic Low Back Pain. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e925080-1. [Google Scholar] [CrossRef] [PubMed]
- Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopoulos, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: A prospective study of 100 professional players. Br. J. Sports Med. 2011, 45, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Knapik, J.; Bauman, C.; Jones, B.; Harris, J.; Vaughan, L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am. J. Sports Med. 1991, 19, 76–81. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. Manual ACSM Para la Valoración y Prescripción del Ejercicio; Paidotribo: Barcelona, Spain, 2019. [Google Scholar]
- Clarkson, H. Proceso Evaluativo Musculoesquelético: Amplitud del Movimiento Articular y Test Manual de Fuerza Muscular; Paidotribo: Barcelona, Spain, 2003. [Google Scholar]
- Greene, W.; Heckman, J. Clinical Assessment of Joint Movement; Edika Med.: Barcelona, Spain, 1997. [Google Scholar]
- Gerhardt, J.; Cocchiarella, L.; Lea, R. The Practical Guide to Range of Motion Assessment; American Medical Association: Chicago, IL, USA, 2002. [Google Scholar]
- Hogg, J.; Schmitz, R.; Nguyen, A.; Shultz, S. Lumbo-Pelvic-Hip Complex Passive Hip Range-of-Motion Values Across Sex and Sport. J. Athl. Train. 2018, 53, 560–567. [Google Scholar] [CrossRef]
- Robles-Palazón, F.; Ayala, F.; Cejudo, A.; De Ste Croix, M.; Sainz de Baranda, P.; Santonja, F. Effects of age and maturation on lower extremity range of motion in male youth soccer players. J. Strength Cond. Res. 2020, 1–9. [Google Scholar] [CrossRef]
- Cejudo, A.; Robles-Palazón, F.; Ayala, F.; De Ste Croix, M.; Ortega-Toro, E.; Santonja, F.; Sainz de Baranda, P. Age-related differences in flexibility in soccer players 8–19 years old. PeerJ 2019, 2019, e6236. [Google Scholar] [CrossRef]
- Cejudo, A.; Robles-Palazón, F.; Sainz De Baranda, P. Fútbol sala de élite: Diferencias de flexibilidad según sexo. E-Balonmano.com: Rev. Cienc. Deporte 2019, 15, 37–48. [Google Scholar]
- Cejudo, A.; Moreno-Alcaraz, V.J.; Izzo, R.; Robles-Palazón, F.J.; Sainz de Baranda, P.; Santonja-Medina, F. Flexibility in Spanish Elite Inline Hockey Players: Profile, Sex, Tightness and Asymmetry. Int. J. Environ. Res. Public Health 2020, 17, 3295. [Google Scholar] [CrossRef] [PubMed]
- Ellenbecker, T.; Ellenbecker, G.; Roetert, E.; Silva, R.; Keuter, G.; Sperling, F. Descriptive profile of hip rotation range of motion in elite tennis players and professional baseball pitchers. Am. J. Sports Med. 2007, 35, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical demands of different positions in FA Premier League soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Oberg, B.; Ekstrand, J.; Moller, M.; Gillquist, J. Muscle strength and flexibility in different positions of soccer players. Int. J. Sports Med. 1984, 5, 213–216. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, J.; Pérez, A.; Boada, P.; García, M.; Moreno, C.; Carretero, M. Estudio de la flexibilidad de luchadores de kickboxing de nivel internacional. Arch. Med. Deporte 2014, 31, 85–91. [Google Scholar]
- Cejudo, A.; Ginés-Díaz, A.; Sainz de Baranda, P. Asymmetry and Tightness of Lower Limb Muscles in Equestrian Athletes: Are They Predictors for Back Pain? Symmetry 2020, 12, 1679. [Google Scholar] [CrossRef]
- Sainz de Baranda, P.; Cejudo, A.; Ayala, F.; Santonja, F. Perfil óptimo de flexibilidad del miembro inferior en jugadoras de fútbol sala. Rev. Int. Med. Cienc. Act. Fis. Deporte 2015, 15, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Panoutsakopoulos, V.; Kotzamanidou, M.C.; Papaiakovou, G.; Kollias, I.A. The Ankle Joint Range of Motion and Its Effect on Squat Jump Performance with and without Arm Swing in Adolescent Female Volleyball Players. J. Funct. Morphol. Kinesiol. 2021, 6, 14. [Google Scholar] [CrossRef]
- Hoch, M.; Staton, G.; McKeon, P. Dorsiflexion range of motion significantly influences dynamic balance. J. Sci. Med. Sport 2011, 14, 90–92. [Google Scholar] [CrossRef]
- Cejudo, A. El perfil óptimo de flexibilidad en jóvenes jugadores de fútbol durante su periodo sensible del desarrollo físico. Batería ROM-SPORT. JUMP 2020, 2, 16–25. [Google Scholar] [CrossRef]
- Ruiz-Pérez, I.; López-Valenciano, A.; Hernández-Sánchez, S.; Puerta-Callejón, J.; De Ste Croix, M.; Sainz de Baranda, P.; Ayala, F. A Field-Based Approach to Determine Soft Tissue Injury Risk in Elite Futsal Using Novel Machine Learning Techniques. Front. Psychol. 2021, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, A.; Moreno-Alcaraz, V.; De Ste Croix, M.; Santonja-Medina, F.; Sainz de Baranda, P. Lower-Limb Flexibility Profile Analysis in Youth Competitive Inline Hockey Players. Int. J. Environ. Res. Public Health 2020, 17, 4338. [Google Scholar] [CrossRef] [PubMed]
- Cejudo, A.; Sainz De Baranda, P.; Ayala, F.; Santonja, F. Perfil de flexibilidad de la extremidad inferior en jugadores senior de balonmano. Cuad. Psicol. Deporte 2014, 14, 111–120. [Google Scholar] [CrossRef] [Green Version]
- López-Valenciano, A.; Ayala, F.; Vera-García, F.; De Ste Croix, M.; Hernández-Sánchez, S.; Ruiz-Pérez, I.; Cejudo, A.; Santonja, F. Comprehensive profile of hip, knee and ankle ranges of motion in professional football players. J. Sports Med. Phys. Fit. 2019, 59, 102–109. [Google Scholar] [CrossRef]
- Cejudo, A.; Sainz De Baranda, P.; Ayala, F.; Santonja, F. Normative data of lower-limb muscle flexibility in futsal players. Rev. Int. Med. Cienc. Act. Fis. Deporte 2014, 14, 509–525. [Google Scholar]
- Cejudo, A.; Centenera-Centenera, J.M.; Santonja-Medina, F. The Potential Role of Hamstring Extensibility on Sagittal Pelvic Tilt, Sagittal Spinal Curves and Recurrent Low Back Pain in Team Sports Players: A Gender Perspective Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8654. [Google Scholar] [CrossRef]
- Cejudo, A.; Moreno-Alcaraz, V.J.; Izzo, R.; Santonja-Medina, F.; Sainz de Baranda, P. External and Total Hip Rotation Ranges of Motion Predispose to Low Back Pain in Elite Spanish Inline Hockey Players. Int. J. Environ. Res. Public Health 2020, 17, 4858. [Google Scholar] [CrossRef]
- Tak, I.; Engelaar, L.; Gouttebarge, V.; Barendrecht, M.; Van den Heuvel, S.; Kerkhoffs, G.; Langhout, R.; Stubbe, J.; Weie, A. Is lower hip range of motion a risk factor for groin pain in athletes? A systematic review with clinical applications. Br. J. Sports Med. 2017, 51, 1611–1621. [Google Scholar] [CrossRef] [Green Version]
- Almeida, G.; de Souza, V.; Sano, S.; Saccol, M.; Cohen, M. Comparison of hip rotation range of motion in judo athletes with and without history of low back pain. Man. Ther. 2012, 17, 231–235. [Google Scholar] [CrossRef]
- Hjelm, N.; Werner, S.; Renstrom, P. Injury risk factors in junior tennis players: A prospective 2-year study. Scand. J. Med. Sci. Sports 2012, 22, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cejudo, A.; Sainz de Baranda, P.; Ayala, F.; De Ste Croix, M.; Santonja-Medina, F. Assessment of the Range of Movement of the Lower Limb in Sport: Advantages of the ROM-SPORT I Battery. Int. J. Environ. Res. Public Health 2020, 17, 7606. [Google Scholar] [CrossRef] [PubMed]
- Enwemeka, C. Radiographic verification of knee goniometry. Scand. J. Rehabil. Med. 1986, 18, 47–49. [Google Scholar] [PubMed]
- Gogia, P.; Braatz, J.; Rose, S.; Norton, B. Reliability and Validity of Goniometric Measurements at the Knee. Phys. Ther. 1987, 67, 192–195. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, E.; Birley, E.; Twycross-Lewis, R.; Morrissey, D. The relationship between hip rotation range of movement and low back pain prevalence in amateur golfers: An observational study. Phys. Ther. Sport 2009, 10, 131–135. [Google Scholar] [CrossRef]
- Young, S.; Harris, A.; Safran, M. Hip Range of Motion and Association with Injury in Female Professional Tennis Players Hip Systematic Review View project New Zealand Rotator Cuff Registry View project. Artic. Am. J. Sports Med. 2014, 42, 2654–2658. [Google Scholar] [CrossRef]
- Vad, V.; Bhat, A.; Basrai, D.; Gebeh, A.; Aspergren, D.; Andrews, J. Low Back Pain in Professional Golfers: The Role of Associated Hip and Low Back Range-of-Motion Deficits. Am. J. Sports Med. 2004, 32, 494–497. [Google Scholar] [CrossRef]
- Ekstrand, J.; Wiktorsson, M.; Oberg, B.; Gillquist, J. Lower extremity goniometric measurements: A study to determine their reliability. Arch. Phys. Med. Rehabil. 1982, 63, 171–175. [Google Scholar]
- Backman, L.; Danielson, P. Low range of ankle dorsiflexion predisposes for patellar tendinopathy in junior elite basketball players: A 1-year prospective study. Am. J. Sports Med. 2011, 39, 2626–2633. [Google Scholar] [CrossRef]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D’Have, T.; Cambier, D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players: A prospective study. Am. J. Sports Med. 2003, 31, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Hoch, M.; McKeon, P. Normative range of weight-bearing lunge test performance asymmetry in healthy adults. Man. Ther. 2011, 16, 516–519. [Google Scholar] [CrossRef]
- Kendall, F.; McCreary, E.; Provance, P.; Rodgers, M.; Romani, W. Muscles: Testing and Function with Posture and Pain; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2005; ISBN 0781747805. [Google Scholar]
- Stojanović, E.; Stojiljkovic, N.; Scanlan, A.T.; Dalbo, V.; Berkelmans, D.M.; Milanovic, Z. The activity demands and physiological responses encountered during basketball match-play: A systematic review. Sports Med. 2018, 48, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Mikolajec, K.; Waskiewicz, Z.; Maszczyk, A.; Bacik, B.; Kurek, P. Effects of stretching and strength exercises on speed and power abilities in male basketball players. Isokinet. Exerc. Sci. 2012, 20, 61–69. [Google Scholar] [CrossRef]
- Hahn, T.; Foldspang, A.; Vestergaard, E.; Ingemann-Hansen, T. Active knee joint flexibility and sports activity. Scand. J. Med. Sci. Sports 1999, 9, 74–80. [Google Scholar] [CrossRef]
- Arede, J.; Ferreira, A.; Gonzalo-Skok, O.; Leite, N. Maturational development as a key aspect in physiological performance and national-team selection in elite male basketball players. Int. J. Sports Physiol. Perform. 2019, 14, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Perroni, F.; Campese, A.; Maccagnano, G.; Monno, A.; Moretti, B.; Tafuri, S. Flexibility responses to different stretching methods in young elite basketball players. Muscles Ligaments Tendons J. 2017, 7, 582. [Google Scholar] [CrossRef]
- Woolstenhulme, M.T.; Griffiths, C.M.; Woolstenhulme, E.M.; Parcell, A.C. Ballistic stretching increases flexibility and acute vertical jump height when combined with basketball activity. J. Strength Cond. Res. 2006, 20, 799–803. [Google Scholar]
- Cook, J.; Kiss, Z.; Khan, K.; Purdam, C.; Webster, K. Anthropometry, physical performance, and ultrasound patellar tendon abnormality in elite junior basketball players: A cross-sectional study. Br. J. Sports Med. 2004, 38, 206–209. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.A.S.; Petroski, E.L.; Gaya, A.C.A. Anthropometric and physical fitness differences among brazilian adolescents who practise different team court sports. J. Hum. Kinet. 2013, 36, 77–86. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Serna, J.; Rhea, M.; Marín, P. Relationships between functional movement tests and performance tests in young elite male basketball players. Int. J. Sports Phys. Ther. 2015, 10, 628–638. [Google Scholar] [PubMed]
- Scattone Silva, R.; Nakagawa, T.H.; Ferreira, A.L.G.; Garcia, L.C.; Santos, J.E.M.; Serrão, F.V. Lower limb strength and flexibility in athletes with and without patellar tendinopathy. Phys. Ther. Sport 2016, 20, 19–25. [Google Scholar] [CrossRef]
- Bird, S.; Markwick, W. Musculoskeletal screening and functional testing: Considerations for basketball athletes. Int. J. Sports Phys. Ther. 2016, 11, 784. [Google Scholar] [PubMed]
- Wang, H.K.; Chen, C.H.; Shiang, T.Y.; Jan, M.H.; Lin, K.H. Risk-Factor Analysis of High School Basketball-Player Ankle Injuries: A Prospective Controlled Cohort Study Evaluating Postural Sway, Ankle Strength, and Flexibility. Arch. Phys. Med. Rehabil. 2006, 87, 821–825. [Google Scholar] [CrossRef]
- Butler, D.; Moseley, G. Explain Pain Course Description, 2nd ed.; Noigroup Publications: Adelaide, Australia, 2013; ISBN 9780975091005. [Google Scholar]
- Silva, J.; Detanico, D.; Pupo, J.; Freitas, C. Bilateral asymmetry of knee and ankle isokinetic torque in soccer players u20 category. Rev. Bras. Cineantropometria Desempenho Hum. 2015, 17, 195–204. [Google Scholar]
- Šarabon, N.; Smajla, D.; Maffiuletti, N.A.; Bishop, C. Strength, Jumping and Change of Direction Speed Asymmetries in Soccer, Basketball and Tennis Players. Symmetry 2020, 12, 1664. [Google Scholar] [CrossRef]
- DeLang, M.; Kondratek, M.; DiPace, L.; Hew-Butler, T. Collegiate male soccer players exhibit between-limb symmetry in body composition, muscle strength, and range of motion. Int. J. Sports Phys. Ther. 2017, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2017, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
Variables | Male (n = 33) * | Female (n = 31) * | p-Value | ES |
---|---|---|---|---|
Age (years old) | 20.6 ± 2.5 | 24.6 ± 3.2 | 0.00 | −1.38 (Large) |
Body mass (kilograms) | 89.8 ± 10.9 | 74.2 ± 11.3 | 0.00 | 1.38 (Large) |
Height (meters) | 193.4 ± 6.2 | 179.3 ± 7.4 | 0.00 | 2.05 (Very large) |
BMI (kg/m2) | 24.1 ± 2.3 | 23.1 ± 3.1 | 0.15 | 0.36 (Small) |
Basketball experience (years) | 10.2 ± 2.5 | 14.5 ± 5.3 | 0.01 | −1.04 (Moderate) |
Basketball training per week (hours) | 8.2 ± 0.4 | 10.3 ± 0.5 | 0.00 | −4.59 (Extremely large) |
Playing time per basketball competition (minutes) | 22.3 ± 4.7 | 19.4 ±6.3 | 0.04 | 0.52 (Small) |
Range of Motion Variables | Normal | Tightness | p-Value | Effect Sizes Hedges’ g | ||
---|---|---|---|---|---|---|
Value (°) * | n | Value (°) * | n | |||
HE (iliopsoas) | 16.9 ± 4.2 | 22 | 9.2 ± 5.2 | 42 | <0.000 | 1.56 (Large) |
ADF-KE (gastrocnemius) | 38.6 ± 4.7 | 64 | - | 0 | - | - |
ADF-KF (soleus) | 43.2 ± 4.3 | 40 | 29.1 ± 3.4 | 24 | <0.000 | 3.49 (Very large) |
HAB (adductors) | 42.8 ± 5.4 | 64 | - | - | - | - |
HAB-HF (monarticular adductors) | 81.1 ± 4.6 | 10 | 67.2 ± 6.3 | 44 | <0.000 | 2.27 (Large) |
HF-KE (hamstrings) | 93.3 ± 7.8 | 25 | 73.4 ± 8.4 | 39 | <0.000 | 2.41 (Very large) |
KF (quadriceps) | 139.2 ± 7.7 | 27 | 121.9 ± 9.2 | 37 | <0.000 | 1.99 (Large) |
HF (gluteus maximus) | 145.9 ± 5.9 | 46 | 134.7 ± 4.9 | 18 | <0.000 | 1.96 (Large) |
Range of Motion Variables | Total (%) | Dominant Limb (n) | Non-Dominant Limb (n) |
---|---|---|---|
HE (iliopsoas) | 16 (25.0%) | 9 | 7 |
ADF-KE (gastrocnemius) | 14 (21.9%) | 3 | 11 |
ADF-KF (soleus) | 12 (18.8%) | 4 | 8 |
HAB (adductors) | 11 (17.2%) | 5 | 6 |
HAB-HF (monoarticular adductors) | 3 (4.7%) | 1 | 2 |
HF-KE (hamstrings) | 11 (17.2%) | 4 | 7 |
KF (quadriceps) | 14 (21.9%) | 8 | 6 |
HF (gluteus maximus) | 5 (7.8%) | 3 | 2 |
Total sample | 86 (100%) | 37 | 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cejudo, A. Lower Extremity Flexibility Profile in Basketball Players: Gender Differences and Injury Risk Identification. Int. J. Environ. Res. Public Health 2021, 18, 11956. https://doi.org/10.3390/ijerph182211956
Cejudo A. Lower Extremity Flexibility Profile in Basketball Players: Gender Differences and Injury Risk Identification. International Journal of Environmental Research and Public Health. 2021; 18(22):11956. https://doi.org/10.3390/ijerph182211956
Chicago/Turabian StyleCejudo, Antonio. 2021. "Lower Extremity Flexibility Profile in Basketball Players: Gender Differences and Injury Risk Identification" International Journal of Environmental Research and Public Health 18, no. 22: 11956. https://doi.org/10.3390/ijerph182211956
APA StyleCejudo, A. (2021). Lower Extremity Flexibility Profile in Basketball Players: Gender Differences and Injury Risk Identification. International Journal of Environmental Research and Public Health, 18(22), 11956. https://doi.org/10.3390/ijerph182211956