Land Use Evolution and Land Ecological Security Evaluation Based on AHP-FCE Model: Evidence from China
Abstract
:1. Introduction
2. Methodology
2.1. Establishing Indicators System
2.2. Establishing the AHP-FCE Approach
2.2.1. Non-Dimensionalizing Assessment Indicator
2.2.2. Establishing the Analytic Hierarchy Process-Fuzzy Comprehensive Evaluation (AHP-FCE) Approach
3. Results
3.1. Land Use Type Evolution Analysis
3.2. Weight Values of Land Ecological Security Evaluation Indicator
3.3. The Multi-Index Comprehensive Evaluation on Land Ecological Security
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Matrix Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.26 | 1.36 | 1.41 | 1.46 |
Score | Connotation |
---|---|
1 | The two factors are equally important |
3 | The factor is slightly more important than the other factor |
5 | The factor is obviously more important than the other factor |
7 | The factor is significantly more important than the other factor |
9 | The factor is extremely more important than the other factor |
2,4,6,8 | Median values of the above adjacent judgments |
Reciprocal | If the importance ratio of factor i to factor j is bij, the importance of factor j is 1/bij as compared to factor i. |
Appendix B
References
- Al-Shamiri, A.; Ziadat, F.M. Soil-Landscape Modeling and Land Suitability Evaluation: The Case of Rainwater Harvesting in a Dry Rangeland Environment. Int. J. Appl. earth Obs. Geoinf. 2012, 18, 157–164. [Google Scholar] [CrossRef]
- Liu, S.; Wang, D.; Li, H.; Li, W.; Wang, Q. Ecological Land Fragmentation Evaluation and Dynamic Change of a Typical Black Soil Farming Area in Northeast China. Sustainability 2017, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Feng, Y. Ecological Risk Assessment for Pearl River Delta Based on Land Use Change. Trans. Chin. Soc. Agric. Eng. 2013, 29, 224–232. [Google Scholar]
- Li, Y.; Huang, S. Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China. Sustainability 2015, 7, 16631–16652. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.J.; Luck, G.W.; Spooner, P.G.; Watson, D.M. Land-Use Change: Incorporating the Frequency, Sequence, Time Span, and Magnitude of Changes into Ecological research. Front. Ecol. Environ. 2014, 12, 241–249. [Google Scholar] [CrossRef]
- Recatalá, L.; Ive, J.R.; Baird, I.A.; Hamilton, N.; Sánchez, J. Land-Use Planning in the Valencian Mediterranean Region: Using Lupis to Generate Issue Relevant Plans. J. Environ. Manag. 2000, 59, 169–184. [Google Scholar] [CrossRef]
- Salvati, L.; Zambon, I.; Chelli, F.M.; Serra, P. Do Spatial Patterns of Urbanization and Land Consumption Reflect Different Socioeconomic Contexts in Europe? Sci. Total Environ. 2018, 625, 722–730. [Google Scholar] [CrossRef]
- Jansen, L.J.; Di Gregorio, A. Obtaining Land-Use Information from a Remotely Sensed Land Cover Map: Results from a Case Study in Lebanon. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 141–157. [Google Scholar] [CrossRef]
- Tao, B.; Yang, Y.; Yang, J.; Smith, R.; Fox, J.; Ruane, A.C.; Liu, J.; Ren, W. Recent Shrinkage and Fragmentation of Bluegrass Landscape in Kentucky. Remote Sens. 2020, 12, 1815. [Google Scholar] [CrossRef]
- Carbutt, C.; Henwood, W.D.; Gilfedder, L.A. Global Plight of Native Temperate Grasslands: Going, Going, Gone? Biodivers. Conserv. 2017, 26, 2911–2932. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Wu, C.; Yu, M. Forest Fragmentation in China and Its Effect on Biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef]
- Zhao, J.; Tsutsumida, N. Mapping Fragmented Impervious Surface Areas Overlooked by Global Land-Cover Products in the Liping County, Guizhou Province, China. Remote Sens. 2020, 12, 1527. [Google Scholar] [CrossRef]
- Alipbeki, O.; Alipbekova, C.; Sterenharz, A.; Toleubekova, Z.; Makenova, S.; Aliyev, M.; Mineyev, N. Analysis of Land-Use Change in Shortandy District in Terms of Sustainable Development. Land 2020, 9, 147. [Google Scholar] [CrossRef]
- Alipbeki, O.; Alipbekova, C.; Sterenharz, A.; Toleubekova, Z.; Aliyev, M.; Mineyev, N.; Amangaliyev, K. A Spatiotemporal Assessment of Land Use and Land Cover Changes in Peri-Urban Areas: A Case Study of Arshaly District, Kazakhstan. Sustainability 2020, 12, 1556. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, J.; Ruiz-Benito, P.; Bonet, A.; Gómez, C. Methodological Variations in the Production of CORINE Land Cover and Consequences for Long-Term Land Cover Change Studies. The Case of Spain. Int. J. Remote Sens. 2019, 40, 8914–8932. [Google Scholar] [CrossRef] [Green Version]
- Mezősi, G.; Meyer, B.C.; Bata, T.; Kovács, F.; Czúcz, B.; Ladányi, Z.; Blanka, V. Integrated Approach to Estimate Land Use Intensity for Hungary. J. Environ. Geogr. 2019, 12, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Castanho, R.A.; Naranjo Gómez, J.M.; Kurowska-Pysz, J. Assessing Land Use Changes in Polish Territories: Patterns, Directions and Socioeconomic Impacts on Territorial Management. Sustainability 2019, 11, 1354. [Google Scholar] [CrossRef] [Green Version]
- Wen, M.; Zhang, T.; Li, L.; Chen, L.; Hu, S.; Wang, J.; Zhang, Y.; Yuan, L. Assessment of Land Ecological Security and Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018. Sustainability 2021, 13, 358. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, Q.; Tong, X.; Chen, L. Evaluating Land Ecological Security and Examining Its Relationships with Driving Factors Using GIS and Generalized Additive Model. Sci. Total Environ. 2018, 633, 1469–1479. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Lu, H. Quantitative Influence of Land-Use Changes and Urban Expansion Intensity on Landscape Pattern in Qingdao, China: Implications for urban sustainability. Sustainability 2019, 11, 6174. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Liu, H.; Wang, R. Urban Ecological Security Assessment for Cities in the Beijing-Tianjin-Hebei Metropolitan Region Based on Fuzzy and Entropy Methods. Ecol. Model. 2015, 318, 217–225. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, L.; Meng, J. Fuzzy evaluation of the ecological security of land resources in mainland China based on the Pressure-State-Response framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Liao, Y.; Yu, G.; Liao, Y.; Jiang, L.; Liu, X. Environmental Conflict Risk Assessment Based on AHP-FCE: A Case of Jiuhua Waste Incineration Power Plant Project. Sustainability 2018, 10, 4095. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yang, S.; Wang, Z.; Yang, C.; Chen, Y. Assessment of Ecological Environment Impact in Highway Construction Activities with Improved Group AHP-FCE Approach in China. Environ. Monit. Assess. 2020, 192, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Brundtland, G.H. Our Common Future—Call for Action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- Meadows, D.H.; Randers, J.; Meadows, D.L. The Limits to Growth; Yale University Press: New Haven, CT, USA, 2013. [Google Scholar]
- Xu, L.; Yin, H.; Li, Z.; Li, S. Land Ecological Security Evaluation of Guangzhou, China. Int. J. Environ. Res. Public Health 2014, 11, 10537–10558. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land Use/Cover Predictions Incorporating Ecological Security for the Yangtze River Delta region, China. Ecol. Indic. 2020, 119, 106841. [Google Scholar] [CrossRef]
- Wang, W.; Dong, C.; Dong, W.; Yang, C.; Ju, T.; Huang, L.; Ren, Z. The Design and Implementation of Risk Assessment Model for Hazard Installations Based on AHP–FCE Method: A Case Study of Nansi Lake Basin. Ecol. Inform. 2016, 36, 162–171. [Google Scholar] [CrossRef]
- Xie, Q.; Ni, J.Q.; & Su, Z. Fuzzy Comprehensive Evaluation of Multiple Environmental Factors for Swine Building Assessment and Control. J. Hazard. Mater. 2017, 340, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, M.; & Zang, C. Assessment of Land Use Change and Land Ecological Security in China’s the Northwest Rivers Basin. Arid. Land Geogr. 2021, 10, 380. [Google Scholar]
- Zhang, X.; Yang, J.; Zhao, X. Optimal Study of the Rural House Space Heating Systems Employing the AHP and FCE Methods. Energy 2018, 150, 631–641. [Google Scholar] [CrossRef]
Sub-Factors | S11 | S12 | S13 | S14 | S15 | S16 | S21 | S22 | S23 | S24 | S25 | S26 | S31 | S32 | S33 | S34 | S35 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 | 0.9997 | 0.8999 | 0.7582 | 0.9210 | 1.0000 | 0.9996 | 0.7987 | 0.8016 | 0.5868 | 0.9836 | 0.1994 | 0.6561 | 1.0000 | 0.2109 | 0.7136 | 0.7992 | 0.9966 |
2005 | 0.9998 | 0.8973 | 0.7757 | 0.9237 | 0.9978 | 0.9996 | 0.8084 | 0.8106 | 0.6079 | 0.9863 | 0.2494 | 0.7133 | 1.0000 | 0.2427 | 0.7346 | 0.8192 | 1.0000 |
2006 | 1.0000 | 0.8950 | 0.7938 | 0.9252 | 0.9970 | 1.0000 | 0.8195 | 0.8209 | 0.6316 | 0.9918 | 0.2680 | 0.6997 | 1.0000 | 0.2827 | 0.7577 | 0.8382 | 0.8964 |
2007 | 0.9997 | 0.8948 | 0.7931 | 0.9252 | 0.9968 | 0.9980 | 0.8284 | 0.8302 | 0.6421 | 0.9945 | 0.3537 | 0.7573 | 1.0000 | 0.3462 | 0.7842 | 0.8398 | 0.8778 |
2008 | 0.9995 | 0.8946 | 0.7918 | 0.9250 | 0.9967 | 0.9961 | 0.8370 | 0.8386 | 0.6579 | 1.0000 | 0.5156 | 0.7775 | 1.0000 | 0.4071 | 0.8030 | 0.8807 | 0.8625 |
2009 | 0.9906 | 1.0000 | 1.0000 | 1.0000 | 0.8405 | 0.9409 | 0.8904 | 0.8997 | 0.7474 | 0.9452 | 0.5492 | 0.8011 | 1.0000 | 0.4422 | 0.8260 | 0.8797 | 0.8268 |
2010 | 0.9899 | 0.9991 | 0.9926 | 0.9993 | 0.8404 | 0.9393 | 0.9078 | 0.9156 | 0.7895 | 0.9507 | 0.7950 | 0.8394 | 1.0000 | 0.5204 | 0.8536 | 0.9017 | 0.8132 |
2011 | 0.9892 | 0.9989 | 0.9859 | 0.9985 | 0.8401 | 0.9385 | 0.9241 | 0.9305 | 0.8211 | 0.9589 | 0.7429 | 0.8965 | 1.0000 | 0.6132 | 0.8761 | 0.9381 | 0.8132 |
2012 | 0.9886 | 0.9983 | 0.9812 | 0.9978 | 0.8399 | 0.9370 | 0.9390 | 0.9455 | 0.8500 | 0.9644 | 0.8619 | 0.9312 | 1.0000 | 0.6735 | 0.8983 | 0.9631 | 0.8404 |
2013 | 0.9832 | 0.9934 | 0.9704 | 0.9923 | 0.8356 | 0.9311 | 0.9484 | 0.9536 | 0.8789 | 0.9589 | 0.9438 | 0.9458 | 1.0000 | 0.7379 | 0.9181 | 0.9785 | 0.8353 |
2014 | 0.9826 | 0.9927 | 0.9657 | 0.9916 | 0.8354 | 0.9307 | 0.9648 | 0.9676 | 0.9211 | 0.9753 | 1.0000 | 0.9740 | 1.0000 | 0.7940 | 0.9359 | 0.9819 | 0.8846 |
2015 | 0.9822 | 0.9922 | 0.9617 | 0.9913 | 0.8352 | 0.9287 | 0.9770 | 0.9791 | 0.9447 | 0.9781 | 0.9197 | 1.0000 | 1.0000 | 0.8451 | 0.9586 | 1.0000 | 0.8421 |
2016 | 0.9816 | 0.9916 | 0.9584 | 0.9909 | 0.8350 | 0.9268 | 0.9899 | 0.9903 | 0.9763 | 0.9836 | 0.9629 | 0.9671 | 1.0000 | 0.9067 | 0.9800 | 0.9863 | 0.9949 |
2017 | 0.9769 | 0.9915 | 0.7670 | 0.9905 | 0.8348 | 0.9240 | 1.0000 | 1.0000 | 1.0000 | 0.9863 | 0.9962 | 0.9515 | 1.0000 | 1.0000 | 1.0000 | 0.9808 | 0.9032 |
Object | Main Factors | Weight | Sub-Factors | Unit | Security Trend | Weight | Weight Rank |
---|---|---|---|---|---|---|---|
Land ecological security evaluation S | Sustainable development of resources and environment S1 | 0.3341 | Area of agricultural land S11 | thousand hectares | Negative | 0.1176 | 4 |
Area of cultivated land S12 | thousand hectares | Negative | 0.0994 | 5 | |||
Area of orchard S13 | thousand hectares | Positive | 0.0343 | 9 | |||
Area of forest S14 | thousand hectares | Positive | 0.0408 | 8 | |||
Area of pastureland S15 | thousand hectares | Positive | 0.0205 | 15 | |||
Area of land for other agricultural use S16 | thousand hectares | Negative | 0.0207 | 14 | |||
Economic sustainable development S2 | 0.3780 | Construction land S21 | thousand hectares | Negative | 0.1185 | 3 | |
Residential site and independent mining land S22 | thousand hectares | Negative | 0.1233 | 2 | |||
Land for transportation S23 | thousand hectares | Positive | 0.0304 | 10 | |||
Land for irrigation facility S24 | thousand hectares | Positive | 0.041 | 7 | |||
Total investment in environmental pollution abatement S25 | hundred million yuan | Positive | 0.0111 | 16 | |||
Waste water discharge S26 | hundred million ton | Negative | 0.009 | 17 | |||
Social sustainable development S3 | 0.2879 | National territorial land area S31 | ten thousand hectares | Positive | 0.1836 | 1 | |
Per capita GDP S32 | yuan | Positive | 0.0739 | 6 | |||
Urbanization rate S33 | % | Positive | 0.0301 | 11 | |||
Food supply per capita S34 | kg/person | Positive | 0.023 | 12 | |||
Natural population growth rate S35 | % | Negative | 0.0227 | 13 |
Year | Ecological Security Comprehensive Value | Natural Coordination Value | Economic Sustainability Value | Social Stability Value | Security Level | Security Status |
---|---|---|---|---|---|---|
2004 | 0.2973 | 0.1038 | 0.0947 | 0.0988 | U | Unsafe |
2005 | 0.2997 | 0.1040 | 0.0958 | 0.0999 | U | Unsafe |
2006 | 0.3024 | 0.1041 | 0.0971 | 0.1012 | U | Unsafe |
2007 | 0.3047 | 0.1041 | 0.0982 | 0.1024 | U | Unsafe |
2008 | 0.3066 | 0.1040 | 0.0992 | 0.1034 | U | Unsafe |
2009 | 0.3255 | 0.1091 | 0.1055 | 0.1109 | U | Unsafe |
2010 | 0.3295 | 0.1090 | 0.1076 | 0.1129 | U | Unsafe |
2011 | 0.333 | 0.1088 | 0.1095 | 0.1147 | U | Unsafe |
2012 | 0.3366 | 0.1087 | 0.1113 | 0.1166 | U | Unsafe |
2013 | 0.3381 | 0.1081 | 0.1124 | 0.1176 | U | Unsafe |
2014 | 0.3416 | 0.1080 | 0.1143 | 0.1193 | U | Unsafe |
2015 | 0.3444 | 0.1079 | 0.1158 | 0.1207 | U | Unsafe |
2016 | 0.3472 | 0.1078 | 0.1173 | 0.1221 | U | Unsafe |
2017 | 0.3472 | 0.1054 | 0.1185 | 0.1233 | U | Unsafe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zhong, S.; Wang, Y.; Liu, M. Land Use Evolution and Land Ecological Security Evaluation Based on AHP-FCE Model: Evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 12076. https://doi.org/10.3390/ijerph182212076
Zhu Y, Zhong S, Wang Y, Liu M. Land Use Evolution and Land Ecological Security Evaluation Based on AHP-FCE Model: Evidence from China. International Journal of Environmental Research and Public Health. 2021; 18(22):12076. https://doi.org/10.3390/ijerph182212076
Chicago/Turabian StyleZhu, Yong, Shihu Zhong, Ying Wang, and Muhua Liu. 2021. "Land Use Evolution and Land Ecological Security Evaluation Based on AHP-FCE Model: Evidence from China" International Journal of Environmental Research and Public Health 18, no. 22: 12076. https://doi.org/10.3390/ijerph182212076
APA StyleZhu, Y., Zhong, S., Wang, Y., & Liu, M. (2021). Land Use Evolution and Land Ecological Security Evaluation Based on AHP-FCE Model: Evidence from China. International Journal of Environmental Research and Public Health, 18(22), 12076. https://doi.org/10.3390/ijerph182212076