Validity of a Screening Tool for Patients with a Sub-Threshold Level of Lumbar Instability: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Participants
2.3. Sample Size Determination
2.4. Instruments
2.4.1. Radiographic Assessment and Measurement
2.4.2. Screening Tool
2.5. Measurement Procedure
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. The Screening Tool-Specific STLI Cut-Off Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritz, J.M.; Piva, S.R.; Childs, J.D. Accuracy of the clinical examination to predict radiographic instability of the lumbar spine. Eur. Spine J. 2005, 14, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Panjabi, M.M. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 1992, 5, 383–389. [Google Scholar] [CrossRef]
- Panjabi, M.M. Clinical spinal instability and low back pain. J. Electromyogr. Kinesiol. 2003, 13, 371–379. [Google Scholar] [CrossRef]
- Last, A.R.; Hulbert, K. Chronic low back pain: Evaluation and management. S. Afr. Fam. Pract. 2010, 52, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Abbott, J.H.; McCane, B.; Herbison, P.; Moginie, G.; Chapple, C.; Hogarty, T. Lumbar segmental instability: A criterion-related validity study of manual therapy assessment. BMC Musculoskelet. Disord. 2005, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.; Jhun, H.J. New physical examination tests for lumbar spondylolisthesis and instability: Low midline sill sign and interspinous gap change during lumbar flexion-extension motion Orthopedics and biomechanics. BMC Musculoskelet. Disord. 2015, 16, 97. [Google Scholar] [CrossRef] [Green Version]
- Hicks, G.E.; Fritz, J.M.; Delitto, A.; McGill, S.M. Preliminary development of a clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. Arch. Phys. Med. Rehabil. 2005, 86, 1753–1762. [Google Scholar] [CrossRef]
- Kasai, Y.; Morishita, K.; Kawakita, E.; Kondo, T.; Uchida, A. A new evaluation method for lumbar spinal instability: Passive lumbar extension test. Phys. Ther. 2006, 86, 1661–1667. [Google Scholar] [CrossRef]
- Puntumetakul, R.; Yodchaisarn, W.; Emasithi, A.; Keawduangdee, P.; Chatchawan, U.; Yamauchi, J. Prevalence and individual risk factors associated with clinical lumbar instability in rice farmers with low back pain. Patient Prefer. Adherence 2014, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vanti, C.; Conti, C.; Faresin, F.; Ferrari, S.; Piccarreta, R. The Relationship Between Clinical Instability and Endurance Tests, Pain, and Disability in Nonspecific Low Back Pain. J. Manip. Physiol. Ther. 2016, 39, 359–368. [Google Scholar] [CrossRef]
- Kotilainen, E.; Valtonen, S. Acta Neurochirurgica Clinical Instability of the Lumbar Spine After Mierodiseectomy. Acta Neurochir. 1993, 125, 120–126. [Google Scholar] [CrossRef]
- Tang, S.; Qian, X.; Zhang, Y.; Liu, Y. Treating low back pain resulted from lumbar degenerative instability using Chinese Tuina combined with core stability exercises: A randomized controlled trial. Complementary Ther. Med. 2016, 25, 45–50. [Google Scholar] [CrossRef]
- Panjabi, M. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J. Spinal Disord. 1992, 5, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; Zhu, J.; Liu, Z.; Liu, X.; Jiang, L.; Wei, F.; Song, C. A new approach to the treatment of spinal instability: Fusion or structural reinforcement without surgery? Med. Hypotheses 2020, 144, 109900. [Google Scholar] [CrossRef] [PubMed]
- White, M.M.; Panjabi, A. Clinical Biomechanics of the Spine, 2nd ed.; Lippincott: Philadelphia, PA, USA, 1990; Volumes 23–45, pp. 342–360. [Google Scholar]
- Staub, B.N.; Holman, P.J.; Reitman, C.A.; Hipp, J. Sagittal plane lumbar intervertebral motion during seated flexion-extension radiographs of 658 asymptomatic nondegenerated levels. J. Neurosurg. Spine 2015, 23, 731–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leungbootnak, A. The range of lumbar spine motion in Thai patients with non-radiological lumber instability (pilot study). In Proceedings of the 1st International Conference on Integrative Medicine, Chiang Rai, Thailand, 7 October 2019; pp. 55–62. [Google Scholar]
- Alqarni, A.M.; Schneiders, A.G.; Hendrick, P.A. Clinical tests to diagnose lumbar segmental instability:A systematic review. J. Orthop. Sports Phys. Ther. 2011, 41, 130–140. [Google Scholar] [CrossRef]
- Ozcete, E.; Boydak, B.; Ersel, M.; Kiyan, S.; Uz, I.; Cevrim, O. Comparison of conventional radiography and digital computerized radiography in patients presenting to emergency department. Turk. J. Emerg. Med. 2015, 15, 8–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkaldy-Willis, W.H.; Farfan, H. Instability of the lumbar spine. Clin. Orthop. Relat. Res. 1994, 165, 110–123. [Google Scholar] [CrossRef]
- Cook, C.; Brismée, J.M.; Sizer, P.S. Subjective and objective descriptors of clinical lumbar spine instability: A Delphi study. Man. Ther. 2006, 11, 11–21. [Google Scholar] [CrossRef]
- Araujo, A.C.; Da Cunha Menezes Costa, L.; De Oliveira, C.B.S.; Morelhão, P.K.; De Faria Negrão Filho, R.; Pinto, R.Z.; Costa, L.O.P. Measurement Properties of the Brazilian-Portuguese Version of the Lumbar Spine Instability Questionnaire. Spine 2017, 42, E810–E814. [Google Scholar] [CrossRef]
- Chatprem, T.; Puntumetakul, R.; Boucaut, R.; Wanpen, S.; Chatchawan, U. A Screening Tool for Patients With Lumbar Instability: A Criteria-related Validity of Thai Version. Spine 2020, 45, E1431–E1438. [Google Scholar] [CrossRef]
- Kumar, S.P. Efficacy of segmental stabilization exercise for lumbar segmental instability in patients with mechanical low back pain: A randomized placebo controlled crossover study. N. Am. J. Med. Sci. 2011, 3, 456–461. [Google Scholar] [CrossRef]
- Saragiotto, B.T.; Maher, C.G.; New, C.H.; Catley, M.; Hancock, M.J.; Cook, C.E.; Hodges, P.W. Clinimetric testing of the Lumbar Spine instability questionnaire. J. Orthop. Sports Phys. Ther. 2018, 48, 915–922. [Google Scholar] [CrossRef]
- Chatprem, T.; Puntumetakul, R.; Yodchaisarn, W.; Siritaratiwat, W.; Boucaut, R.; Sae-jung, S. A Screening Tool for Patients With Lumbar Instability: A Content Validity and Rater Reliability of Thai Version. J. Manip. Physiol. Ther. 2020, 43, 515–520. [Google Scholar] [CrossRef]
- Wennberg, P.; Möller, M.; Sarenmalm, E.K.; Herlitz, J. Evaluation of the intensity and management of pain before arrival in hospital among patients with suspected hip fractures. Int. Emerg. Nurs. 2020, 49, 100825. [Google Scholar] [CrossRef]
- Fejer, R.; Jordan, A.; Hartvigsen, J. Categorising the severity of neck pain: Establishment of cut-points for use in clinical and epidemiological research. Pain 2005, 119, 176–182. [Google Scholar] [CrossRef]
- Hanley, M.A.; Masedo, A.; Jensen, M.P.; Cardenas, D.; Turner, J.A. Pain interference in persons with spinal cord injury: Slassification of mild, moderate, and severe pain. J. Pain 2006, 7, 129–133. [Google Scholar] [CrossRef]
- Maigne, J.Y.; Lapeyre, E.; Morvan, G.; Chatellier, G. Pain immediately upon sitting down and relieved by standing up is often associated with radiologic lumbar instability or marked anterior loss of disc space. Spine 2003, 28, 1327–1334. [Google Scholar] [CrossRef]
- Van der Wulf, P.; Meyne, W.; Hagmeijer, R.H.M. Clinical tests of the sacroiliac joint. A systematic methodological review. Part 2: Validity. Man. Ther. 2000, 5, 89–96. [Google Scholar] [CrossRef]
- Leone, A.; Guglielmi, G.; Cassar-Pullicino, V.N.; Bonomo, L. Lumbar intervertebral instability: A review. Radiology 2007, 245, 62–77. [Google Scholar] [CrossRef]
- Saiklang, P.; Puntumetakul, R.; Swangnetr Neubert, M.; Boucaut, R. Effect of time of day on height loss response variability in asymptomatic participants on two consecutive days. Ergonomics 2019, 62, 1542–1550. [Google Scholar] [CrossRef]
- Goetzinger, K.R.; Tuuli, M.G.; Odibo, A.O. Statistical analysis and interpretation of prenatal diagnostic imaging studies, part 3: Approach to study design. J. Ultrasound Med. 2011, 30, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Simundic, A.M. Measures of Diagnostic Accuracy: Basic Definitions. Ejifcc 2009, 19, 203–211. [Google Scholar]
- Puntumetakul, R.; Areeudomwong, P.; Emasithi, A.; Yamauchi, J. Effect of 10-week core stabilization exercise training and detraining on pain-related outcomes in patients with clinical lumbar instability. Patient Prefer. Adherence 2013, 7, 1189–1199. [Google Scholar] [CrossRef] [Green Version]
- Puntumetakul, R.; Saiklang, P.; Tapanya, W.; Chatprem, T.; Kanpittaya, J.; Arayawichanon, P.; Boucaut, R. The effects of core stabilization exercise with the abdominal drawing-in maneuver technique versus general strengthening exercise on lumbar segmental motion in patients with clinical lumbar instability: A randomized controlled trial with 12-month follow-up. Int. J. Environ. Res. Public Health 2021, 18, 7811. [Google Scholar] [CrossRef]
- Javadian, Y.; Akbari, M.; Talebi, G.; Taghipour-Darzi, M.; Janmohammadi, N. Influence of core stability exercise on lumbar vertebral instability in patients presented with chronic low back pain: A randomized clinical trial. Casp. J. Intern. Med. 2015, 6, 98–102. [Google Scholar]
- Søndergaard, K.H.E.; Olesen, C.G.; Søndergaard, E.K.; de Zee, M.; Madeleine, P. The variability and complexity of sitting postural control are associated with discomfort. J. Biomech. 2010, 43, 1997–2001. [Google Scholar] [CrossRef]
- Salgado, J.F. Transforming the area under the normal curve (AUC) into cohen’s d, pearson’s rpb, odds-ratio, and natural log odds-ratio: Two conversion tables. Eur. J. Psychol. Appl. Leg. Context 2018, 10, 35–47. [Google Scholar] [CrossRef] [Green Version]
Question 14 items | Yes (1) | No (0) |
---|---|---|
1. Patient reports his/her back has collapsed. | ||
2. Patient frequently self-manipulates to decrease their symptoms. | ||
3. Patient’s back pain symptoms alternate periodically. | ||
4. Patient has a history of complaints of stiffness and sudden back pain when twisting or bending their back. | ||
5. Patient’s back pain has been provoked by changing posture, for example standing up from sitting, etc. | ||
6. Patient has increased back pain when returning to upright after forward bending. | ||
7. Sudden or minor movements increase patient’s back pain. | ||
8. Patient gets worse when sitting on a chair without a backrest and gets better when sitting on a chair with backrest. | ||
9. Patient reports being in a static posture for a long time has an effect on their back problem. | ||
10. Patient’s back pain is worsening. | ||
11. Patient wears a brace or corset to temporarily alleviate back pain. | ||
12. Patient with back problems regularly experiences muscle spasms. | ||
13. Patient avoids or hesitates to move when they have back symptoms. | ||
14. Patient has a past history of back injury. | ||
Total score |
Variable | Total (n = 135) | With STLI (n = 113) | Without STLI (n = 22) | p-Value |
---|---|---|---|---|
Age (years) | 35.58 ± 12.02 | 35.60 ± 12.46 | 35.45 ± 9.70 | 0.95 |
Gender (%) | ||||
Male | 53 (39.26) | 45 (39.82) | 8 (36.36) | 0.82 |
Female | 82 (60.74) | 68 (60.18) | 14 (63.64) | |
BMI (kg/m2) | 22.16 ± 2.10 | 22.29 ± 2.10 | 21.48 ± 2.04 | 0.10 |
Duration of current symptoms (months) | 27.33 ± 27.07 | 26.40 ± 27.54 | 32.14 ± 24.57 | 0.37 |
NRS (pain) | 4.63 ± 0.94 | 4.57 ± 0.88 | 4.95 ± 1.21 | 0.17 |
Smoking history (%) | ||||
Yes | 12 (8.89) | 10 (8.85) | 2 (9.09) | 1.00 |
No | 123 (91.11) | 103 (91.15) | 20 (90.91) |
Cut-Off Value | Sensitivity (%) | Specificity (%) | LR+ | LR− | AUG (95%CI) |
---|---|---|---|---|---|
≥5 | 100.00 | 0.00 | 1.00 | 0.73 (0.61–0.84) | |
≥6 | 99.12 | 18.18 | 1.21 | 0.05 | |
≥7 | 90.27 | 31.82 | 1.32 | 0.31 | |
≥8 | 69.91 | 68.18 | 2.20 | 0.44 | |
≥9 | 46.02 | 72.73 | 1.69 | 0.74 | |
≥10 | 31.86 | 95.45 | 7.01 | 0.71 | |
≥11 | 17.70 | 100.00 | 0.82 | ||
≥12 | 5.31 | 100.00 | 0.95 | ||
≥13 | 2.65 | 100.00 | 0.97 | ||
≥14 | 0.88 | 100.00 | 0.99 | ||
14 | 0.00 | 100.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leungbootnak, A.; Puntumetakul, R.; Kanpittaya, J.; Chatprem, T.; Boucaut, R. Validity of a Screening Tool for Patients with a Sub-Threshold Level of Lumbar Instability: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 12151. https://doi.org/10.3390/ijerph182212151
Leungbootnak A, Puntumetakul R, Kanpittaya J, Chatprem T, Boucaut R. Validity of a Screening Tool for Patients with a Sub-Threshold Level of Lumbar Instability: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2021; 18(22):12151. https://doi.org/10.3390/ijerph182212151
Chicago/Turabian StyleLeungbootnak, Arisa, Rungthip Puntumetakul, Jaturat Kanpittaya, Thiwaphon Chatprem, and Rose Boucaut. 2021. "Validity of a Screening Tool for Patients with a Sub-Threshold Level of Lumbar Instability: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 18, no. 22: 12151. https://doi.org/10.3390/ijerph182212151
APA StyleLeungbootnak, A., Puntumetakul, R., Kanpittaya, J., Chatprem, T., & Boucaut, R. (2021). Validity of a Screening Tool for Patients with a Sub-Threshold Level of Lumbar Instability: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 18(22), 12151. https://doi.org/10.3390/ijerph182212151