Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China
Abstract
:1. Introduction
2. Methodology and Methods
2.1. Methodology
2.2. Data
3. Measurement of PM2.5 Environmental Efficiency
3.1. Trends in Overall PM2.5 Environmental Efficiency
3.2. Differences in PM2.5 Environmental Efficiency
4. Factors Influencing PM2.5 Environmental Efficiency
4.1. Econometric Model
4.2. Data Sources and Descriptive Statistics
4.3. Analysis of Results
4.4. Robustness Test
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X. Dynamic evolution, spatial spillover effect of technological innovation and haze pollution in China. Energy Environ. 2018, 29, 968–988. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; He, F.; Yuan, R. Regional green development level and its spatial relationship under the constraints of haze in China. J. Clean. Prod. 2019, 210, 376–387. [Google Scholar] [CrossRef]
- Yue, H.; He, C.; Huang, Q.; Yin, D.; Bryan, B.A. Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nat. Commun. 2020, 11, 1–10. [Google Scholar]
- Ma, D.; He, F.; Li, G.; Deng, G. Does haze pollution affect public health in China from the perspective of environmental efficiency? Environ. Dev. Sustain. 2021, 23, 1–15. [Google Scholar] [CrossRef]
- Hsieh, J.; Lu, C.; Li, Y.; Xu, Y. Environmental Assessment of European Union Countries. Energies 2019, 12, 295. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, S.; Managi, S. Environmental Productivity in China. Econ. Bull. 2004, 17, 1–10. [Google Scholar]
- Wang, K.; Yu, S.; Zhang, W. China’s Regional Energy and Environmental efficiency: A DEA Window Analysis based Dynamic Evaluation. Math. Comput. Model. 2013, 58, 1117–1127. [Google Scholar] [CrossRef]
- Song, M.; Song, Y.; An, Q.; Yu, H. Review of Environmental Efficiency and Its Influencing Factors in China: 1998–2009. Renew. Sustain. Energy Rev. 2013, 20, 8–14. [Google Scholar] [CrossRef]
- Apergis, N.; Aye, G.C.; Barros, C.P.; Gupta, R.; Wanke, P. Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs. Energy Econ. 2015, 51, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H. Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production. Energy 2013, 58, 588–593. [Google Scholar] [CrossRef]
- Yang, L.; Ouyang, H.; Fang, K.; Ye, L.; Zhang, J. Evaluation of regional environmental efficiencies in China based on Super-efficiency-DEA. Ecol. Indic. 2015, 51, 13–19. [Google Scholar] [CrossRef]
- Iram, R.; Zhang, J.; Erdogan, S.; Abbas, Q.; Mohsin, M. Economics of energy and environmental efficiency: Evidence from OECD countries. Environ. Sci. Pollut. Res. 2020, 27, 3858–3870. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, W.; Lu, K. Economic Growth Effect and Optimal Carbon Emissions under China’s Carbon Emissions Reduction Policy: A Time Substitution DEA Approach. Sustainability 2018, 10, 1543. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Lu, B.; Wei, Y.M. China’s regional energy and environmental efficiency: A range-adjusted measure based analysis. Appl. Energy 2014, 112, 1403–1415. [Google Scholar] [CrossRef]
- Chen, J.; Song, M.; Xu, L. Evaluation of environmental efficiency in China using data envelopment analysis. Ecol. Indic. 2015, 52, 577–583. [Google Scholar] [CrossRef]
- Zhu, W.; Zhu, Y.; Yu, Y. China’s regional environmental efficiency evaluation: A dynamic analysis with biennial Malmquist productivity index based on common weights. Environ. Sci. Pollut. Res. 2020, 27, 39726–39741. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; An, Y.; Song, H.; Chen, J. The impact of haze pollution on regional eco-economic treatment efficiency in China: An environmental regulation perspective. Int. J. Environ. Res. Public Health 2019, 16, 4059. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Li, Y.; Tao, Y.; Wang, Y.; Li, Y. Regional differences in the spatial characteristics and dynamic convergence of environmental efficiency in China. Sustainability 2020, 12, 7423. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y. China’s regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution. Energy Econ. 2015, 49, 239–256. [Google Scholar] [CrossRef]
- Cheng, S.; Xie, J.; Xiao, D.; Zhang, Y. Measuring the environmental efficiency and technology gap of pm2.5 in China’s ten city groups: An empirical analysis using the EBM meta-frontier model. Int. J. Environ. Res. Public Health 2019, 16, 675. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Luo, K. The spatial convergence and drivers of environmental efficiency under haze constraints-Evidence from China. Environ. Impact Assess. Rev. 2021, 86, 106513. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, W.; Shi, H. Regional environmental efficiency in China: Analysis based on a regional slack-based measure with environmental undesirable outputs. Ecol. Indic. 2016, 71, 218–228. [Google Scholar] [CrossRef]
- Yang, X.; Li, C. Industrial environmental efficiency, foreign direct investment and export—Evidence from 30 provinces in China. J. Cleaner Prod. 2019, 212, 1490–1498. [Google Scholar] [CrossRef]
- Yasmeen, H.; Tan, Q.; Zameer, H.; Tan, J.; Nawaz, K. Manuscript title: Exploring the impact of technological innovation, environmental regulations and urbanization on ecological efficiency of China in the context of COP21. J. Environ. Manag. 2020, 274, 111210. [Google Scholar] [CrossRef]
- Zhong, Z.; Peng, B.; Elahi, E. Spatial and temporal pattern evolution and influencing factors of energy–environmental efficiency: A case study of Yangtze River urban agglomeration in China. Energy Environ. 2021, 32, 242–261. [Google Scholar] [CrossRef]
- Yin, N.N.; Wang, K.L.; Yao, Z.; Ding, L.L.; Miao, Z. Total-factor air environmental efficiency and its influencing factors in the areas along the Belt and Road in China: A spatial spillover perspective. Energy Environ. 2021. [Google Scholar] [CrossRef]
- Fǎre, R.; Grosskopf, S.; Lovell, C.A.K.; Pasurka, C. Multilateral Productivity Comparisons When Some Outputs are Undesirable: A Nonparametric Approach. Rev. Econ. Stats. 1989, 71, 90–98. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; He, F.; Li, G.; Chen, L.L. Estimation and Comparative Analysis of Environmental Efficiency in China, with and without Consideration of Haze. Pol. J. Environ. Stud. 2018, 27, 201–211. [Google Scholar] [CrossRef]
- Atmospheric Composition Analysis Group. Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD). Available online: http://fizz.phys.dal.ca/~atmos/martin/?page_id=140 (accessed on 20 July 2021).
- Wu, J.; Yin, P.; Sun, J.; Chu, J.; Liang, L. Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspective. Eur. J. Oper. Res. 2016, 254, 1047–1062. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of a North American free trade agreement. Soc. Sci. Electron. P. 1992, 8, 223–250. [Google Scholar]
- Cropper, M.; Griffiths, C. The interaction of population growth and environmental quality. Am. Econ. Rev. 1994, 84, 250–254. [Google Scholar]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
The Main Variables | Units | Average | Median | Min | Max | Stedv. | |
---|---|---|---|---|---|---|---|
Input | Employed Persons | 10,000 Persons | 2509.92 | 2067.65 | 268 | 6767 | 1679.60 |
Total Energy Consumption | 10,000 tce | 11,377.28 | 9179.01 | 520 | 38,723 | 7891.53 | |
Capital Stock | 100 million yuan | 24,568.7 | 16,611.35 | 745.25 | 138,711.80 | 24,595.78 | |
Total Water Consumption | 100 million cu.m | 195.64 | 182.7 | 19.94 | 591.3 | 138.58 | |
Desired output | GDP | 100 million yuan | 10,241.34 | 7207.65 | 295.42 | 62,039.21 | 10,095.90 |
Undesired output | PM2.5 concentration | μg/m3 | 34.86 | 32.42 | 5.91 | 85.96 | 17.83 |
Year | NEC | NCC | ECC | SCC | MYR | MYZR | SWC | NWC |
---|---|---|---|---|---|---|---|---|
2001 | 1.000 | 0.902 | 0.892 | 1.000 | 0.672 | 0.508 | 0.537 | 0.774 |
2002 | 0.954 | 0.902 | 0.900 | 1.000 | 0.700 | 0.525 | 0.534 | 0.773 |
2003 | 0.923 | 0.897 | 0.884 | 1.000 | 0.684 | 0.505 | 0.526 | 0.764 |
2004 | 0.970 | 0.899 | 0.893 | 0.969 | 0.689 | 0.491 | 0.497 | 0.776 |
2005 | 1.000 | 0.898 | 0.857 | 0.940 | 0.659 | 0.474 | 0.506 | 0.682 |
2006 | 0.970 | 0.893 | 0.846 | 0.940 | 0.645 | 0.458 | 0.487 | 0.672 |
2007 | 0.973 | 0.892 | 0.831 | 0.924 | 0.641 | 0.457 | 0.494 | 0.667 |
2008 | 0.897 | 0.887 | 0.837 | 0.930 | 0.618 | 0.435 | 0.476 | 0.764 |
2009 | 0.903 | 0.885 | 0.827 | 0.935 | 0.599 | 0.431 | 0.467 | 0.639 |
2010 | 0.935 | 0.884 | 0.836 | 0.945 | 0.590 | 0.424 | 0.443 | 0.647 |
2011 | 0.650 | 0.872 | 0.925 | 0.924 | 0.528 | 0.463 | 0.438 | 0.584 |
2012 | 0.659 | 0.872 | 0.936 | 0.936 | 0.518 | 0.469 | 0.468 | 0.586 |
2013 | 0.656 | 0.871 | 0.975 | 0.944 | 0.524 | 0.478 | 0.510 | 0.593 |
2014 | 0.538 | 0.862 | 0.947 | 0.938 | 0.502 | 0.440 | 0.610 | 0.599 |
2015 | 0.530 | 0.863 | 0.972 | 0.944 | 0.487 | 0.446 | 0.596 | 0.584 |
2016 | 0.554 | 0.866 | 1.000 | 0.949 | 0.504 | 0.478 | 0.600 | 0.577 |
2017 | 0.570 | 0.868 | 1.000 | 1.000 | 0.535 | 0.479 | 0.607 | 0.587 |
2018 | 0.646 | 0.865 | 1.000 | 0.955 | 0.595 | 0.463 | 0.484 | 0.583 |
Mean | 0.796 | 0.882 | 0.909 | 0.954 | 0.594 | 0.468 | 0.515 | 0.658 |
SD | 0.186 | 0.015 | 0.063 | 0.027 | 0.073 | 0.028 | 0.055 | 0.079 |
SEM | 0.044 | 0.003 | 0.015 | 0.006 | 0.017 | 0.007 | 0.013 | 0.019 |
Province | 2001 | 2005 | 2010 | 2015 | 2018 | Mean | SD | SEM |
---|---|---|---|---|---|---|---|---|
Anhui | 0.487 | 0.486 | 0.407 | 0.439 | 0.430 | 0.450 | 0.032 | 0.014 |
Beijing | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
Fujian | 1.000 | 0.821 | 0.836 | 0.831 | 0.866 | 0.871 | 0.066 | 0.030 |
Gansu | 0.511 | 0.567 | 0.534 | 0.431 | 0.459 | 0.501 | 0.049 | 0.022 |
Guangdong | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
Guangxi | 0.529 | 0.481 | 0.369 | 0.420 | 0.421 | 0.444 | 0.055 | 0.025 |
Guizhou | 0.371 | 0.374 | 0.384 | 0.419 | 0.418 | 0.393 | 0.021 | 0.010 |
Hainan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
Hebei | 0.608 | 0.591 | 0.538 | 0.452 | 0.460 | 0.530 | 0.064 | 0.029 |
Heilongjiang | 0.554 | 0.509 | 0.440 | 0.534 | 0.452 | 0.498 | 0.045 | 0.020 |
Henan | 1.000 | 1.000 | 1.000 | 0.441 | 0.630 | 0.814 | 0.235 | 0.105 |
Hubei | 0.434 | 0.405 | 0.402 | 0.438 | 0.445 | 0.425 | 0.018 | 0.008 |
Hunan | 0.536 | 0.488 | 0.474 | 0.494 | 0.497 | 0.498 | 0.021 | 0.009 |
InnerMongolia | 1.000 | 1.000 | 0.804 | 0.474 | 0.581 | 0.772 | 0.214 | 0.096 |
Jiangsu | 0.675 | 0.655 | 0.664 | 1.000 | 1.000 | 0.799 | 0.164 | 0.074 |
Jilin | 0.604 | 0.532 | 0.462 | 0.462 | 0.514 | 0.515 | 0.059 | 0.026 |
Jinagxi | 1.000 | 1.000 | 1.000 | 0.675 | 0.725 | 0.880 | 0.165 | 0.074 |
Liaoning | 1.000 | 1.000 | 1.000 | 0.524 | 1.000 | 0.905 | 0.213 | 0.095 |
Ningxia | 1.000 | 0.606 | 0.580 | 0.614 | 0.599 | 0.680 | 0.179 | 0.080 |
Qinghai | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
Shaanxi | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
Shandong | 0.605 | 0.642 | 0.446 | 0.413 | 0.448 | 0.511 | 0.105 | 0.047 |
Shanghai | 0.530 | 0.486 | 0.472 | 0.477 | 0.480 | 0.489 | 0.023 | 0.011 |
Shanxi | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
Sichuan | 0.618 | 0.597 | 0.543 | 0.545 | 0.546 | 0.570 | 0.035 | 0.016 |
Tianjin | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 |
Xinjiang | 0.585 | 0.553 | 0.472 | 0.289 | 0.276 | 0.435 | 0.145 | 0.065 |
Yunnan | 0.630 | 0.571 | 0.477 | 1.000 | 0.552 | 0.646 | 0.205 | 0.092 |
Zhejiang | 1.000 | 0.916 | 0.845 | 0.915 | 1.000 | 0.935 | 0.066 | 0.029 |
Chongqing | 0.653 | 0.500 | 0.467 | 0.650 | 0.698 | 0.594 | 0.103 | 0.046 |
Explanatory Variable | Variable Symbol | Variables’ Definition | Prediction |
---|---|---|---|
Economy | PGDP | GDP per capita | EKC |
Industrial structure | SGDP | The ratio of value added in the secondary industry to regional GDP | - |
Regional factors | POP | The ratio of the total population to the regional area at the end of the year | ? |
D | Eastern province; D = 1 if yes, and if not, D = 0 | + | |
Openness degree | TRADE | The ratio of total imports and exports to regional GDP | ? |
FDI | The ratio of FDI to regional GDP | ? | |
Technology innovation | R&D | The ratio of R&D expenditures to regional GDP | + |
TECH | The number of patents granted in the region | + | |
Environmental regulation | ENVR | The ratio of total environmental investment to regional GDP | ? |
Variables | Mean | Min | Max | Std.dev |
---|---|---|---|---|
PGDP (RMB) | 27,709.08 | 3001.86 | 155,178.16 | 25,254.62 |
SGDP (%) | 45.22 | 16.54 | 59.05 | 7.07 |
ENVR (%) | 1.32 | 0.05 | 4.24 | 0.68 |
TRADE (%) | 30.88 | 1.70 | 172.15 | 37.85 |
FDI (%) | 2.64 | 0.01 | 9.52 | 2.06 |
TECH (Pieces) | 48,353.81 | 124 | 793,819 | 92,615.78 |
R&D (%) | 1.34 | 0.14 | 6.01 | 1.05 |
POP (person/km2) | 388.47 | 6.01 | 3825.69 | 534.96 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
a | −2.165 (−0.82) | −2.167 (−0.83) | −2.199 (−0.83) | −2.931 (−1.12) | −4.059 (−1.52) | −4.351 (−1.63) |
LNPGDP | 0.717 (1.73 *) | 0.718 (1.72 *) | 0.724 (1.70 *) | 0.950 (1.80 *) | 1.200 (2.21 **) | 1.226 (2.34 **) |
(LNPGDP)2 | −0.045 (−1.71 *) | −0.047 (−1.69 *) | −0.047 (−1.70 ***) | −0.068 (−2.39 **) | −0.082 (−2.21 ***) | −0.085 (−2.90 ***) |
LNSGDP | −0.345 (−2.40 **) | −0.333 (−2.30 **) | −0.328 (−2.20 **) | −0.270 (−1.85 *) | −0.247 (−1.71 *) | −0.241 (−1.68 *) |
LNPOP | −0.228 (−2.69 ***) | −0.216 (−2.77 ***) | −0.216 (−2.75 ***) | −0.068 (−3.05 ***) | −0.284 (−3.05 ***) | −0.294 (−3.06 ***) |
D | 1.19 (6.07 ***) | 1.200 (5.99 ***) | 1.202 (5.95 **) | 1.381 (6.42 *) | 1.359 (6.41 ***) | 1.366 (6.38 ***) |
LNTRADE | 0.069 (2.09 **) | 0.070 (2.08 **) | 0.071 (2.12 **) | 0.070 (2.09 **) | 0.066 (1.98 **) | |
LNFDI | −0.004 (−0.14) | −0.020 (−0.82) | −0.021 (−0.87) | −0.019 (−0.78) | ||
LNTECH | 0.087 (2.80 ***) | 0.081 (2.62 ***) | 0.085 (2.73 ***) | |||
R&D | 0.052 (1.81*) | 0.056 (2.73 **) | ||||
LNENVR | −0.057 (−1.70 *) | |||||
Sigma_u | 0.400 (5.92 ***) | 0.401 (5.96 ***) | 0.403 (5.88 ***) | 0.474 (5.74 ***) | 0.465 (5.72 ***) | 0.465 (5.72 ***) |
Obs | 360 | 360 | 360 | 360 | 360 | 360 |
Log Likelihood | 54.235 | 54.230 | 54.240 | 57.912 | 60.830 | 60.830 |
Variables | Results | Variables | Results |
---|---|---|---|
a | −7.543 | LNFDI | −0.813 |
(−3.15 **) | (−0.75) | ||
LNPGDP | 2.191 | LNTECH | 0.072 |
(4.65 ***) | (2.75 **) | ||
(LNPGDP)2 | −0.135 | R&D | 0.042 |
(−5.25 ***) | (1.73 *) | ||
LNSGDP | −0.778 | LNENVR | −0.05 |
(−2.63 **) | (−2.55 **) | ||
LNPOP | −0.381 | Sigma_u | 0.536 |
(−2.99 **) | (5.06 ***) | ||
D | 1.498 | Obs | 360 |
(6.06 ***) | Log Likelihood | 97.82 | |
LNTRADE | 0.235 | ||
(2.40 **) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Li, G.; He, F. Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China. Int. J. Environ. Res. Public Health 2021, 18, 12218. https://doi.org/10.3390/ijerph182212218
Ma D, Li G, He F. Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China. International Journal of Environmental Research and Public Health. 2021; 18(22):12218. https://doi.org/10.3390/ijerph182212218
Chicago/Turabian StyleMa, Dongdong, Guifang Li, and Feng He. 2021. "Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China" International Journal of Environmental Research and Public Health 18, no. 22: 12218. https://doi.org/10.3390/ijerph182212218
APA StyleMa, D., Li, G., & He, F. (2021). Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China. International Journal of Environmental Research and Public Health, 18(22), 12218. https://doi.org/10.3390/ijerph182212218