The Association between Endogenous Hair Steroid Hormones and Social Environmental Factors in a Group of Conscripts during Basic Military Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Collection
2.2. Hair Steroid Hormones Analysis
2.3. Military Social Environment-Related Measures
2.4. Statistical Analysis
3. Results
3.1. Preliminary Analysis
3.2. Automatic Linear Modelling Results
3.2.1. The Effects in the Constructed Models, and Building Steps
3.2.2. Coefficient and Predictor Importance in the Constructed Models
3.3. Robustness Testing for the Established Models
- The measured cortisol levels were similar to the predicted levels in Model 1, with 95% of a confidence interval CI ∈ (−0.196, 0.454);
- The measured cortisone levels were similar to the predicted levels in Model 2, with 95% of a confidence interval CI ∈ (−0.453, 0.377);
- The measured dehydroepiandrosterone levels were similar to the predicted levels in Model 3, with 95% of a confidence interval CI ∈ (−1.009, 1.282);
- The measured testosterone levels were similar to the predicted levels in Model 4, with 95% of a confidence interval CI ∈ (−0.07, 0.077).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Pairs Descriptions | N | Mean | Std Error Mean | Std Deviation | |
---|---|---|---|---|---|
Pair 1 | CTL | 183 | 5.224 | 0.331 | 4.483 |
Model 1 (CTL) | 183 | 5.354 | 0.244 | 3.316 | |
Pair 2 | CTN | 182 | 16.804 | 0.554 | 7.519 |
Model 2 (CTN) | 182 | 16.765 | 0.466 | 6.316 | |
Pair 3 | DHEA | 182 | 13.911 | 0.854 | 11.551 |
Model 3 (DHEA) | 182 | 14.048 | 0.592 | 8.011 | |
Pair 4 | TST | 182 | 0.645 | 0.039 | 0.528 |
Model 4 (TST) | 182 | 0.675 | 0.029 | 0.390 |
Pairs Description | N | Correlation Coefficient | p | |
---|---|---|---|---|
Pair 1 | CTL | 184 | 0.878 | 0.000 |
Model 1 (CTL) | ||||
Pair 2 | CTN | 183 | 0.930 | 0.000 |
Model 2 (CTN) | ||||
Pair 3 | DHEA | 183 | 0.734 | 0.000 |
Model 3 (DHEA) | ||||
Pair 4 | TST | 183 | 0.793 | 0.000 |
Model 4 (TST) |
References
- Pallavicini, F.; Argenton, L.; Toniazzi, N.; Aceti, L.; Mantovani, F. Virtual Reality Applications for Stress Management Training in the Military. Aerosp. Med. Hum. Perform. 2016, 87, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Purre, M.; Oja, L. Mental health in the military context: Emotional states and help-seeking behaviours during conscription. Am. Psychol. 2018, 6, 196–222. [Google Scholar]
- Engelmann, M.; Landgraf, R.; Wotjak, C.T. The Hypothalamic-Neurohypophysial System Regulates the Hypothalamic-Pituitary-Adrenal Axis under Stress: An Old Concept Revisited. Front. Neuroendocrinol. 2004, 25, 132–149. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Gianaros, P.J. Central Role of the Brain in Stress and Adaptation: Links to Socioeconomic Status, Health, and Disease. Ann. N. Y. Acad. Sci. 2010, 1186, 190–222. [Google Scholar] [CrossRef] [Green Version]
- Ranabir, S.; Reetu, K. Stress and Hormones. Indian J. Endocrinol. Metab. 2011, 15, 18–22. [Google Scholar] [CrossRef]
- Ljubijankić, N.; Popović-Javorić, R.; Šćeta, S.; Šapčanin, A.; Tahirović, I.; Sofić, E. Daily Fluctuation of Cortisol in the Saliva and Serum of Healthy Persons. Bosn. J. Basic Med. Sci. 2008, 8, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greff, M.J.E.; Levine, J.M.; Abuzgaia, A.M.; Elzagallaai, A.A.; Rieder, M.J.; van Uum, S.H.M. Hair Cortisol Analysis: An Update on Methodological Considerations and Clinical Applications. Clin. Biochem. 2019, 63, 1–9. [Google Scholar] [CrossRef]
- Calamari, C.V.; Viau, P.; Nichi, M.; Martins, G.S.; Sobral, G.; Mangueira Dias, J.H.; de Oliveira, C.A. Hair as an Alternative Noninvasive Matrix: Sources of Variation in Testosterone Levels. Domest. Anim. Endocrinol. 2020, 72, 106477. [Google Scholar] [CrossRef]
- El-Farhan, N.; Rees, D.A.; Evans, C. Measuring Cortisol in Serum, Urine and Saliva—Are Our Assays Good Enough? Ann. Clin. Biochem. 2017, 54, 308–322. [Google Scholar] [CrossRef]
- Gao, W.; Stalder, T.; Foley, P.; Rauh, M.; Deng, H.; Kirschbaum, C. Quantitative Analysis of Steroid Hormones in Human Hair Using a Column-Switching LC-APCI-MS/MS Assay. J. Chromatogr. B 2013, 928, 1–8. [Google Scholar] [CrossRef]
- Noppe, G.; de Rijke, Y.B.; Dorst, K.; van den Akker, E.L.T.; van Rossum, E.F.C. LC-MS/MS-Based Method for Long-Term Steroid Profiling in Human Scalp Hair. Clin. Endocrinol. 2015, 83, 162–166. [Google Scholar] [CrossRef]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair Cortisol as a Biological Marker of Chronic Stress: Current Status, Future Directions and Unanswered Questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef]
- Voegel, C.D.; Hofmann, M.; Kraemer, T.; Baumgartner, M.R.; Binz, T.M. Endogenous Steroid Hormones in Hair: Investigations on Different Hair Types, Pigmentation Effects and Correlation to Nails. Steroids 2020, 154, 108547. [Google Scholar] [CrossRef]
- Staufenbiel, S.M.; Penninx, B.W.J.H.; Spijker, A.T.; Elzinga, B.M.; van Rossum, E.F.C. Hair Cortisol, Stress Exposure, and Mental Health in Humans: A Systematic Review. Psychoneuroendocrinology 2013, 38, 1220–1235. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chen, Y.-X.; Hu, Y.-T.; Wu, X.-Y.; He, Y.; Wu, J.-L.; Huang, M.-L.; Mason, M.; Bao, A.-M. Sex Hormones Affect Acute and Chronic Stress Responses in Sexually Dimorphic Patterns: Consequences for Depression Models. Psychoneuroendocrinology 2018, 95, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.C.; Chung, M.I.; Lee, Y.D. Modulation of Pain Sensation by Stress-Related Testosterone and Cortisol. Anaesthesia 2012, 67, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in Development and Psychopathology. Horm. Behav. 2017, 89, 69–85. [Google Scholar] [CrossRef]
- Boudarene, M.; Legros, J.J.; Timsit-Berthier, M. Study of the stress response: Role of anxiety, cortisol and DHEAs. Encephale 2002, 28, 139–146. [Google Scholar]
- Pasquali, R. The Hypothalamic-Pituitary-Adrenal Axis and Sex Hormones in Chronic Stress and Obesity: Pathophysiological and Clinical Aspects. Ann. N. Y. Acad. Sci. 2012, 1264, 20–35. [Google Scholar] [CrossRef]
- van Zuiden, M.; Haverkort, S.Q.; Tan, Z.; Daams, J.; Lok, A.; Olff, M. DHEA and DHEA-S Levels in Posttraumatic Stress Disorder: A Meta-Analytic Review. Psychoneuroendocrinology 2017, 84, 76–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J.; Zhou, Z.; Sang, L.; Zhuang, X.; Chu, M.; Tian, T.; Xiao, J.; Lian, Y. Relationships among Shift Work, Hair Cortisol Concentration and Sleep Disorders: A Cross-Sectional Study in China. BMJ Open 2020, 10, e038786. [Google Scholar] [CrossRef] [PubMed]
- Jewgenow, K.; Azevedo, A.; Albrecht, M.; Kirschbaum, C.; Dehnhard, M. Hair Cortisol Analyses in Different Mammal Species: Choosing the Wrong Assay May Lead to Erroneous Results. Conserv. Physiol. 2020, 8, coaa009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattet, M.; Macbeth, B.J.; Janz, D.M.; Zedrosser, A.; Swenson, J.E.; Dumond, M.; Stenhouse, G.B. Quantifying Long-Term Stress in Brown Bears with the Hair Cortisol Concentration: A Biomarker That May Be Confounded by Rapid Changes in Response to Capture and Handling. Conserv. Physiol. 2014, 2, cou026. [Google Scholar] [CrossRef] [Green Version]
- Groer, M.W.; Kane, B.; Williams, S.N.; Duffy, A. Relationship of PTSD Symptoms With Combat Exposure, Stress, and Inflammation in American Soldiers. Biol. Res. Nurs. 2015, 17, 303–310. [Google Scholar] [CrossRef]
- Steudte-Schmiedgen, S.; Stalder, T.; Schönfeld, S.; Wittchen, H.-U.; Trautmann, S.; Alexander, N.; Miller, R.; Kirschbaum, C. Hair Cortisol Concentrations and Cortisol Stress Reactivity Predict PTSD Symptom Increase after Trauma Exposure during Military Deployment. Psychoneuroendocrinology 2015, 59, 123–133. [Google Scholar] [CrossRef]
- Boesch, M.; Sefidan, S.; Annen, H.; Ehlert, U.; Roos, L.; Van Uum, S.; Russell, E.; Koren, G.; La Marca, R. Hair Cortisol Concentration Is Unaffected by Basic Military Training, but Related to Sociodemographic and Environmental Factors. Stress 2015, 18, 35–41. [Google Scholar] [CrossRef]
- Wester, V.L.; Rossum, E.F.C. van. Clinical Applications of Cortisol Measurements in Hair. Eur. J. Endocrinol. 2015, 173, M1–M10. [Google Scholar] [CrossRef]
- Tucker, J.S.; Gunther, K.M. The Application of a Model of Adaptive Performance to Army Leader Behaviors. Mil. Psychol. 2009, 21, 315–333. [Google Scholar] [CrossRef]
- Driskell, T.; Driskell, J.E.; Salas, E. Mitigating Stress Effects on Team Cohesion. In Team Cohesion: Advances in Psychological Theory, Methods and Practice; Research on Managing Groups and Teams; Emerald Group Publishing Limited: Bingley, UK, 2015; Volume 17, pp. 247–270. [Google Scholar] [CrossRef]
- Bernhard, C.; Sverke, M. Work attitudes, role stress and health indicators among different types of contingent workers in the Swedish health care sector. Res. Pract. Hum. Resour. Manag. 2003, 11, 1–16. [Google Scholar]
- Salo, M. Determinants of Military Adjustment and Attrition during Finnish Conscript Service. Ph.D. Thesis, University of Tampere, Helsinki, Finland, 2008. [Google Scholar]
- Treadwell, T.; Lavertue, N.; Kumar, V.K.; Veeraraghavan, V. The Group Cohesion Scale-Revised: Reliability and validity. Int. J. Action Methods Psychodrama Ski. Train. Role Play. 2001, 54, 3–12. [Google Scholar]
- Bekesiene, S.; Hoskova-Mayerova, S.; Diliunas, P. Structural Equation Modeling Using the Amos and Regression of Effective Organizational Commitment Indicators in Lithuanian Military Forces. In Proceedings of the Aplimat—16th Conference on Applied Mathematics, Bratislava, Slovak, 31 January–2 February 2017; pp. 91–102. [Google Scholar]
- Bekesiene, S.; Hošková-Mayerová, Š.; Diliunas, P. Identification of Effective Leadership Indicators in the Lithuania Army Forces. In Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences; Hošková-Mayerová, Š., Maturo, F., Kacprzyk, J., Eds.; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2017; Volume 104, pp. 107–122. [Google Scholar] [CrossRef]
- Ohlsson, A.; Hedlund, E.; Larsson, G. Examining the relationship between personality, organizational political skill and perceived team performance in a multinational military staff. J. Mil. Stud. 2016, 7, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.P.; George, E.I. The Risk Inflation Criterion for Multiple Regression. Ann. Stat. 1994, 22, 1947–1975. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.L. Regression and Time Series Model Selection in Small Samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Erlbaum: Mahwah, NJ, USA, 2003; pp. 151–190. [Google Scholar]
- LeBreton, J.M.; Tonidandel, S. Multivariate relative importance: Extending relative weight analysis to multivariate criterion spaces. J. Appl. Psychol. 2008, 93, 329–345. [Google Scholar] [CrossRef]
- Ennouri, K.; Ben, A.R.; Triki, M.A.; Ottaviani, E.; Mazzarello, M.; Hertelli, F.; Zouari, N. Multiple linear regression and artificial neural networks for delta-endotoxin and protease yields modelling of Bacillus thuringiensis. 3 Biotech 2017, 7, 187. [Google Scholar] [CrossRef]
- Fradette, K.; Keselman, H.J.; Lix, L.; Algina, J.; Wilcox, R.R. Conventional and Robust Paired and Independent-Samples t Tests: Type I Error and Power Rates. J. Mod. Appl. Stat. Methods 2003, 2, 481–496. [Google Scholar] [CrossRef]
- Abell, J.G.; Stalder, T.; Ferrie, J.E.; Shipley, M.J.; Kirschbaum, C.; Kivimäki, M.; Kumari, M. Assessing Cortisol from Hair Samples in a Large Observational Cohort: The Whitehall II Study. Psychoneuroendocrinology 2016, 73, 148–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoluda, N.; Dettenborn, L.; Stalder, T.; Kirschbaum, C. Elevated Hair Cortisol Concentrations in Endurance Athletes. Psychoneuroendocrinology 2012, 37, 611–617. [Google Scholar] [CrossRef] [PubMed]
- El Mlili, N.; Ahabrach, H.; Cauli, O. Hair Cortisol Concentration as a Biomarker of Sleep Quality and Related Disorders. Life 2021, 11, 81. [Google Scholar] [CrossRef]
- Koumantarou Malisiova, E.; Mourikis, I.; Darviri, C.; Nicolaides, N.C.; Zervas, I.M.; Papageorgiou, C.; Chrousos, G.P. Hair Cortisol Concentrations in Mental Disorders: A Systematic Review. Physiol. Behav. 2021, 229, 113244. [Google Scholar] [CrossRef]
- Dettenborn, L.; Tietze, A.; Bruckner, F.; Kirschbaum, C. Higher Cortisol Content in Hair among Long-Term Unemployed Individuals Compared to Controls. Psychoneuroendocrinology 2010, 35, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Van Uum, S.H.M.; Sauvé, B.; Fraser, L.A.; Morley-Forster, P.; Paul, T.L.; Koren, G. Elevated Content of Cortisol in Hair of Patients with Severe Chronic Pain: A Novel Biomarker for Stress. Stress 2008, 11, 483–488. [Google Scholar] [CrossRef]
- Karlén, J.; Ludvigsson, J.; Frostell, A.; Theodorsson, E.; Faresjö, T. Cortisol in Hair Measured in Young Adults—A Biomarker of Major Life Stressors? BMC Clin. Pathol. 2011, 11, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.K.; Sausen, K.P.; Potterat, E.G.; Mujica-Parodi, L.R.; Reis, J.P.; Markham, A.E.; Padilla, G.A.; Taylor, D.L. Stressful Military Training: Endocrine Reactivity, Performance, and Psychological Impact. Aviat. Space Environ. Med. 2007, 78, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Gifford, R.M.; O’Leary, T.J.; Double, R.L.; Wardle, S.L.; Wilson, K.; Boyle, L.D.; Homer, N.Z.M.; Kirschbaum, C.; Greeves, J.P.; Woods, D.R.; et al. Positive Adaptation of HPA Axis Function in Women during 44 Weeks of Infantry-Based Military Training. Psychoneuroendocrinology 2019, 110, 104432. [Google Scholar] [CrossRef] [PubMed]
- North Atlantic Treating Organization, Science and Technology Organization. Military Suicide Prevention: Report Prepared for NATO Leadership; NATO/STO: Brussels, Belgium, 2018; pp. 77–82. Available online: https://www.sto.nato.int/publications/STO%20Technical%20Reports/Forms/Technical%20Report%20Document%20Set/docsethomepage.aspx?ID=4019&FolderCTID=0x0120D5200078F9E87043356C409A0D30823AFA16F6010066D541ED10A62C40B2AB0FEBE9841A61&List=92d5819c-e6ec-4241-aa4e-57bf918681b1&RootFolder=%2Fpublications%2FSTO%20Technical%20Reports%2FSTO-TR-HFM-218 (accessed on 10 November 2021).
- Lennartsson, A.-K.; Kushnir, M.M.; Bergquist, J.; Jonsdottir, I.H. DHEA and DHEA-S Response to Acute Psychosocial Stress in Healthy Men and Women. Biol. Psychol. 2012, 90, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Li, X.; Zilioli, S.; Chen, Z.; Deng, H.; Pan, J.; Guo, W. Hair Measurements of Cortisol, DHEA, and DHEA to Cortisol Ratio as Biomarkers of Chronic Stress among People Living with HIV in China: Known-Group Validation. PLoS ONE 2017, 12, e0169827. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Merino, D.; Chennaoui, M.; Burnat, P.; Drogou, C.; Guezennec, C.Y. Immune and Hormonal Changes Following Intense Military Training. Mil. Med. 2003, 168, 1034–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsigos, C.; Kyrou, I.; Kassi, E.; Chrousos, G.P. Stress: Endocrine Physiology and Pathophysiology. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- van den Berghe, G. The Neuroendocrine Response to Stress Is a Dynamic Process. Best Pract. Res. Clin. Endocrinol. Metab. 2001, 15, 405–419. [Google Scholar] [CrossRef]
- Michopoulos, V.; Norrholm, S.D.; Jovanovic, T. Diagnostic Biomarkers for Posttraumatic Stress Disorder: Promising Horizons from Translational Neuroscience Research. Biol. Psychiatry 2015, 78, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Reijnen, A.; Geuze, E.; Vermetten, E. The Effect of Deployment to a Combat Zone on Testosterone Levels and the Association with the Development of Posttraumatic Stress Symptoms: A Longitudinal Prospective Dutch Military Cohort Study. Psychoneuroendocrinology 2015, 51, 525–533. [Google Scholar] [CrossRef]
- Elmi, A.; Galligioni, V.; Govoni, N.; Bertocchi, M.; Aniballi, C.; Bacci, M.L.; Sánchez-Morgado, J.M.; Ventrella, D. Quantification of Hair Corticosterone, DHEA and Testosterone as a Potential Tool for Welfare Assessment in Male Laboratory Mice. Animals 2020, 10, 2408. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.; Greaves, R.; Badoer, E.; Walker, D. DHEA in Prenatal and Postnatal Life: Implications for Brain and Behavior. Vitam. Horm. 2018, 108, 145–174. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.E.; Keevil, B.; Huhtaniemi, I.T. Mass Spectrometry and Immunoassay: How to Measure Steroid Hormones Today and Tomorrow. Eur. J. Endocrinol. 2015, 173, D1–D12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Value |
---|---|
Age (years), median (IQR) | 20.32 (1.61) |
Education, n (%) | |
Unfinished secondary | 10 (5.3) |
Secondary | 134 (71.4) |
Vocational school | 29 (17.0) |
Higher education (university or non-university) | 12 (6.4) |
Height (m), mean (SD) | 183.19 (7.07) |
Weight (kg), mean (SD) | 79.79 (11.79) |
Body mass index (kg/m2), median (IQR) | 24.00 (16) |
Waist-to-hip ratio, median (IQR) | 0.84 (1.04) |
Smoking status, n (%) | |
Yes | 78 (42.0) |
Occasionally | 48 (26.0) |
No | 59 (32.0) |
Hair dyeing over last three months, n (%) | |
Yes | 3 (1.6) |
No | 182 (98.4) |
Hair washing frequency, n (%) | |
Once a week or less | 3 (1.2) |
Between 2–4 times a week | 61 (33.1) |
Five times a week and more | 121 (65.7) |
UHPLC-MS/MS System Components (Shimadzu Corporation, Kyoto, Japan) | |
---|---|
Solvent delivery units (binary pumps) LC-30AD Autosampler SIL-30AC Column oven CTO-20AC Triple quadrupole tandem mass spectrometer LCMS-8060 | |
UHPLC column YMC-Triart Bio C4 (3.0 × 100 mm, 1.9 µm) | |
Chromatographic separation conditions | |
Column temperature | 50 °C |
Mobile phase | methanol and water acidified with 0.05% acetic acid (binary gradient) |
Flow rate | 0.4 mL/min |
Injection volume | 10 µL |
Variables 1 | Mean | Dispersion | Distribution | ||||||
---|---|---|---|---|---|---|---|---|---|
Statistic | Std Error | Std Deviation | Min | Max | Skewness | Kurtosis | |||
Statistic | Std Error | Statistic | Std Error | ||||||
CTL | 5.224 | 0.331 | 4.483 | 1.034 | 31.597 | 3.041 | 0.179 | 11.126 | 0.356 |
CTN | 16.847 | 0.554 | 7.518 | 3.233 | 48.204 | 1.818 | 0.179 | 4.008 | 0.356 |
DHEA | 13.860 | 0.851 | 11.541 | 2.912 | 77.368 | 3.203 | 0.179 | 12.182 | 0.356 |
TST | 0.645 | 0.039 | 0.528 | 0.143 | 4.133 | 3.324 | 0.179 | 14.672 | 0.356 |
ADJ | 35.380 | 0.667 | 9.047 | 10 | 49 | −0.719 | 0.179 | 0.112 | 0.356 |
ATM | 28.761 | 0.604 | 8.197 | 6 | 42 | −0.810 | 0.179 | 0.258 | 0.356 |
CTE | 61.935 | 0.958 | 12.995 | 22 | 84 | −0.643 | 0.179 | 0.227 | 0.356 |
CTS | 39.234 | 0.487 | 6.600 | 22 | 52 | −0.541 | 0.179 | −0.211 | 0.356 |
CIN | 31.870 | 0.567 | 7.697 | 8 | 42 | −0.987 | 0.179 | 0.509 | 0.356 |
PSY | 15.891 | 0.603 | 8.174 | 7 | 44 | 1.179 | 0.179 | 1.112 | 0.356 |
CTL | CTN | DHEA | TST | ADJ | ATM | CTE | CTS | CIN | PSY | |
---|---|---|---|---|---|---|---|---|---|---|
CTL | 1.000 | 0.726 ** | 0.388 ** | 0.306 ** | −0.176 * | −0.147 * | −0.108 | −0.117 | −0.123 | 0.103 |
CTN | 0.726 ** | 1.000 | 0.385 ** | 0.339 ** | −0.127 | −0.109 | −0.070 | −0.135 | −0.044 | 0.056 |
DHEA | 0.388 ** | 0.385 ** | 1.000 | 0.382 ** | −0.057 | 0.016 | −0.041 | −0.035 | −0.074 | 0.121 |
TST | 0.306 ** | 0.339 ** | 0.382 ** | 1.000 | 0.029 | −0.089 | −0.109 | −0.230 ** | −0.110 | 0.127 |
ADJ | −0.176 * | −0.127 | −0.057 | 0.029 | 1.000 | 0.480 ** | 0.361 ** | 0.396 ** | 0.445 ** | −0.433 ** |
ATM | −0.147 * | −0.109 | 0.016 | −0.089 | 0.480 ** | 1.000 | 0.540 ** | 0.484 ** | 0.358 ** | −0.502 ** |
CTE | −0.108 | −0.070 | −0.041 | −0.109 | 0.361 ** | 0.540 ** | 1.000 | 0.736 ** | 0.577 ** | −0.604 ** |
CTS | −0.117 | −0.135 | −0.035 | −0.230 ** | 0.396 ** | 0.484 ** | 0.736 ** | 1.000 | 0.516 ** | −0.557 ** |
CIN | −0.123 | −0.044 | −0.074 | −0.110 | 0.445 ** | 0.358 ** | 0.577 ** | 0.516 ** | 1.000 | −0.608 ** |
PSY | 0.103 | 0.056 | 0.121 | 0.127 | −0.433 ** | −0.502 ** | −0.604 ** | −0.557 ** | −0.608 ** | 1.000 |
Source | Sum of Squares | df | Mean Square | F | p | Model Building Steps and Validation by AICC | |||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||||
Model 1: Target = Cortisol | |||||||||
Corrected Model | 1430.698 | 2 | 715.349 | 57.611 | 0.000 | 469.236 | 466.614 | ---- | ---- |
CTN | 951.591 | 1 | 951.591 | 76.637 | 0.000 | √ | √ | ---- | ---- |
DHEA | 58.011 | 1 | 58.011 | 4.672 | 0.032 | √ | ---- | ---- | |
Residuals | 2247.439 | 181 | 12.417 | ||||||
Corrected total | 3678.138 | 183 | |||||||
Model 2: Target = Cortisone | |||||||||
Corrected model | 5324.098 | 4 | 1331.025 | 47.731 | 0.000 | 627.452 | 620.991 | 617.747 | 614.314 |
CTL | 2877.989 | 1 | 2877.989 | 103.207 | 0.000 | √ | √ | √ | √ |
CTS | 158.801 | 1 | 158.801 | 5.695 | 0.008 | ---- | √ | √ | √ |
DHEA | 152.771 | 1 | 152.771 | 5.478 | 0.020 | ---- | ---- | √ | √ |
TST | 95.613 | 1 | 95.613 | 3.429 | 0.066 | ---- | ---- | ---- | √ |
Residuals | 4963.654 | 178 | 27.886 | ||||||
Corrected total | 10,287.752 | 182 | |||||||
Model 3: Target = DHEA | |||||||||
Corrected model | 4395.288 | 4 | 1098.822 | 9.833 | 0.000 | 877.001 | 872.618 | 869.959 | 868.334 |
PSY | 1189.803 | 1 | 1189.803 | 10.648 | 0.001 | √ | √ | √ | √ |
ATM | 537.447 | 1 | 537.447 | 4.810 | 0.030 | ---- | √ | √ | √ |
CTN | 459.050 | 1 | 59.050 | 4.108 | 0.044 | ---- | ---- | √ | √ |
CTL | 410.647 | 1 | 410.647 | 3.675 | 0.057 | ---- | ---- | ---- | √ |
Residuals | 19,890.228 | 178 | 111.743 | ||||||
Corrected total | 24,285.516 | 182 | |||||||
Model 4: target = testosterone | |||||||||
Corrected model | 5.780 | 3 | 1.927 | 7.659 | 0.000 | −244.354 | −246.036 | −248.350 | ---- |
CTN | 2.879 | 1 | 2.879 | 11.441 | 0.001 | √ | √ | √ | ---- |
CTS | 1.757 | 1 | 1.757 | 6.985 | 0.009 | ---- | √ | √ | ---- |
ADJ | 1.097 | 1 | 1.097 | 4.360 | 0.038 | ---- | ---- | √ | ---- |
Residuals | 45.035 | 179 | 0.252 | ||||||
Corrected total | 50.815 | 182 |
Model Name 1 | Coefficient β | Std Error β | t | p | Confidence Interval 95% | Importance | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Model 1: Target = Cortisol | |||||||
Intercept | −2.068 | 0.737 | −2.805 | 0.006 | −3.523 | −0.613 | |
CTN | 0.369 | 0.042 | 8.754 | 0.000 | 0.286 | 0.452 | 0.943 |
DHEA | 0.093 | 0.043 | 2.161 | 0.032 | 0.008 | 0.178 | 0.057 |
Model 2: Target = Cortisone | |||||||
Intercept | 12.285 | 2.828 | 4.344 | 0.000 | 6.704 | 17.866 | |
CTL | 1.455 | 0.143 | 10.159 | 0.000 | 1.173 | 1.738 | 0.806 |
CTS | −0.347 | 0.062 | −2.863 | 0.008 | −0.269 | −0.005 | 0.048 |
DHEA | 0.154 | 0.066 | 2.341 | 0.020 | 0.024 | 0.283 | 0.047 |
TST | 2.350 | 1.269 | 1.852 | 0.066 | −0.154 | 4.855 | 0.029 |
Model 3: Target = DHEA | |||||||
Intercept | −7.203 | 4.608 | −1.563 | 0.120 | −16.296 | 1.890 | |
PSY | 1.368 | 0.113 | 9.263 | 0.001 | 0.145 | 0.590 | 0.458 |
ATM | 0.233 | 0.106 | 2.193 | 0.030 | 0.023 | 0.443 | 0.207 |
CTN | 0.321 | 0.159 | 2.027 | 0.044 | 0.008 | 0.634 | 0.177 |
CTL | 0.672 | 0.350 | 1.917 | 0.057 | −0.020 | 1.363 | 0.158 |
Model 4: Target = Testosterone | |||||||
Intercept | 0.643 | 0.276 | 2.328 | 0.021 | 0.098 | 1.188 | |
CTN | 0.190 | 0.006 | 3.382 | 0.001 | 0.108 | 0.230 | 0.502 |
CTS | −0.107 | 0.006 | −2.643 | 0.009 | −0.129 | −0.004 | 0.307 |
ADJ | 0.100 | 0.005 | 2.088 | 0.038 | 0.091 | 0.209 | 0.191 |
Pair | Paired Differences | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Std Error Mean | CI 95% | t-test | ||||
Lower | Upper | t | df | p | ||||
Pair 1 | 0.129 | 2.233 | 0.165 | −0.196 | 0.454 | 0.785 | 183 | 0.434 |
Pair 2 | −0.038 | 2.852 | 0.210 | −0.453 | 0.377 | −0.182 | 182 | 0.856 |
Pair 3 | 0.137 | 7.854 | 0.581 | −1.009 | 1.282 | 0.235 | 182 | 0.814 |
Pair 4 | 0.030 | 0.323 | 0.024 | −0.017 | 0.077 | 1.274 | 182 | 0.204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mažeikienė, A.; Bekesiene, S.; Karčiauskaitė, D.; Mazgelytė, E.; Larsson, G.; Petrėnas, T.; Kaminskas, A.; Songailienė, J.; Utkus, A.; Vaičaitienė, R.; et al. The Association between Endogenous Hair Steroid Hormones and Social Environmental Factors in a Group of Conscripts during Basic Military Training. Int. J. Environ. Res. Public Health 2021, 18, 12239. https://doi.org/10.3390/ijerph182212239
Mažeikienė A, Bekesiene S, Karčiauskaitė D, Mazgelytė E, Larsson G, Petrėnas T, Kaminskas A, Songailienė J, Utkus A, Vaičaitienė R, et al. The Association between Endogenous Hair Steroid Hormones and Social Environmental Factors in a Group of Conscripts during Basic Military Training. International Journal of Environmental Research and Public Health. 2021; 18(22):12239. https://doi.org/10.3390/ijerph182212239
Chicago/Turabian StyleMažeikienė, Asta, Svajone Bekesiene, Dovilė Karčiauskaitė, Eglė Mazgelytė, Gerry Larsson, Tomas Petrėnas, Andrius Kaminskas, Jurgita Songailienė, Algirdas Utkus, Ramutė Vaičaitienė, and et al. 2021. "The Association between Endogenous Hair Steroid Hormones and Social Environmental Factors in a Group of Conscripts during Basic Military Training" International Journal of Environmental Research and Public Health 18, no. 22: 12239. https://doi.org/10.3390/ijerph182212239
APA StyleMažeikienė, A., Bekesiene, S., Karčiauskaitė, D., Mazgelytė, E., Larsson, G., Petrėnas, T., Kaminskas, A., Songailienė, J., Utkus, A., Vaičaitienė, R., & Smaliukienė, R. (2021). The Association between Endogenous Hair Steroid Hormones and Social Environmental Factors in a Group of Conscripts during Basic Military Training. International Journal of Environmental Research and Public Health, 18(22), 12239. https://doi.org/10.3390/ijerph182212239