The Construction of Ecological Security Patterns in Coastal Areas Based on Landscape Ecological Risk Assessment—A Case Study of Jiaodong Peninsula, China
Abstract
:1. Introduction
2. Study Area and Data Source
3. Method
3.1. Construction of Landscape Ecological Risk Assessment Index System
3.2. Landscape Ecological Risk Assessment
3.3. Identification of Ecological Source
3.4. Ecological Corridor Construction
4. Results
4.1. Landscape Ecological Risk Assessment
4.2. Spatial Distribution of Landscape Ecological Risk
4.3. The Construction of an Ecological Security Pattern for the Jiaodong Peninsula
4.3.1. Establishment of Ecological Sources
4.3.2. Construction of Ecological Corridors
5. Discussion
5.1. Suggestions for Landscape Pattern Optimization in the Jiaodong Peninsula
5.2. The Advantages and Uncertainty of the Methods
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hansen, M.H.; Li, H.; Svarverud, R. Ecological civilization: Interpreting the Chinese past, projecting the global future. Glob. Environ. Change 2018, 53, 195–203. [Google Scholar] [CrossRef]
- Ju, H.; Niu, C.; Zhang, S.; Jiang, W.; Zhang, Z.; Zhang, X.; Yang, Z.; Cui, Y. Spatiotemporal patterns and modifiable areal unit problems of the landscape ecological risk in coastal areas: A case study of the Shandong Peninsula, China. J. Clean. Prod. 2021, 310, 127522. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarria, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling regional sustainable development scenarios using the Urbanization and Eco-environment Coupler: Case study of Beijing-Tianjin-Hebei urban agglomeration, China. Sci. Total. Environ. 2019, 689, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Peng, J.; Liu, Y.; Hu, Y. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Yao, L.; Li, X.; Li, Q.; Wang, J. Temporal and spatial changes in coupling and coordinating degree of new urbanization and ecologi-cal-environmental stress in China. Sustainability 2019, 11, 1171. [Google Scholar] [CrossRef] [Green Version]
- De León, L.F.; Sharpe, D.M.; Gotanda, K.M.; Raeymaekers, J.A.; Chaves, J.A.; Hendry, A.P.; Podos, J. Urbanization erodes niche segregation in Darwin’s finches. Evol. Appl. 2018, 12, 1329–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, D.E.; Canning, D.; Fink, G. Urbanization and the wealth of nations. Science 2008, 319, 772–775. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Pu, L.; Zhu, M.; Li, J.; Chen, X.; Wang, X.; Xie, X. Ecological security and ecosystem services in response to land use change in the coastal area of Jiangsu, China. Sustainability 2016, 8, 816. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat. Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Li, Z.T.; Li, M.; Xia, B.C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglo-meration based on LUCC simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 10–16. [Google Scholar] [CrossRef]
- Leon, L.F.; Soulis, E.D.; Kouwen, N.; Farquhar, G.J. Nonpoint source pollution: A distributed water quality modeling approach. Water Res. 2001, 35, 997–1007. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.; Song, B.; Wang, R. Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China. Ecol. Modell. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Li, M.J.; Jia, F.; Gang, X. Proximity Expansion Index: An improved approach to characterize evolution process of urban expansion. Comput. Environ. Urban Syst. 2018, 70, 102–112. [Google Scholar]
- Li, S.; Xiao, W.; Zhao, Y.; Lv, X. Incorporating ecological risk index in the multi-process MCRE model to optimize the ecological security pattern in a semi-arid area with intensive coal mining: A case study in northern China. J. Clean. Prod. 2020, 247, 119143. [Google Scholar] [CrossRef]
- Suter II, G.W.; Norton, S.B.; Barnthouse, L.W. The evolution of frameworks for ecological risk assessment from the Red Book ancestor. Hum. Ecol. Risk Assess 2003, 9, 1349–1360. [Google Scholar] [CrossRef]
- Peng, J.; Dang, W.; Liu, Y.; Zong, M.; Hu, X. Review on landscape ecological risk assessment. Acta Geogr. Sin. 2015, 70, 664–677. [Google Scholar]
- Dale, V.H.; Kline, K.L. Issues in using landscape indicators to assess land changes. Ecol. Indicat. 2013, 28, 91–99. [Google Scholar] [CrossRef]
- Yu, G.; Feng, J.; Che, Y.; Lin, X.; Hu, L.; Yang, S. The identification and assessment of ecological risks for land consolidation based on the anticipation of ecosystem stabilization: A case study in Hubei Province, China. Land Use Policy 2010, 27, 293–303. [Google Scholar] [CrossRef]
- Zhang, X.; Du, H.; Wang, Y.; Chen, Y.; Ma, L.; Dong, T. Watershed landscape ecological risk assessment and landscape pattern optimization: Take Fujiang River Basin as an example. Hum. Ecol. Risk Assess 2021, 27, 1–23. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Zhang, Y.; O’Connor, P.J.; Zhang, L.; Yan, J. Landscape Ecological Risk Assessment under Multiple Indicators. Land 2021, 10, 739. [Google Scholar] [CrossRef]
- Verburg, P.H.; de Nijs, T.C.; van Eck, J.R.; Visser, H.; de Jong, K. A method to analyse neighbourhood characteristics of land use patterns. Comput. Environ. Urban Syst. 2004, 28, 667–690. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Li, X.; Wu, B.; Wang, H.; Zhang, J. Regional soil erosion risk assessment in Hai Basin. J. Remote Sens. 2011, 15, 372–387. [Google Scholar]
- Goh, K.M. Carbon sequestration and stabilization in soils: Implications for soil productivity and climate change. Soil Sci. Plant Nutr. 2004, 50, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Fu, B.; Zhao, W. Source-sink landscape theory and its ecological significance. Front. Biol. China 2008, 3, 131–136. [Google Scholar] [CrossRef]
- Wei, S.; Pan, J.; Liu, X. Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: Take Ganzhou District as an example. Hum. Ecol. Risk Assess 2020, 26, 782–806. [Google Scholar] [CrossRef]
- Yan, Y.; Ju, H.; Zhang, S.; Jiang, W. Spatiotemporal patterns and driving forces of urban expansion in coastal areas: A study on urban agglomeration in the pearl river delta, china. Sustainability 2020, 12, 191. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Zhang, Z.; Zhao, X.; Wang, X.; Wu, W.; Yi, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S.; et al. The changing patterns of cropland conversion to built-up land in China from 1987 to 2010. J. Geogr. Sci. 2018, 28, 1595–1610. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; Volume 351. [Google Scholar]
- Beier, P.; Noss, R.F. Do habitat corridors provide connectivity? Conserv. Biol. 1998, 12, 1241–1252. [Google Scholar] [CrossRef]
- Gilbert-Norton, L.Y.N.N.E.; Wilson, R.; Stevens, J.R.; Beard, K.H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 2010, 24, 660–668. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, H.; Xie, G. Ecological functions and their values in Chinese cropland ecosystem. China Popul. Resour. Environ. 2007, 17, 55–60. [Google Scholar]
- Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Kong, F.; Wu, J. Multi-Scenario Simulation of Landscape Ecological Risk Probability to Facilitate Different Decision-Making Preferences. J. Clean. Prod. 2019, 227, 325–335. [Google Scholar] [CrossRef]
- Morandi, D.T.; de Jesus França, L.C.; Menezes, E.S.; Machado, E.L.M.; da Silva, M.D.; Mucida, D.P. Delimitation of Ecological Corridors between Conservation Units in the Brazilian Cerrado Using a GIS and AHP Approach. Ecol. Indic. 2020, 115, 106440. [Google Scholar] [CrossRef]
- Rahman, M.R.; Shi, Z.H.; Chongfa, C.; Dun, Z. Assessing soil erosion hazard—A raster based GIS approach with spatial principal component analysis (SPCA). Earth Sci. Inform. 2015, 8, 853–865. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, H.T.; Lu, X.G.; Zhu, B.G. Theory, mode and practice for the design of wetland ecological corridor: A case of Nongjiang River wetland ecological corridor, the Sanjiang Plain. Wetland Sci. 2009, 7, 99–105. [Google Scholar]
- Beaugeard, E.; Brischoux, F.; Angelier, F. Green infrastructures and ecological corridors shape avian biodiversity in a small French city. Urban Ecosyst. 2021, 24, 549–560. [Google Scholar] [CrossRef]
- Shi, H.; Shi, T.; Yang, Z.; Wang, Z.; Han, F.; Wang, C. Effect of roads on ecological corridors used for wildlife movement in a natural heritage site. Sustainability 2018, 10, 2725. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.M.; Ma, Y.F.; Wang, J.L.; You, X.Y. Landscape pattern analysis and ecological network planning of Tianjin City. Urban For. Urban Green 2019, 46, 126479. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, X.; Zhu, X.; Zhang, B. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China. Glob. Ecol. Conserv. 2021, 26, e01472. [Google Scholar] [CrossRef]
- Landis, W.G.; Durda, J.L.; Brooks, M.L.; Chapman, P.M.; Menzie, C.A.; Stahl, R.G., Jr.; Stauber, J.L. Ecological risk assessment in the context of global climate change. Environ. Toxicol. Chem. 2013, 32, 79–92. [Google Scholar] [CrossRef]
- Hela, D.G.; Lambropoulou, D.A.; Konstantinou, I.K.; Albanis, T.A. Environmental monitoring and ecological risk assessment for pesticide contamination and effects in Lake Pamvotis, northwestern Greece. Environ. Toxicol. Chem. 2005, 24, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Kuschnig, N.; Cuaresma, J.C.; Krisztin, T.; Giljum, S. Spatial spillover effects from agriculture drive deforestation in Mato Grosso. Sci. Rep. 2021, 11, 21804. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.C.; Liang, C. Spatial spillover effect of urban landscape views on property price. Appl. Geogr. 2016, 72, 26–35. [Google Scholar] [CrossRef]
Evaluation Aspects | Evaluation Factors (Abbrevations and Units) | Landscape Ecological Risk Degree Assignment | Classification Methods | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Natural factors | Slope (SLP, °) | 0–2 | 2–5 | 5–10 | 10–17 | 17–43 | Natural breaks |
Elevation (ELV, m) | −124–52 | 52–119 | 119–214 | 214–387 | 387–1083 | Natural breaks | |
Organic Carbon (OC, %) | 0–0.43 | 0.44–0.65 | 0.66–0.87 | 0.88–1.17 | 1.18–2.13 | Natural breaks | |
Neighborhood factors | Distance from water bodies (DW, m) | 0–949 | 949–2062 | 2062–3680 | 3680–6414 | 6414–19,523 | Natural breaks |
Distance from green spaces (DG, m) | 0–1005 | 1005–2631 | 2631–4982 | 4982–8305 | 8305–16,252 | Natural breaks | |
Distance from rural settlements (DR. m) | 7892–22,854 | 3650–7892 | 1628–3650 | 640–1628 | 0–640 | Natural breaks | |
Distance from industrial/transportation (DIT, m) | 17,923–44,605 | 6604–17,923 | 3864–6604 | 1844–3864 | 0–1844 | Natural breaks | |
Distance from urban areas (DU, m) | 22,108–48,383 | 15,647–22,108 | 10,066–15,647 | 4549–10,066 | 0–4549 | Natural breaks | |
Landscape pattern factors | Shannon’s Evenness Index (SHEI) | 0.8–1 | 0.6–0.8 | 0.4–0.6 | 0.2–0.4 | 0–0.2 | Equal interval method |
Contagion Index (CONTAG, %) | 80–99 | 60–80 | 40–60 | 20–40 | 0–20 | Equal interval method |
Principal Component | Eigenvalues | Contribution Rate | Cumulative Contribution Rate (%) |
---|---|---|---|
1 | 0.86419 | 22.6866 | 22.6866 |
2 | 0.67871 | 17.8174 | 40.5040 |
3 | 0.53919 | 14.1547 | 54.6587 |
4 | 0.47725 | 12.5288 | 67.1875 |
5 | 0.32653 | 8.5722 | 75.7596 |
6 | 0.26935 | 7.0711 | 82.8307 |
7 | 0.23200 | 6.0903 | 88.9210 |
8 | 0.19701 | 5.1720 | 94.0930 |
9 | 0.12558 | 3.2967 | 97.3897 |
10 | 0.09943 | 2.6103 | 100 |
Evaluation Dimensions | Evaluation Index | The Principal Components | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Natural factors | SLP | −0.4187 | −0.3604 | 0.0188 | 0.1792 | 0.0074 |
ELV | −0.3557 | −0.3932 | −0.0367 | 0.1129 | 0.0505 | |
OC | 0.1802 | 0.2661 | 0.1652 | −0.2396 | 0.5843 | |
Neighborhood factors | DW | 0.1494 | 0.0377 | −0.0909 | 0.4158 | −0.5115 |
DG | 0.4440 | 0.2828 | −0.1300 | 0.2310 | −0.2331 | |
DR | 0.0281 | 0.0625 | −0.0758 | −0.3358 | −0.2627 | |
DIT | −0.0220 | 0.1787 | 0.1682 | −0.1406 | −0.0430 | |
DU | −0.1827 | 0.2210 | 0.8927 | 0.1888 | −0.1852 | |
Landscape pattern factors | SHEI | 0.6073 | −0.5703 | 0.2666 | 0.2792 | 0.2534 |
CONTAG | −0.2070 | 0.3916 | −0.2095 | 0.6522 | 0.4132 |
Ecological Risk | Area (km2) | Percentage of the Area (%) |
---|---|---|
Low landscape ecological risk | 4048.71 | 13.54 |
Low-mid landscape ecological risk | 6776.17 | 22.66 |
Mid landscape ecological risk | 8089.28 | 27.05 |
Mid-high landscape ecological risk | 6679.82 | 22.34 |
High landscape ecological risk | 4312.34 | 14.42 |
Ecological Source Types | Number | Area (km2) | Proportion of the Ecological Source Area (%) |
---|---|---|---|
Low landscape ecological risk areas | 4 | 1214.35 | 40.75 |
Water sources | 7 | 330.51 | 11.09 |
Green space sources | 10 | 1435.32 | 48.16 |
Number | Corridor Length (km) | Corridor Type |
---|---|---|
1 | 84.934 | water ecological corridor |
2 | 66.457 | water ecological corridor |
3 | 65.222 | water ecological corridor |
4 | 59.698 | water ecological corridor |
5 | 55.980 | green space ecological corridor |
6 | 52.601 | green space ecological corridor |
7 | 44.717 | green space ecological corridor |
8 | 36.970 | green space ecological corridor |
9 | 35.997 | road ecological corridor |
10 | 31.832 | green space ecological corridor |
11 | 21.596 | green space ecological corridor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Ju, H.; Zhang, S.; Chen, G. The Construction of Ecological Security Patterns in Coastal Areas Based on Landscape Ecological Risk Assessment—A Case Study of Jiaodong Peninsula, China. Int. J. Environ. Res. Public Health 2021, 18, 12249. https://doi.org/10.3390/ijerph182212249
Yan Y, Ju H, Zhang S, Chen G. The Construction of Ecological Security Patterns in Coastal Areas Based on Landscape Ecological Risk Assessment—A Case Study of Jiaodong Peninsula, China. International Journal of Environmental Research and Public Health. 2021; 18(22):12249. https://doi.org/10.3390/ijerph182212249
Chicago/Turabian StyleYan, Yichen, Hongrun Ju, Shengrui Zhang, and Guokun Chen. 2021. "The Construction of Ecological Security Patterns in Coastal Areas Based on Landscape Ecological Risk Assessment—A Case Study of Jiaodong Peninsula, China" International Journal of Environmental Research and Public Health 18, no. 22: 12249. https://doi.org/10.3390/ijerph182212249
APA StyleYan, Y., Ju, H., Zhang, S., & Chen, G. (2021). The Construction of Ecological Security Patterns in Coastal Areas Based on Landscape Ecological Risk Assessment—A Case Study of Jiaodong Peninsula, China. International Journal of Environmental Research and Public Health, 18(22), 12249. https://doi.org/10.3390/ijerph182212249