Subjective Experience of Speech Depending on the Acoustic Treatment in an Ordinary Room
Abstract
:1. Introduction
Study Objective
2. Materials and Methods
2.1. Acoustic Materials
2.2. Mock-Up and Configurations
2.3. Room Acoustic Measurements
2.4. Sound Sampling and Listening Test Design
3. Results
3.1. Room Acoustic Parameters
3.2. Listening Test
3.2.1. Jury Members
3.2.2. Sound Quality
- A.
- Satisfactory: sound quality level 8–10.
- B.
- Acceptable: sound quality level 5–7.
- C.
- Unsatisfactory: sound quality level 1–4.
3.2.3. Attributes
3.2.4. Ranking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szalma, J.L.; Hancock, P.A. Noise effects on human performance. Psychol. Bull. 2011, 137, 682–707. [Google Scholar] [CrossRef] [PubMed]
- Kjellberg, A.; Ljung, R.; Hallman, D. Recall of words heard in noise. Appl. Cogn. Psychol. 2008, 22, 1088–1098. [Google Scholar] [CrossRef]
- Ljung, R.; Kjellberg, A. Long reverberation time decreases recall of spoken information. Build. Acoust. 2009, 16, 301–311. [Google Scholar] [CrossRef]
- Ljung, R.; Israelsson, K.; Hygge, S. Speech intelligibility and recall of spoken material heard at different signal-to-noise ratios and the role played by working memory capacity. Appl. Cogn. Psychol. 2013, 27, 198–203. [Google Scholar] [CrossRef]
- Hygge, S. Classroom noise and its effect on learning. In Proceedings of the 11th International Congress on Noise as a Public Health Problem (ICBEN), Nara, Japan, 1–5 June 2014. [Google Scholar]
- Lam, Y.W. A comparison of three diffuse reflection modeling methods used in room acoustics computer models. J. Acoust. Soc. Am. 1996, 100, 2181–2192. [Google Scholar] [CrossRef]
- Astolfi, A.; Puglisi, G.E.; Murgia, S.; Minelli, G.; Pellerey, F.; Prato, A.; Sacco, T. Influence of classroom acoustics on noise disturbance and well-being for first graders. Front. Psychol. 2019, 10, 2736. [Google Scholar] [CrossRef] [Green Version]
- Lochner, J.P.A.; Burger, J.F. The influence of reflections on auditorium acoustics. J. Sound Vib. 1964, 1, 426–454. [Google Scholar] [CrossRef]
- Bradley, J.S.; Sato, H.; Picard, M. On the importance of early reflections for speech in rooms. J. Acoust. Soc. Am. 2003, 113, 3233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.S.; Reich, R.D.; Norcross, S.G. On the combined effects of signal-to-noise ratio and room acoustics on speech intelligibility. J. Acoust. Soc. Am. 1999, 106, 1820–1828. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Bradley, J. Effects of room acoustics on the intelligibility of speech in classrooms for young children. J. Acoust. Soc. Am. 2009, 125, 922–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, H.; Bradley, J.S.; Morimoto, M. Using listening difficulty ratings of conditions for speech communication in rooms. J. Acoust. Soc. Am. 2005, 117, 1157–1167. [Google Scholar] [CrossRef]
- Puglisi, G.E.; Prato, A.; Sacco, T.; Astolfi, A. Influence of classroom acoustics on the reading speed: A case study on Italian second-graders. J. Acoust. Soc. Am. 2018, 144, EL144–EL149. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 3382-1:2009. Acoustics–Measurement of Room Acoustic Parameters–Part 1: Performance Spaces; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Barron, M.; Lee, L. Energy relations in concert auditoriums. I. J. Acoust. Soc. Am. 1988, 84, 618–628. [Google Scholar] [CrossRef]
- Barron, M. Theory and measurement of early, late and total sound levels in rooms. J. Acoust. Soc. Am. 2015, 137, 3087–3098. [Google Scholar] [CrossRef]
- Beranek, L. The sound strength parameter G and its importance in evaluating and planning the acoustics of halls for music. J. Acoust. Soc. Am. 2011, 129, 3020–3026. [Google Scholar] [CrossRef]
- Sato, H.; Bradley, J. Evaluation of acoustical conditions for speech communication in working elementary school classrooms. J. Acoust. Soc. Am. 2008, 123, 2064–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNI 11532-2. Internal Acoustical Characteristics of Confined Spaces–Design Methods and Evaluation Techniques–Part 2 Educational Sector; UNI: Norma, Italy, 2020. [Google Scholar]
- International Organization for Standardization. ISO 3382-3:2012 Acoustics–Measurement of Room Acoustic Parameters–Part 3: Open Plan Offices; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- International Organization for Standardization. ISO 22955:2021 Acoustics—Acoustic Quality of Open Office Spaces; ISO: Geneva, Switzerland, 2021. [Google Scholar]
- Choi, Y. Effects of periodic type diffusers on classroom acoustics. Appl. Acoust. 2013, 74, 694–707. [Google Scholar] [CrossRef]
- Choi, Y. An optimum combination of absorptive and diffusing treatments for classroom acoustic design. Build. Acoust. 2014, 21, 175–179. [Google Scholar] [CrossRef]
- Choi, Y. The application of diffusers for classroom acoustical design. Noise Vib. Worldw. 2014, 45, 8–16. [Google Scholar] [CrossRef]
- Labia, L.; Shtrepi, L.; Astolfi, A. Improved room acoustics quality in meeting rooms: Investigation on the optimal configurations of sound-absorptive and sound-diffusive panels. Acoustics 2020, 2, 451–473. [Google Scholar] [CrossRef]
- Arvidsson, E.; Nilsson, E.; Bard Hagberg, D.; Karlsson, O.J.I. The effect on room acoustical parameters using a combination of absorbers and diffusers—An experimental study in a classroom. Acoustics 2020, 2, 505–523. [Google Scholar] [CrossRef]
- Cucharero, J.; Hänninen, T.; Lokki, T. Influence of sound-absorbing material placement on room acoustical parameters. Acoustics 2019, 1, 644–660. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; Iannace, G.; Trematerra, A. Acoustic treatments aiming to achieve the Italian minimum environmental criteria (cam) standards in large reverberant. Can. Acoust. 2019, 47, 73–80. [Google Scholar]
- Azad, H.; Meyer, J.; Siebein, G.; Lokki, T. The effects of adding pyramidal and convex diffusers on room acoustic parameters in a small non-diffuse room. Acoustics 2019, 1, 618–643. [Google Scholar] [CrossRef] [Green Version]
- Shtrepi, L.; Di Blasio, S.; Astolfi, A. Listeners sensitivity to different locations of diffusive surfaces in performance spaces: The case of a shoebox concert hall. Appl. Sci. 2020, 10, 4370. [Google Scholar] [CrossRef]
- DIN. DIN 18041:2016-3 Acoustic Quality in Rooms–Specifications and Instructions for the Room Acoustic Design; DIN Deutsches Institut für Normung e. V.: Berlin, Germany, 2016. [Google Scholar]
- Visentin, C.; Pellegatti, M.; Prodi, N. Effect of a single lateral diffuse reflection on spatial percepts and speech intelligibility. J. Acoust. Soc. Am. 2020, 148, 122–140. [Google Scholar] [CrossRef]
- Visentin, C.; Prodi, N.; Cappelletti, F.; Torresin, S.; Gasparella, A. Using listening effort assessment in the acoustical design of rooms for speech. Build. Environ. 2018, 136, 38–53. [Google Scholar] [CrossRef]
- Sanavi, A.; Schäffer, B.; Heutschi, K.; Eggenschwiler, K. On the effect of an acoustic diffuser in comparison with an absorber on the subjectively perceived quality of speech in a meeting room. Acta Acust. United Acust. 2017, 103, 1037–1049. [Google Scholar] [CrossRef]
- Arvidsson, E.; Nilsson, E.; Bard Hagberg, D.; Karlsson, O.J.I. The difference in subjective experience related to acoustic treatments in an ordinary public room: A case study. Acoustics 2021, 3, 442–461. [Google Scholar] [CrossRef]
- Bradley, J.S.; Reich, R.; Norcross, S.G. A just noticeable difference in C50 for speech. Appl. Acoust. 1999, 58, 99–108. [Google Scholar] [CrossRef]
- Bradley, J.S. Review of objective room acoustics measures and future needs. Appl. Acoust. 2011, 72, 713–720. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 9053-2:2020 Acoustics—Determination of Airflow Resistance—Part 2: Alternating Airflow Method; ISO: Geneva, Switzerland, 2020. [Google Scholar]
- International Organization for Standardization. ISO 354:2003: Acoustics. Measurement of Sound Absorption in a Reverberation Room; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- International Organization for Standardization. ISO 11654:1997 Acoustics—Sound Absorbers for Use in Buildings—Rating of Sound Absorption; ISO: Geneva, Switzerland, 1997. [Google Scholar]
- International Organization for Standardization. ISO 3382-2:2008 Acoustics–Measurements of Room Acoustic Parameters–Part 2: Reverberation Time in Ordinary Rooms; ISO: Geneva, Switzerland, 2008. [Google Scholar]
Variable | N | Mean | St. Dev | Variance | Minimum | Q1 | Median | Q3 |
---|---|---|---|---|---|---|---|---|
Conf. 1_R2 | 29 | 7 | 2.0 | 3.8 | 3 | 7 | 8 | 9 |
Conf. 1_R4 | 29 | 6 | 1.9 | 3.8 | 2 | 4 | 6 | 7 |
Conf. 1_R5 | 29 | 5 | 1.6 | 2.5 | 2 | 4 | 4 | 6 |
Conf. 2_R2 | 29 | 9 | 0.8 | 0.7 | 7 | 9 | 9 | 10 |
Conf. 2_R4 | 29 | 7 | 1.7 | 2.7 | 3 | 7 | 7 | 8 |
Conf. 2_R5 | 29 | 7 | 1.6 | 2.5 | 4 | 5 | 7 | 8 |
Conf. 3_R2 | 29 | 9 | 0.9 | 0.8 | 7 | 8 | 9 | 9 |
Conf. 3_R4 | 29 | 6 | 1.9 | 3.7 | 2 | 4 | 6 | 7 |
Conf. 3_R5 | 29 | 6 | 1.7 | 2.8 | 3 | 4 | 6 | 7 |
Room Acoustic Parameter | Frequency (Hz) | Pearson Correlation Sound Quality—Room Acoustic Parameter 95% CI | |
---|---|---|---|
Quality (r) | p | ||
T20 | 125 | −0.015 | 0.969 |
T20 | 250 | −0.334 | 0.380 |
T20 | 500 | −0.664 | 0.051 |
T20 | 1000 | −0.588 | 0.096 |
T20 | 2000 | −0.543 | 0.131 |
T20 | 4000 | −0.583 | 0.099 |
C50 | 125 | 0.527 | 0.145 |
C50 | 250 | 0.546 | 0.129 |
C50 | 500 | 0.492 | 0.179 |
C50 | 1000 | 0.824 | 0.006 |
C50 | 2000 | 0.921 | 0.000 |
C50 | 4000 | 0.817 | 0.007 |
G | 125 | 0.258 | 0.503 |
G | 250 | −0.524 | 0.148 |
G | 500 | −0.072 | 0.853 |
G | 1000 | 0.158 | 0.685 |
G | 2000 | 0.299 | 0.434 |
G | 4000 | 0.336 | 0.377 |
Room Acoustic Parameter | Frequency (Hz) | Pearson Correlation Attributes—Room Acoustic Parameter 95% CI | |
---|---|---|---|
Quality (r) | p | ||
T20 | 125 | −0.325 | 0.393 |
T20 | 250 | −0.509 | 0.162 |
T20 | 500 | −0.877 | 0.002 |
T20 | 1000 | −0.915 | 0.001 |
T20 | 2000 | −0.907 | 0.001 |
T20 | 4000 | −0.889 | 0.001 |
C50 | 125 | 0.247 | 0.522 |
C50 | 250 | 0.169 | 0.663 |
C50 | 500 | 0.543 | 0.131 |
C50 | 1000 | 0.810 | 0.008 |
C50 | 2000 | 0.708 | 0.033 |
C50 | 4000 | 0.767 | 0.016 |
G | 125 | 0.373 | 0.322 |
G | 250 | 0.659 | 0.054 |
G | 500 | −0.394 | 0.295 |
G | 1000 | 0.040 | 0.918 |
G | 2000 | 0.088 | 0.823 |
G | 4000 | 0.074 | 0.850 |
Conf. 1_R2 | Conf. 2_R2 | Conf. 3_R2 | Conf. 1_R4 | Conf. 2_R4 | Conf. 3_R4 | Conf. 1_R5 | Conf. 2_R5 | Conf. 3_R5 | |
---|---|---|---|---|---|---|---|---|---|
Average | 2.86 | 1.17 | 1.97 | 2.72 | 1.45 | 1.83 | 2.86 | 1.10 | 2.03 |
Standard deviation | 0.34 | 0.46 | 0.49 | 0.52 | 0.72 | 0.59 | 0.51 | 0.40 | 0.18 |
Confidence (0.95) | 0.13 | 0.17 | 0.18 | 0.19 | 0.26 | 0.22 | 0.18 | 0.15 | 0.07 |
Lower Quartile | 3.00 | 1.00 | 2.00 | 3.00 | 1.00 | 1.00 | 3.00 | 1.00 | 2.00 |
Median | 3.00 | 1.00 | 2.00 | 3.00 | 1.00 | 2.00 | 3.00 | 1.00 | 2.00 |
Upper Quartile | 3.00 | 1.00 | 2.00 | 3.00 | 2.00 | 2.00 | 3.00 | 1.00 | 2.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arvidsson, E.; Nilsson, E.; Bard-Hagberg, D.; Karlsson, O.J.I. Subjective Experience of Speech Depending on the Acoustic Treatment in an Ordinary Room. Int. J. Environ. Res. Public Health 2021, 18, 12274. https://doi.org/10.3390/ijerph182312274
Arvidsson E, Nilsson E, Bard-Hagberg D, Karlsson OJI. Subjective Experience of Speech Depending on the Acoustic Treatment in an Ordinary Room. International Journal of Environmental Research and Public Health. 2021; 18(23):12274. https://doi.org/10.3390/ijerph182312274
Chicago/Turabian StyleArvidsson, Emma, Erling Nilsson, Delphine Bard-Hagberg, and Ola J. I. Karlsson. 2021. "Subjective Experience of Speech Depending on the Acoustic Treatment in an Ordinary Room" International Journal of Environmental Research and Public Health 18, no. 23: 12274. https://doi.org/10.3390/ijerph182312274
APA StyleArvidsson, E., Nilsson, E., Bard-Hagberg, D., & Karlsson, O. J. I. (2021). Subjective Experience of Speech Depending on the Acoustic Treatment in an Ordinary Room. International Journal of Environmental Research and Public Health, 18(23), 12274. https://doi.org/10.3390/ijerph182312274