Inequalities in Health: Methodological Approaches to Spatial Differentiation
Abstract
:1. Introduction
2. Determinants of Health and Measurement of Inequalities in Health Conditions
3. Materials and Methods
4. Results
4.1. Spatial Differentiation of Health Inequality Indicators
4.2. Comparison of the Benefits of Using Identical and Different Weightings
4.3. Assessment of the Key Determinants and Indicators of the Health Position of Communities
5. Discussion
- If all eight areas are assigned the same weight of one, then the spatial differentiation of the districts in the Czech Republic is similar using both methods, but the aggregate Health Index in the TOPSIS method achieves a slightly larger range of results, which offers the possibility of using more intervals of the distribution of values.
- Comparing the benefits when different weightings are given to each area, it is clear that:
- (a)
- The TOPSIS method has a positive benefit for a larger number of districts in terms of a shift in ranking, if the Health Index value increases at the same time;
- (b)
- (c)
- The allocation of weightings in both methods results in a rearrangement of the ranking of districts for which the Health Index is around the average. The benefits expressed by the change in ranking are not as significant for these districts, in either a positive or a negative sense. At the same time, the change in the index value itself is not nearly as large as for the best- and worst-performing districts (see Figure 1 and Figure 2, the group of districts numbered 2 and 3); and
- (d)
- A notable exception, in both methods and when comparing the variant without and with weightings, is the drop in the ranking of the districts of Děčín and Ústí nad Labem (Table 6), to which the district of Český Krumlov is added in the TOPSIS method (Figure 1 and Figure 2, group of districts marked with the number 6).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Area | Number of Criteria |
---|---|---|
1 | Economic conditions and social protection | 14 |
2 | Education | 2 |
3 | Demographical changes | 3 |
4 | Environmental conditions | 6 |
5 | Individual conditions | 3 |
6 | Safety in road transport and crime | 5 |
7 | Sources of health and social care | 3 |
8 | Health status | 24 |
Data (Y Matrix) | ||||
---|---|---|---|---|
No. | District | Crit. 3_a | Crit. 3_b | Crit. 3_c |
1 | Benešov | 2.3078170 | 121.2548000 | 53.3837180 |
2 | Beroun | 4.0565050 | 102.9994000 | 46.7703730 |
3 | Blansko | 1.4301340 | 124.0119900 | 50.8607460 |
4 | Brno-město | 5.4216000 | 133.6156900 | 100.0000000 |
5 | Brno-venkov | 2.1810500 | 100.9051700 | 35.7013090 |
… | … | … | … | … |
50 | Praha | 10.0295580 | 119.6000000 | 100.0000000 |
51 | Praha-východ | 6.2002270 | 70.0686700 | 39.2130210 |
52 | Praha-západ | 5.7669650 | 74.0182800 | 41.0865460 |
… | … | … | … | … |
76 | Znojmo | 1.5433290 | 124.1267000 | 41.1484260 |
77 | Žďár nad Sázavou | 1.0940440 | 124.1161700 | 48.3809510 |
Crit.type | Min | Min | Max | |
minimum Aj- | 0,895866 | 70.06867 | 35.701309 | |
maximum Aj+ | 10.029558 | 151.03589 | 100 | |
max-min | 9.133692 | 80.96722 | 64.298691 | |
crit.weights vj | 0.3333333 | 0.33333333 | 0.33333333 |
Normalized Matrix R (rij Values) | ||||
---|---|---|---|---|
No. | District | Crit. 3_a | Crit. 3_b | Crit. 3_c |
1 | Benešov | 0.8454129 | 0.3678166 | 0.2750042 |
2 | Beroun | 0.6539582 | 0.5932832 | 0.1721507 |
3 | Blansko | 0.9415058 | 0.3337635 | 0.2357659 |
4 | Brno-město | 0.5045011 | 0.2151513 | 1.0000000 |
5 | Brno-venkov | 0.8592919 | 0.6191483 | 0.0000000 |
… | … | … | … | … |
50 | Praha | 0.0000000 | 0.3882545 | 1.0000000 |
51 | Praha-východ | 0.4192534 | 1.0000000 | 0.0546156 |
52 | Praha-západ | 0.4666889 | 0.9512196 | 0.0837534 |
… | … | … | … | … |
76 | Znojmo | 0.9291127 | 0.3323467 | 0.0847158 |
77 | Žďár nad Sázavou | 0.9783025 | 0.3324768 | 0.1971991 |
Weighted Matrix | Utility | ||||
---|---|---|---|---|---|
No. | District | Crit. 3_a | Crit. 3_b | Crit. 3_c | u(ai) |
1 | Benešov | 0.2818043 | 0.1226055 | 0.0916681 | 0.4960779 |
2 | Beroun | 0.2179861 | 0.1977611 | 0.0573836 | 0.4731307 |
3 | Blansko | 0.3138353 | 0.1112545 | 0.0785886 | 0.5036784 |
4 | Brno-město | 0.1681670 | 0.0717171 | 0.3333333 | 0.5732175 |
5 | Brno-venkov | 0.2864306 | 0.2063828 | 0.0000000 | 0.4928134 |
… | … | … | … | … | … |
50 | Praha | 0.0000000 | 0.1294182 | 0.3333333 | 0.4627515 |
51 | Praha-východ | 0.1397511 | 0.3333333 | 0.0182052 | 0.4912897 |
52 | Praha-západ | 0.1555630 | 0.3170732 | 0.0279178 | 0.5005540 |
… | … | … | … | … | … |
76 | Znojmo | 0.3097042 | 0.1107822 | 0.0282386 | 0.4487251 |
77 | Žďár nad Sázavou | 0.3261008 | 0.1108256 | 0.0657330 | 0.5026595 |
- normalize the decision matrix (types of all criteria are maximization) according to Euclidean metric:
- calculate the weighted decision matrix , and from the weighted decision matrix identify vectors of the hypothetical ideal and basal alternatives over each criterion
- measure the Euclidean distance of every alternative ai to the ideal and to the nadir alternatives over each attribute:
- for all alternatives determine the relative ratio of its distance to the nadir alternative:
- rank order alternatives by maximizing ratio ci.
Data (Y Matrix) with All Crit. Max | ||||
---|---|---|---|---|
No. | District | Crit. 3_a | Crit. 3_b | Crit. 3_c |
1 | Benešov | 7.7217410 | 13.7012270 | 53.3837180 |
2 | Beroun | 5.9730530 | 7.8576040 | 46.7703730 |
3 | Blansko | 8.5994240 | 19.9833790 | 50.8607460 |
4 | Brno-město | 4.6079580 | 20.5881360 | 100.0000000 |
5 | Brno-venkov | 7.8485080 | 13.7681160 | 35.7013090 |
… | … | … | … | … |
50 | Praha | 0.0000000 | 13.8081610 | 100.0000000 |
51 | Praha-východ | 3.8293310 | 0.0000000 | 39.2130210 |
52 | Praha-západ | 4.2625930 | 5.3135220 | 41.0865460 |
… | … | … | … | … |
76 | Znojmo | 8.4862290 | 19.6690720 | 41.1484260 |
77 | Žďár nad Sázavou | 8.9355140 | 23.4320540 | 48.3809510 |
Crit.type | Max | Max | Max | |
crit.weights vj | 0.3333333 | 0.33333333 | 0.33333333 |
Normalized Matrix R (rij Values) | ||||
---|---|---|---|---|
No. | District | Crit. 3_a | Crit. 3_b | Crit. 3_c |
1 | Benešov | 0.001898 | 0.000455 | 0.000167 |
2 | Beroun | 0.001468 | 0.000261 | 0.000147 |
3 | Blansko | 0.002114 | 0.000664 | 0.000159 |
4 | Brno-město | 0.001133 | 0.000684 | 0.000313 |
5 | Brno-venkov | 0.00193 | 0.000457 | 0.000112 |
… | … | … | … | … |
50 | Praha | 0 | 0.000458 | 0.000313 |
51 | Praha-východ | 0.000941 | 0 | 0.000123 |
52 | Praha-západ | 0.001048 | 0.000176 | 0.000129 |
… | … | … | … | … |
76 | Znojmo | 0.002086 | 0.000653 | 0.000129 |
77 | Žďár nad Sázavou | 0.002197 | 0.000778 | 0.000152 |
TOPSIS Results | ||||
---|---|---|---|---|
No. | District | di+ | di− | ci |
1 | Benešov | 0.00019428777 | 0.00065095934 | 0.770141 |
2 | Beroun | 0.00033989717 | 0.00049727901 | 0.593996 |
3 | Blansko | 0.00010370207 | 0.00073876825 | 0.876907 |
4 | Brno-město | 0.00037780900 | 0.00044612732 | 0.541458 |
5 | Brno-venkov | 0.00019332164 | 0.00066097412 | 0.773706 |
… | … | … | … | … |
50 | Praha | 0.00076280336 | 0.00016694286 | 0.179557 |
51 | Praha-východ | 0.00053192018 | 0.00031382651 | 0.371064 |
52 | Praha-západ | 0.00047039179 | 0.00035427083 | 0.429595 |
… | … | … | … | … |
76 | Znojmo | 0.00011557333 | 0.00072872875 | 0.863114 |
77 | Žďár nad Sázavou | 0.00006941700 | 0.00077693087 | 0.917981 |
References
- European Commission. Health Inequalities in the EU. Final Report of a Consortium; Consortium lead: Sir Michael Marmot; European Commission Directorate–General for Health and Consumers: Brussels, Belgium, 2013; pp. 1–186. [Google Scholar]
- Braveman, P.; Arkin, E.; Orleans, T.; Proctor, D.; Plough, A. What Is Health Equity? And What Difference Does a Definition Make? Robert Wood Johnson Foundation: Princeton, NJ, USA, 2017; pp. 1–24. [Google Scholar]
- WHO. A Conceptual Framework for Action on the Social Determinants of Health; Social Determinants of Health: Discussion Paper 2 (Policy and Practice); Solar, O., Irwin, A., Eds.; WHO: Geneva, Switzerland, 2010; pp. 10–49. [Google Scholar]
- Satcher, D.; Fryer, G.E.; McCann, J.; Troutman, A.; Woolf, S.H.; Rust, G. What if we were equal? A comparison of the black–white mortality gap in 1960 and 2000. Health Aff. 2005, 24, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Brousmiche, D.; Occelli, F.; Genin, M.; Cuny, D.; Deram, A.; Lanier, C. Spatialized composite indices to evaluate environmental health inequalities: Meeting the challenge of selecting relevant variables. Ecol. Indic. 2020, 111, 106023. [Google Scholar] [CrossRef]
- Dahlgren, G.; Whitehead, M. Policies and Strategies to Promote Social Equity in Health; The Institute for Futures Studies: Stockholm, Sweden, 1991; p. 69. [Google Scholar]
- WHO. National Health Inequality Monitoring: A Step-by-Step Manual; WHO: Geneva, Switzerland, 2017; pp. 1–54. [Google Scholar]
- Graham, H. Social determinants and their unequal distribution: Clarifying policy understandings. Milbank Q. 2004, 82, 101–124. [Google Scholar] [CrossRef] [Green Version]
- Braveman, P.; Gottlieb, L. The social determinants of health: It’s time to consider the causes of the causes. Public Health Rep. 2014, 129, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Metrics That Matter for Population Health Action: Workshop Summary; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Costa, C.; Santana, P.; Dimitroulopoulou, S.; Burström, B.; Borrell, C.; Schweikart, J.; Dzúrová, D.; Zangarini, N.; Katsouyanni, K.; Deboosere, P.; et al. Population Health Inequalities Across and Within European Metropolitan Areas through the Lens of the EURO-HEALTHY Population Health Index. Int. J. Environ. Res. Public Health 2019, 16, 836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, G.; Whitehead, M. Levelling Up (Part 2): A Discussion Paper on European Strategies for Tackling Social Inequities in Health; WHO Regional Office for Europe: Copenhagen, Denmark, 2006; pp. 20–35. [Google Scholar]
- Sarkar, C.; Webster, C. Urban environments and human health: Current trends and future directions. Curr. Opin. Environ. Sustain. 2017, 25, 33–44. [Google Scholar] [CrossRef]
- Scarwell, H.J.; Roussel, I.; Charles, L. Environnement et santé: Quels enjeux, quels acteurs, quelle intelligibilité? (Environment and Health: What Issues, What Actors, and What Intelligibility?). Développement Durable et Territoires 2013, 4, 1–5. [Google Scholar]
- Smith, S.J.; Easterlow, D. The strange geography of health inequalities. Trans. Inst. Br. Geogr. 2005, 30, 173–190. [Google Scholar] [CrossRef]
- Smyth, F. Medical geography: Understanding health inequalities. Prog. Hum. Geogr. 2008, 32, 119–127. [Google Scholar] [CrossRef]
- Rosenberg, M. Health geography III: Old ideas, new ideas or new determinisms? Prog. Hum. Geogr. 2017, 41, 832–842. [Google Scholar] [CrossRef]
- Fayet, Y.; Praud, D.; Fervers, B.; Ray-Coquard, I.; Blay, J.Y.; Ducimetiere, F.; Fagherazzi, G. Beyond the map: Evidencing the spatial dimension of health inequalities. Int. J. Health Geogr. 2020, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ozdenerol, E. Spatial Health Inequalities: Adapting GIS Tools and Data Analysis; Taylor & Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Cabrera-Barona, P.; Murphy, T.; Kienberger, S.; Blaschke, T. A multi-criteria spatial deprivation index to support health inequality analyses. Int. J. Health Geogr. 2015, 14, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballas, D.; Clarke, G.; Dorling, D.; Rigby, J.; Wheeler, B. Using geographical information systems and spatial microsimulation for the analysis of health inequalities. Health Inform. J. 2006, 12, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Hübelová, D.; Chromková-Manea, B.E.; Machučová, B. Vývoj naděje dožití a odvratitelná úmrtnost v krajích České republiky v období let 2006–2016 a jejich determinanty. Demografie 2021, 63, 48–65. [Google Scholar]
- Mackenbach, J.P.; Stirbu, I.; Roskam, A.J.; Schaap, M.M.; Menvielle, G.; Leinsalu, M.; Kunst, A.E. European union working group on socioeconomic inequalities in health. Socioeconomic inequalities in health in 22 European Countries. N. Engl. J. Med. 2008, 358, 2468–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Van Lenthe, F.J.; Borsboom, G.J.; Looman, C.W.; Bopp, M.; Burström, B.; Dzúrová, D.; Ekholm, O.; Klumbiene, J.; LaHelma, E.; et al. Trends in socioeconomic inequalities in self-assessed health in 17 European countries between 1990 and 2010. J. Epidemiol. Community Health 2016, 70, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Lagravinese, R.; Liberati, P.; Resce, G. Measuring Health Inequality in US: A Composite Index Approach. Soc. Indic. Res. 2020, 147, 921–946. [Google Scholar] [CrossRef]
- Hacker, K.A.; Alleyne, E.O.; Plescia, M. Public Health Approaches to Social Determinants of Health: Getting Further Faster. J. Public Health Manag. Pract. 2021, 27, 526–528. [Google Scholar] [CrossRef]
- Dooley, D.; Fielding, J.; Levi, L. Health and unemployment. Annu. Rev. Public Health 1996, 17, 449–465. [Google Scholar] [CrossRef]
- Friedland, D.S.; Price, R.H. Underemployment: Consequences for the health and well-being of workers. Am. J. Community Psychol. 2003, 2, 33–45. [Google Scholar] [CrossRef]
- Avendano, M.; Berkman, L.F. Labor Markets, Employment Policies, and Health; Oxford University Press: Oxford, UK, 2014; pp. 182–233. [Google Scholar]
- Rudd, R.E. Health literacy skills of U.S. adults. Am. J. Health Behav. 2007, 1, S8–S18. [Google Scholar] [CrossRef]
- Gilmour, M.I.; Jaakkola, M.S.; London, S.J.; Nel, A.E.; Rogers, C.A. How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environ. Health Perspect. 2006, 114, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Santana, P.; Costa, C.; Freitas, Â.; Stefanik, I.; Quintal, C.; Bana ECosta, C.; Borrell, C. Atlas of Population Health in European Union Regions; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2017; p. 263. [Google Scholar]
- EURO-HEALTHY Consortium. EURO-HEALTHY Population Health Inde. The Healthyregionseurope Webgis. University of Coimbra. 2017. Available online: www.healthyregionseurope.uc.pt (accessed on 14 January 2020).
- Mackenbach, J.P.; Valverde, J.R.; Artnik, B.; Bopp, M.; Brønnum-Hansen, H.; Deboosere, P.; Kalediene, R.; Kovács, K.; Leinsalu, M.; Martikainen, P.; et al. Trends in health inequalities in 27 European countries. Proc. Natl. Acad. Sci. USA 2018, 115, 6440–6445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosakova, L.; Rosicova, K.; Filakovska Bobakova, D.; Rosic, M.; Dzurova, D.; Pikhart, H.; Lustigova, M.; Santana, P. Mortality in the Visegrad countries from the perspective of socioeconomic inequalities. Int. J. Public Health 2019, 64, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Hübelová, D.; Kozumplíková, A.; Walicová, V. The Mortality Structure of Populations the Demographic and Socio-Economic Situation in European Union Countries: Development and Differentiation in the Period 2011–2014. Eur. Spat. Res. Policy 2020, 27, 173–193. [Google Scholar] [CrossRef]
- European Commision. European Core Health Indicators; European Commision: Brussels, Belgium, 2021. [Google Scholar]
- Roth, G.A.; Dwyer-Lindgren, L.; Bertozzi-Villa, A.; Stubbs, R.W.; Morozoff, C.; Naghavi, M.; Mokdad, A.H.; Murray, C.J.L. Trends and Patterns of Geographic Variation in Cardiovascular Mortality Among US Counties, 1980–2014. JAMA 2017, 17, 1976–1992. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.E.; Wu, C.L. The links between education and health. Am. Soc. Rev. 1995, 60, 719–745. [Google Scholar] [CrossRef]
- Mulatu, M.S.; Schooler, C. Causal Connections between Socioeconomic Status and Health: Reciprocal Effects and Mediating Mechanisms. J. Health Soc. Behav. 2002, 43, 22–41. [Google Scholar] [CrossRef]
- Lopez, R. Income Inequality and Self-Rated Health in US Metropolitan Areas: A Multi-Level Analysis. Soc. Sci. Med. 2004, 59, 2409–2419. [Google Scholar] [CrossRef]
- Petrelli, A.; Di Napoli, A.; Sebastiani, G.; Rossi, A.; Rossi, P.G.; Demuru, E.; Costa, G.; Zengarini, N.; Alicandro, G.; Marchetti, S.; et al. Italian Atlas of mortality inequalities by education level. Epidemiol. Prev. 2019, 43, 1–120. [Google Scholar]
- Woolf, S.H.; Johnson, R.E.; Phillips, R.L., Jr.; Philipsen, M. Giving everyone the health of the educated: An examination of whether social change would save more lives than medical advances. Am. J. Public Health 2007, 97, 679–683. [Google Scholar] [CrossRef] [PubMed]
- POLICYLINK, USC Equity Research Institute. National Equity Atlas. Available online: www.nationalequityatlas.org (accessed on 12 March 2021).
- Harper, S.; Lynch, J.; Meersman, S.C.; Breen, N.; Davis, W.W.; Reichman, M.E. An overview of methods for monitoring social disparities in cancer with an example using trends in lung cancer incidence by area–socioeconomic position and race–ethnicity, 1992–2004. Am. J. Epidemiol. 2008, 167, 889–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, S.; Lynch, J.; Meersman, S.C.; Breen, N.; Davis, W.W.; Reichman, M.E. Trends in area socioeconomic and race ethnic disparities in breast cancer incidence, stage at diagnosis, screening, mortality, and survival among women ages 50 years and over (1987–2005). Cancer Epidemiol. Prev. Biomark. 2009, 18, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, S.; King, N.B.; Meersman, S.C.; Reichman, M.E.; Breen, N.; Lynch, J. Implicit value judgments in the measurement of health inequalities. Milbank Q. 2010, 88, 4–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, W.; Saisana, M.; Paruolo, P.; Vandecasteele, I. Weightings and importance in composite indicators: Closing the gap. Ecol. Indic. 2017, 80, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Soc. Indic. Res. 2018, 141, 61–94. [Google Scholar] [CrossRef] [Green Version]
- He, Y.X.; Jiao, Z.; Yang, J. Comprehensive evaluation of global clean energy development index based on the improved entropy method. Ecol. Indic. 2018, 88, 305–321. [Google Scholar] [CrossRef]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster resilience indicators for benchmarking baseline conditions. J. Homel. Secur. Emerg. Manag. 2010, 7, 51. [Google Scholar] [CrossRef]
- Saib, M.S.; Caudeville, J.; Beauchamp, M.; Carré, F.; Ganry, O.; Trugeon, A.; Cicolella, A. Building spatial composite indicators to analyze environmental health inequalities on a regional scale. Environ. Health 2015, 14, 68. [Google Scholar] [CrossRef] [Green Version]
- Freitas, Â.; Santana, P.; Oliveira, M.D.; Almendra, R.; Bana ECosta, J.C.; Bana ECosta, C.A. Indicators for evaluating European population health: A Delphi selection process. BMC Public Health 2018, 18, 557. [Google Scholar] [CrossRef] [PubMed]
- Healthy People. Healthy People 2030 Framework. U.S. Department of Health & Human Services. 2021. Available online: https://www.healthypeople.gov/2020/About-Healthy-People/Development-Healthy-People-2030/Framework (accessed on 20 January 2021).
- Braveman, P. Monitoring Inequities in Health: A Policy-Oriented Approach in Low- and Middle-Income Countries; Division of Analysis, Research, and Assessment, World Health Organization: Geneva, Switzerland, 1998; pp. 1–106. [Google Scholar]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S. Tools for Composite Indicators Building; EUR 21682 EN. 2005. JRC31473; European Commission, Joint Research Centre, JRC Publications Repository: Brussels, Belgium, 2005; pp. 7–119. [Google Scholar]
- Flacke, J.; Köckler, H. Spatial urban health equity indicators–a framework-based approach supporting spatial decision making. In Sustainable Development and Planning VII; WIT Press: Ashurst Lodge, Ashurst, Southampton, UK, 2015; Volume 193, pp. 365–376. [Google Scholar]
- Jablonsky, J. Software Support for Multiple Criteria Decision Making Problems. Manag. Inf. Syst. 2009, 4, 29–34. [Google Scholar]
- Han, H.; Ahn, D.H.; Song, J.; Hwang, T.Y.; Roh, S. Development of Mental Health Indicators in Korea. Psychiatry Investig. 2012, 9, 311–318. [Google Scholar] [CrossRef]
- Fink, A.; Kosecoff, J.; Chassin, M.; Brook, R.H. Consensus methods: Characteristics and guidelines for use. Am. J. Public Health 1984, 74, 979–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stereiner, D.L.; Norman, G.R. Health Measurement Scales: A Pratical Guide to Their Development and Use; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Hübelová, D.; Ptáček, P.; Šlechtová, T. Demographic and socio-economic factors influencing health inequalities in the Czech Republic. GeoSpace 2021, 15, 53–65. [Google Scholar] [CrossRef]
- Aktaş, M.T. Comparing EU Countries, Turkey and Macedonia via Clustering Analysis for Quality of Life Indicators. In Economic Issues: Crises, Finance and Agriculture, 1st ed.; Koç, S., Öruç, E., Anlar, A., Eds.; IJOPEC Publication: London, UK, 2017; Volume 4, pp. 76–104. [Google Scholar]
- Fernandez-Crehueta, J.M.; Rosales-Salasb, J.; De Ramos, S. State of health in the European Union: A European Health Index. J. Healthc. Qual. Res. 2019, 34, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Hübelová, D.; Kozumplíková, A.; Kosová, P.; Walicová, V. Relationship between Socio-demographic and Economic Determinants of Cause-Specific Mortality in the EU Countries in the Period 2011–2014. Geogr. Cassoviensis 2020, 14, 129–143. [Google Scholar] [CrossRef]
- Pearson-Stuttard, J.; Murphy, O.; Davies, S.C. A new Health Index for England: The Chief Medical Officer’s 2018 annual report. Lancet 2019, 393, 10–11. [Google Scholar] [CrossRef]
- Hübelová, D.; Kozumplíková, A. Evaluation of Demographic and Socio-economic Factors of Mortality in the South Moravian Region (Czech Republic). Acta Univ. Agric. et Silvic. Mendelianae Brun. 2019, 67, 1255–1267. [Google Scholar] [CrossRef] [Green Version]
- European Commission. European Core Health Indicators (ECHI). European Commission, Brussels. 2012. Available online: https://ec.europa.eu/health/indicators_data/indicators_en (accessed on 18 August 2020).
- Börsch-Supan, A.; Brandt, M.; Hunkler, C.; Kneip, T.; Korbmacher, J.; Malter, F.; Zuber, S. Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). Int. J. Epidemiol. 2013, 42, 992–1001. [Google Scholar] [CrossRef]
- Minicuci, N.; Naidoo, N.; Chatterji, S.; Kowal, P. Data Resource Profile: Cross-national and cross-study sociodemographic and health-related harmonized domains from SAGE plus ELSA, HRS and SHARE (SAGE+, Wave 1). Int. J. Epidemiol. 2016, 45, 1403. [Google Scholar] [CrossRef] [Green Version]
- Hübelová, D.; Chromková-Manea, B.E.; Kozumplíková, A. Zdraví a jeho sociální, ekonomické a environmentální determinanty: Teoretické a empirické vymezení. Sociológia 2021, 53, 119–146. [Google Scholar] [CrossRef]
- Azarnert, L.V. Health Capital Provision and Human Capital Accumulation. Oxf. Econ. Pap. 2000, 72, 633–650. [Google Scholar] [CrossRef]
- Azarnert, L.V. Child Mortality, Fertility and Human Capital Accumulation. J. Popul. Econ. 2006, 19, 285–297. [Google Scholar] [CrossRef]
- Miech, R.A.; Hauser, R.M. Socioeconomic Status and Health at Midlife: A Comparison of Educational Attainment with Occupation-Based Indicators. Ann. Epidemiol. 2001, 11, 75–84. [Google Scholar] [CrossRef]
- Chen, E.; Martin, A.D.; Matthews, K.A. Socioeconomic status and health: Do gradients differ within childhood and adolescence? Soc. Sci. Med. 2006, 62, 2161–2170. [Google Scholar] [CrossRef]
- Boesch, A.; Montmollin, A.; Kulig, A.; Palm, V.; Willi, V.; Zuinen, N. Getting Messages Across Using Indicators. A Handbook Based on Experiences from Assessing Sustainable Development Indicators; EUROSTAT Manuals and Guidelines; Publications Office of the European Union: Luxembourg, 2014; pp. 1–72. [Google Scholar]
- Salmi, L.R.; Barsanti, S.; Bourgueil, Y.; Daponte, A.; Piznal, E.; Ménival, S. Air Research Group. Interventions addressing health inequalities in European regions: The AIR project. Health Promot. Int. 2017, 32, 430–441. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Communication–Solidarity in Health: Reducing Health Inequalities in the EU; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Arcaya, M.C.; Arcaya, A.L.; Subramanian, S.V. Inequalities in health: Definitions, concepts, and theories. Glob. Health Action 2015, 8, 27106. [Google Scholar] [CrossRef]
- Rosenkötter, N.; Van Bon-Martens, M. Public health monitoring and reporting: Maintaining and improving the evidence-base. Eurohealth 2015, 21, 17–20. [Google Scholar]
- Eurostat. Guide to Statistics in European Commission Development Cooperation, 2017th ed.; Publications Office of the European Union: Luxembourg, 2017; pp. 1–409. [Google Scholar]
- Alinezhad, A.; Khalili, J. New Methods and Applications in Multiple Attribute Decision Making (MADM); Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Lai, Y.J.; Liu, T.Y. TOPSIS for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [Google Scholar] [CrossRef]
Area | Weight | |
---|---|---|
1 | Economic conditions and social protection | 0.19 |
2 | Education | 0.18 |
3 | Demographic indicators | 0.08 |
4 | Environmental conditions | 0.14 |
5 | Individual living conditions | 0.09 |
6 | Road safety and crime | 0.04 |
7 | Health and social care resources | 0.10 |
8 | Health status | 0.20 |
WSA (Weight 1) | TOPSIS (Weight 1) | |||
---|---|---|---|---|
Rank | District | Health Index | District | Health Index |
1 | Praha-západ | 0.67 | Brno-město | 0.63 |
2 | České Budějovice | 0.64 | Praha Capital City | 0.59 |
3 | Brno-město | 0.64 | České Budějovice | 0.56 |
4 | Praha-východ | 0.61 | Plzeň-město | 0.55 |
5 | Jindřichův Hradec | 0.60 | Praha-západ | 0.54 |
73 | Jeseník | 0.37 | Louny | 0.30 |
74 | Bruntál | 0.37 | Hodonín | 0.29 |
75 | Ostrava-město | 0.36 | Teplice | 0.28 |
76 | Most | 0.35 | Most | 0.27 |
77 | Karviná | 0.33 | Karviná | 0.25 |
WSA (Different Weightings) | TOPSIS (Different Weightings) | |||
---|---|---|---|---|
Rank | District | Health Index | District | Health Index |
1 | Praha-západ | 0.71 | Brno-město | 0.67 |
2 | Praha-východ | 0.66 | Hl. město Praha | 0.66 |
3 | Brno-město | 0.66 | Praha-západ | 0.61 |
4 | České Budějovice | 0.65 | Plzeň-město | 0.58 |
5 | Hl. město Praha | 0.65 | České Budějovice | 0.57 |
73 | Bruntál | 0.32 | Chomutov | 0.27 |
74 | Chomutov | 0.32 | Louny | 0.26 |
75 | Ostrava-město | 0.31 | Teplice | 0.24 |
76 | Most | 0.26 | Karviná | 0.22 |
77 | Karviná | 0.24 | Most | 0.21 |
Determinants of Health | Health Indicators | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | Area 6 | Area 7 | Area 8 | |||||||||||
Health Index | Economic Conditions and Social Protection | Education | Demographic Indicators | Environmental Conditions | Individual Living Conditions | Road Safety and Crime | Health and Social Care Resources | Health Status | ||||||||||
District | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value |
Praha-západ | 1 | 0.710 | 9 | 0.698 | 3 | 0.832 | 8 | 0.582 | 46 | 0.476 | 1 | 0.728 | 14 | 0.791 | 75 | 0.234 | 4 | 0.757 |
Praha-východ | 2 | 0.657 | 1 | 0.803 | 4 | 0.697 | 4 | 0.593 | 71 | 0.195 | 3 | 0.656 | 27 | 0.767 | 72 | 0.294 | 9 | 0.723 |
Brno-město | 3 | 0.656 | 66 | 0.437 | 2 | 0.912 | 12 | 0.573 | 47 | 0.476 | 54 | 0.381 | 44 | 0.713 | 3 | 0.800 | 13 | 0.695 |
České Budějovice | 4 | 0.650 | 27 | 0.627 | 7 | 0.569 | 11 | 0.577 | 14 | 0.740 | 32 | 0.474 | 36 | 0.747 | 9 | 0.582 | 29 | 0.622 |
Cap. C. Praha | 5 | 0.650 | 7 | 0.721 | 1 | 0.999 | 55 | 0.463 | 75 | 0.181 | 48 | 0.399 | 75 | 0.514 | 28 | 0.467 | 3 | 0.762 |
Jeseník | 69 | 0.361 | 68 | 0.416 | 67 | 0.173 | 74 | 0.388 | 19 | 0.710 | 25 | 0.491 | 57 | 0.651 | 32 | 0.462 | 68 | 0.438 |
Louny | 70 | 0.345 | 70 | 0.331 | 68 | 0.161 | 15 | 0.549 | 41 | 0.558 | 15 | 0.529 | 74 | 0.519 | 20 | 0.504 | 74 | 0.359 |
Sokolov | 71 | 0.331 | 67 | 0.426 | 77 | 0.000 | 6 | 0.614 | 9 | 0.807 | 44 | 0.412 | 70 | 0.576 | 70 | 0.313 | 73 | 0.361 |
Teplice | 72 | 0.327 | 52 | 0.533 | 70 | 0.152 | 28 | 0.522 | 66 | 0.244 | 24 | 0.498 | 53 | 0.673 | 11 | 0.559 | 77 | 0.307 |
Bruntál | 73 | 0.324 | 74 | 0.327 | 69 | 0.161 | 19 | 0.539 | 21 | 0.707 | 39 | 0.429 | 66 | 0.607 | 39 | 0.432 | 72 | 0.375 |
Chomutov | 74 | 0.320 | 73 | 0.331 | 75 | 0.101 | 7 | 0.614 | 20 | 0.709 | 58 | 0.364 | 64 | 0.608 | 10 | 0.565 | 76 | 0.315 |
Ostrava-město | 75 | 0.306 | 76 | 0.331 | 10 | 0.469 | 1 | 0.661 | 77 | 0.014 | 75 | 0.266 | 63 | 0.613 | 6 | 0.634 | 71 | 0.382 |
Most | 76 | 0.258 | 75 | 0.325 | 72 | 0.128 | 3 | 0.641 | 68 | 0.212 | 74 | 0.269 | 48 | 0.698 | 7 | 0.619 | 75 | 0.321 |
Karviná | 77 | 0.245 | 77 | 0.217 | 59 | 0.242 | 10 | 0.581 | 76 | 0.017 | 56 | 0.374 | 24 | 0.771 | 33 | 0.460 | 69 | 0.430 |
Determinants of Health | Health Indicators | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | Area 6 | Area 7 | Area 8 | |||||||||||
Health Index | Economic Conditions and Social Protection | Education | Demographic Indicators | Environmental Conditions | Individual Living Conditions | Road Safety and Crime | Health and Social Care Resources | Health Status | ||||||||||
District | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value |
Brno-město | 1 | 0.673 | 66 | 0.453 | 2 | 0.867 | 53 | 0.368 | 50 | 0.378 | 54 | 0.425 | 40 | 0.687 | 1 | 0.877 | 20 | 0.598 |
Cap. C. Praha | 2 | 0.663 | 7 | 0.640 | 1 | 0.999 | 38 | 0.410 | 75 | 0.176 | 53 | 0.427 | 73 | 0.511 | 6 | 0.640 | 5 | 0.676 |
Praha-západ | 3 | 0.612 | 22 | 0.593 | 3 | 0.828 | 1 | 0.704 | 49 | 0.379 | 32 | 0.528 | 6 | 0.785 | 75 | 0.144 | 2 | 0.701 |
Plzeň-město | 4 | 0.584 | 10 | 0.621 | 5 | 0.670 | 72 | 0.313 | 59 | 0.295 | 68 | 0.336 | 58 | 0.597 | 2 | 0.873 | 42 | 0.548 |
České Budějovice | 5 | 0.574 | 30 | 0.572 | 7 | 0.583 | 11 | 0.499 | 17 | 0.532 | 42 | 0.473 | 43 | 0.679 | 8 | 0.560 | 31 | 0.568 |
Praha-východ | 6 | 0.546 | 2 | 0.686 | 4 | 0.709 | 2 | 0.704 | 71 | 0.184 | 33 | 0.520 | 14 | 0.753 | 73 | 0.198 | 3 | 0.692 |
Znojmo | 69 | 0.295 | 73 | 0.38357 | 71 | 0.149 | 35 | 0.418 | 39 | 0.450 | 39 | 0.509 | 33 | 0.711 | 39 | 0.363 | 17 | 0.604 |
Hodonín | 70 | 0.290 | 59 | 0.47157 | 62 | 0.238 | 71 | 0.323 | 57 | 0.300 | 64 | 0.351 | 12 | 0.757 | 50 | 0.339 | 21 | 0.594 |
Chomutov | 73 | 0.276 | 74 | 0.369 | 75 | 0.114 | 8 | 0.524 | 18 | 0.528 | 66 | 0.348 | 61 | 0.587 | 25 | 0.402 | 76 | 0.367 |
Louny | 74 | 0.262 | 69 | 0.420 | 68 | 0.172 | 17 | 0.473 | 48 | 0.402 | 29 | 0.538 | 75 | 0.471 | 53 | 0.331 | 73 | 0.400 |
Teplice | 75 | 0.244 | 46 | 0.535 | 70 | 0.168 | 34 | 0.419 | 66 | 0.251 | 44 | 0.465 | 57 | 0.615 | 26 | 0.395 | 77 | 0.353 |
Karviná | 76 | 0.223 | 77 | 0.311 | 62 | 0.249 | 55 | 0.360 | 76 | 0.049 | 47 | 0.462 | 18 | 0.748 | 35 | 0.374 | 69 | 0.433 |
Most | 77 | 0.214 | 71 | 0.535 | 74 | 0.129 | 13 | 0.486 | 68 | 0.201 | 73 | 0.318 | 35 | 0.648 | 14 | 0.473 | 72 | 0.402 |
WSA without Weightings | WSA Weighted | TOPIS without Weightings | TOPIS Weighted | |||||
---|---|---|---|---|---|---|---|---|
District | Index Value | Rank | Index Value | Rank | Index Value | Rank | Index Value | Rank |
Děčín | 0.50 | 36 | 0.44 | 59 | 0.44 | 22 | 0.40 | 43 |
Ústí nad Labem | 0.49 | 38 | 0.46 | 58 | 0.44 | 15 | 0.42 | 31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hübelová, D.; Kuncová, M.; Vojáčková, H.; Coufalová, J.; Kozumplíková, A.; Lategan, F.S.; Chromková Manea, B.-E. Inequalities in Health: Methodological Approaches to Spatial Differentiation. Int. J. Environ. Res. Public Health 2021, 18, 12275. https://doi.org/10.3390/ijerph182312275
Hübelová D, Kuncová M, Vojáčková H, Coufalová J, Kozumplíková A, Lategan FS, Chromková Manea B-E. Inequalities in Health: Methodological Approaches to Spatial Differentiation. International Journal of Environmental Research and Public Health. 2021; 18(23):12275. https://doi.org/10.3390/ijerph182312275
Chicago/Turabian StyleHübelová, Dana, Martina Kuncová, Hana Vojáčková, Jitka Coufalová, Alice Kozumplíková, Francois Stefanus Lategan, and Beatrice-Elena Chromková Manea. 2021. "Inequalities in Health: Methodological Approaches to Spatial Differentiation" International Journal of Environmental Research and Public Health 18, no. 23: 12275. https://doi.org/10.3390/ijerph182312275
APA StyleHübelová, D., Kuncová, M., Vojáčková, H., Coufalová, J., Kozumplíková, A., Lategan, F. S., & Chromková Manea, B. -E. (2021). Inequalities in Health: Methodological Approaches to Spatial Differentiation. International Journal of Environmental Research and Public Health, 18(23), 12275. https://doi.org/10.3390/ijerph182312275